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UKRAINIAN CATHOLIC UNIVERSITY

Abstract
Faculty of Applied Sciences

Master of Science

Replica Exchange For Multiple-Environment Reinforcement Learning

by Dmitri GLUSCO

In this project (Dmitri Glusco, 2019), we treat the Reinforcement Learning problem of
Exploration vs. Exploitation. The problem can be rephrased in terms of generalization
and overfitting or efficient learning.

To face the problem we decided to combine the techniques from different re-
searches: we introduce noise as an environment’s characteristics (Packer et al., 2018);
create multiple Reinforcement Learning agents and environments setup to train in
parallel and interact within each other (Jaderberg et al., 2017); use parallel tempering
approach to initialize environments with different temperatures (noises) and perform
exchanges using Metropolis-Hastings criterion (Pushkarov et al., 2019).

We implemented multi-agent architecture with parallel tempering approach based
on two different Reinforcement Learning agent algorithms - Deep Q Network and
Advantage Actor-Critic - and environment wrapper of the OpenAI Gym (Gym: A
toolkit for developing and comparing reinforcement learning algorithms) environment for
noise addition. We used the CartPole environment to run multiple experiments with
three different types of exchanges: no exchange, random exchange, smart exchange
according to Metropolis-Hastings rule. We implemented aggregation functionality to
gather the results of all the experiments and visualize them with charts for analysis.

Experiments showed that a parallel tempering approach with multiple environ-
ments with different noise level can improve the performance of the agent under
specific circumstances. At the same time, results raised new questions that should be
addressed to fully understand the picture of the implemented approach.

HTTPS://UCU.EDU.UA/
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Chapter 1

Introduction

Nowadays Machine Learning (ML) achieved a lot of great theoretical and practical
results: Image Classification, Recommender Systems, various Natural Language
Processing applications, time-series predictions, various advances in Deep Learning
(Minar and Naher, 2018), etc. A special place in the ML takes Reinforcement Learning
(RL) (Sutton and Barto, 2018). A technique allowing to reinforce the previous expe-
rience to predict the future and act based on this prediction. This approach enables
agents to act in the unknown environment, explore and exploit it to achieve rewards.

1.1 Reinforcement Learning

There are two main objects in the RL: the agent and the environment. The agent can
be controlled, trained to achieve different goals. In contrast, the environment can’t
be controlled, it can only be observed either fully or partly, where the latter one is
a common real-world example. The idea of the RL is to train an agent to behave
optimally in the environment to achieve the goal.

Goals may be very different: from winning the Ping Pong virtual Atari game to
drive the car in the real world. In both cases, the agent will be a software program
that is trained to achieve its goal. But the environments are different: in the first
case, it is also a program, where all the environment behaviors are determined, in the
second case it is a real-world with much higher complexity and stochasticity.

In contrast with a Supervised or Unsupervised Learning, in RL there is no ready
dataset to find an optimal solution. The data is obtained through the interaction of
the agent with the environment and almost immediately this data is used to optimize
the behavior of the agent.

In the RL environment (Figure 1.1) agent interacts with the environment and tries
to maximize the cumulative reward. The agent receives the state and the reward from
the environment and interacts with it using actions.

Rt - reward at the timestamp t
At - action
Ot - observation
Ht - history. Ht = A1, O1, R1, . . . , At, Ot, Rt
St - state - information used to determine what happens next. St = f (Ht)
The environment is described as a Markov Decision Process (MDP), that is defined

by the 〈S ,A,P ,R, γ〉, where:

1. S is a (finite) set of states

2. A is a (finite) set of actions

3. P is a state transition probability matrix, P a
ss′ = P[St+1 = s′|St = s, At = a]
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FIGURE 1.1: Agent interaction (Reinforcement learning lectures by Deep-
Mind).

4. R is a reward function,Ra
s = E[Rt+1|St = s, At = a]

5. γ is a discount factor, γ ∈ [0, 1]

Gt - return - is the total discounted reward from time-step t. Gt = Rt+1 + γRt+2 +
· · · = ∑∞

k=0 γkRt+k+1
vπ(s) - state-value function of MDP - vπ(s) = Eπ[Gt|St = s]
π - policy - a strategy of how to behave in the environment or in other words

what actions to take in a given states.
The state-value function represents how good is a state for an agent to be in. It is

equal to the expected total reward for an agent starting from state s.
qπ(s, a) - action-value function of MDP - qπ(s, a) = Eπ[Gt|St = s, At = a]
The action-value function is an indication of how good it is for an agent to pick

action a while being in state s.
v∗(s) - optimal state-value function - v∗(s) = maxπvπ(s)
q∗(s, a) - optimal action-value function - q∗(s, a) = maxπqπ(s, a)
Bellman Optimality Equation for MDPs:
v∗(s) = maxaq∗(s, a)
q∗(s, a) = Ra

s + γ ∑s′∈S P a
ss′v∗(s

′)
Combining 2 parts:
v∗(s) = maxa(Ra

s + γ ∑s′∈S P a
ss′v∗(s

′))
q∗(s, a) = Ra

s + γ ∑s′∈S P a
ss′maxa′q∗(s′, a′)

As mentioned earlier, the environments may be different. To train a good agent
in a very simple environment like mentioned Pong or much more complex envi-
ronment with higher dimensionality different algorithms were developed over time
(Figure 1.2).
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FIGURE 1.2: A Taxonomy of RL Algorithms (OpenAI Spinning Up: An
educational resource produced by OpenAI that makes it easier to learn about

deep reinforcement learning).

There are 2 main groups of the RL algorithms: Model-Free RL and Model-Based
RL. In Model-Based, the model of the world is built explicitly. The model represents
the transitions and outcomes of the environment. Model-Free RL doesn’t build
the model of the environment explicitly. In Model-Free agent is trained directly by
state/action-values or policies.

In this work, we are focused on the Model-Free approach. Model-Free RL also
divides into 2 groups: policy-based methods and value-based methods. Policy-
based methods try to find the best policy that may be deterministic or stochastic.
Value-based methods are focused on predicting action/state-value.
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Chapter 2

Motivation

RL is already used in various applications. However, the common downside is a lack
of stability and control both during the training and inference of the agents. In the
work (Mao et al., 2016) "Resource Management with Deep Reinforcement Learning"
authors designed the algorithm to allocate limited resources to different tasks. The
objective was to minimize the average job slowdown. The authors formulated current
resource allocation as the state space and used the policy gradients approach to solve
the task.

There are a lot of works on applying RL in Robotics. In "Reinforcement learning
in robotics: A survey" paper (Kober, Bagnell, and Peters, 2013) the authors provided
a survey of work in reinforcement learning for behavior generation in robots. They
highlighted both key challenges in robot reinforcement learning as well as notable
successes.

Other researches (Arel et al., 2010) used a multi-agent system for network traffic
signal control. Their main goal was to minimize the average delay, congestion, and
likelihood of intersection cross-blocking. Traffic flow was used as a state. The authors
applied Deep Q Network (DQN) algorithm for their task.

Among other fields where RL was used are chemistry (Zhou, Li, and Zare, 2017),
personalized recommendations (Zheng et al., 2018), bidding and advertising (Jin
et al., 2018), and many other fields, where RL is used.

Probably, the biggest field of experiments, tests, and researches for RL is games.
The reason is that the game is a ready-made simulated study environment. A lot of
games were developed so far. They have all kinds of different complexities: from
the easiest, where state space can be represented with only one dimension with few
values, to the hardest, where it is impossible to represent all the possible states and
not all states are observable. The goal may sound easy - win the game, but it is
a very complex goal with a lot of different tactics, strategies, moves, options and
etc. Researches use these game environments to test new approaches, find better
algorithms, try to build a generic approach, that can beat totally different games. One
of the recent researches (Vinyals et al., 2019) showed that RL can compete with the
best players around the world in the game of StarCraft 2 (with some limitations),
which is a very complex game that has uncountable possible states and actions.

Creating an agent that can potentially train and achieve human-level results
on all the possible games is a challenging task that is far from being achieved yet.
There are multiple challenges on the way. Exploration vs. Exploitation dilemma is
just a stability and training issue, that prevents agents from stable training and the
performance in the unknown environments.
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Chapter 3

Problem Setting

To understand better the Exploration/Exploitation dilemma let us understand what
does it mean in terms of RL.

Exploration means finding all the possible combinations of states and actions,
i.e. explore the environment. If we talk about exploration then there is no other
reward function to optimize than finding new state-action combinations, i.e. reward
from the environment is not used. Some research is done in the direction of intrinsic
motivation, where the external reward from the environment is not used and agents
explore the environment ((Barto, 2013), (Aubret, Matignon, and Hassas, 2019)).

In contrast, exploitation means having some goal, some reward function that
should be optimized. The agent will only exploit previous knowledge (what was the
value of the reward after some state-action pair) to act in the way of maximizing this
reward. I.e. the agent will never act differently in the same situation, even if different
actions will lead to a better reward because the agent does not know it.

To find the best actions (in terms of getting the highest return) for all the states
agents should both explore new knowledge and exploit previous knowledge. To find
such optimal policy in any environment the agent should randomly explore it infinite
time and visit all the possible combinations of states and actions, which is technically
impossible over a finite amount of time (Sutton and Barto, 2018).

There are some simple practical techniques like ε-greedy exploration. It means
that the agent will choose random action with odd ε or the best action according
to the obtained knowledge with odd (1− ε). Usually ε is decreased over time to
privilege exploitation after enough exploration. Such a technique decreases the time
that is required to converge at some good local optima. But for environments with
much higher complexity these local optima may be not good enough and the amount
of time, needed for getting reasonable results, is still too high.

Exploration/Exploitation dilemma can be viewed from different angles. Basically,
this dilemma may be rephrased as the problem of overfitting or the problem of
efficient learning.

The overfitting problem is well-known to the ML world. The problem of over-
fitting can be explained in the way that the model perfectly predicts the data it was
trained on and because of that loses the ability to predict properly on the data the
model has not seen (Figure 3.1). Another way to observe the overfitting is when the
model is sensitive to small perturbations.

The main reason for the overfitting is that the model is too complex for the dataset
it is trained on. And there are a lot of different solutions to overcome this problem:

• Simplify the model

• Greatly increase the dataset

• Data augmentation
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FIGURE 3.1: Underfitting and overfitting (Bishop, 2006).

• Cross-validation

• Add regularization

• Dropout

• Other techniques that improve predictions on the test or unobserved data

In the terms of the RL agent, if the agent overfits that means that he cannot
perform on the states that he did not see during training. Usually, agents are trained
on the same environments on which they are applied further, it means that they train
on the test set. And if the environment will change or if we want to use the agent’s
knowledge in a similar environment (with some differences) then usually the agent
will fail. A good example is the maze environment: the agent can learn how to go
through the maze to the finish, but when the maze will change then the agent will
fail.
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Chapter 4

Related Work

Because the balance between exploring and exploiting the environment is one of
the fundamental problems of the RL, a lot of different researches and algorithms
investigate this problem in different senses. Nevertheless, no approach was found yet
to overcome this problem optimally for all the environments. We reviewed related
researches to our idea.

Authors of the "Quantifying Generalization in Reinforcement Learning" paper
(Cobbe et al., 2018) investigated the problem of overfitting in deep RL. They intro-
duced a new environment called CoinRun with procedurally generated environments
to construct distinct training and test sets. The environment is designed as a bench-
mark for generalization. It is shown that agents overfit to large training sets. Deeper
convolution architects and traditional methods, like L2 regularization, dropout, data
augmentation improve generalization.

The idea of the noise as an improvement to the algorithm was used all over the
different ML fields. The most commonly used is the dropout technique (Srivastava
et al., 2014). Paper (Packer et al., 2018) by Charles Packer, Katelyn Gao, Jernej
Kos, Philipp Krähenbühl, Vladlen Koltun, Dawn Song from Berkeley presented a
good foundation to measure and analyze generalization. Authors implemented
a deterministic, random and extremely random environment set up to train the
agent on different environment setup and compare the performance using different
algorithms. They empirically proved that training vanilla deep RL algorithms with
environmental stochasticity may be more effective for generalization than specialized
algorithms. The authors used the noise in the way of changing the state observed by
an agent. And proved improvement of generalization abilities (or in other words -
exploration).

Another approach of improving exploration was investigated by the "Hierar-
chical deep reinforcement learning: Integrating temporal abstraction and intrinsic
motivation" paper (Kulkarni et al., 2016) authors. They considered the environment
with very sparse and delayed feedback to develop hierarchical-DQN (h-DQN), a
framework to integrate hierarchical action-value functions. The authors applied
the intrinsic motivation approach to a top-level q-value function. Lower-level func-
tion learns a policy over atomic actions to satisfy the given goals. They showed
an improvement in the extrinsic reward of their approach comparing to the DQN
baseline.

In the "Asynchronous Methods for Deep Reinforcement Learning" paper (Mnih
et al., 2016) authors applied the asynchronous approach to the well-known RL algo-
rithms. They introduced the Asynchronous Advantage Actor-Critic (A3C) algorithm
that is using parallel actor-learners to update a shared model. The new approach
surpassed state-of-the-art in half the training time and had a stabilizing effect on the
learning process.
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In other research made by Deepmind team (Jaderberg et al., 2017) authors inves-
tigated hyperparameter optimization. They noted that the task of RL can be highly
non-stationary and it leads to the problem that ideal hyperparameters are also highly
non-stationary. The authors introduced Population Based Training (PBT) - a technique
to train multiple agents at the same time to find the optimal set-up. The advantage of
this technique is that it is built on top of the existing solution, whether it is a simple
DQN or a big ML pipeline (Figure 4.1).

FIGURE 4.1: The results of using PBT over random search on different
domains (Jaderberg et al., 2017).

PBT technique is a kind of genetic algorithm. Multiple agents are trained in
parallel, at some time an agent can copy the model parameters from the best worker
or explore new parameters by changing the values randomly. This greedy copy or
random initialization is also an exploration vs. exploitation dilemma but in the terms
of hyperparameters.

In the research (Pushkarov et al., 2019) made by Vlad Pushkarov, Jonathan Efroni,
Mykola Maksymenko, Maciej Koch-Janusz, authors tried a different approach to
find the best hyperparameters. The main idea of the research is that the noise (that
is incorporated in the gradient) flattens the loss function. This trick helps to avoid
stucking in a lot of local-minima and travel through the hyperparameters space faster.
Similarly to the Deepmind research, authors trained multiple models in parallel
with the different initial states in the hyperparameter space. After some number of
iterations the models are changing the hyperparameters by the Metropolis-Hastings
scheme:

P(W , βm; W ′, βn) =

{
1, ∆ ≤ 0,
exp(−∆), ∆ > 0

Transition probability satisfies detailed balance condition in the system. This
guarantees in the long-time that there is no dependence on the initial state. Or in
other words, the algorithm will explore whole hyperparameter space to find the best
hyperparameters.
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Chapter 5

Approach to Solution

To find the best way of exploring the environment and at the same time exploiting
the good paths we decided to combine approaches from the Chapter 4. We introduce
noise as an environment’s characteristic similar to the "Assessing Generalization in
Deep Reinforcement Learning" research (Packer et al., 2018); add multiple agents and
environments setup to train in parallel and interact within each other similar to the
"Population Based Training of Neural Networks" research (Jaderberg et al., 2017); use
the Metropolis-Hastings scheme to describe the exchanges similar to the "Training
Deep Neural Networks by optimizing over nonlocal paths in hyperparameter space"
research (Pushkarov et al., 2019).

5.1 High-level overview

FIGURE 5.1: Multiple agents and environments setup.

We use multiple agents and environments setup (Figure 5.1). Environments
are totally similar except one parameter - β that is the noise. Environments are set
up in the way that (i + 1)th environment has a bigger noise than ith environment:
βi+1 > βi. After some number of iterations agents will swap their environments by
the Metropolis-Hastings scheme.

Metropolis-Hastings exchange rule and detailed balance (Pushkarov et al., 2019)
guarantee that in the long-time limit the environment will be explored without any
dependence on the initial state of the weights, which influences the actions taken and
therefore seen parts of the environment. Comparing to the approach in (Jaderberg
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et al., 2017), where agents perform greedily which leads to the dependence on the
initial state (Figure 5.2).

FIGURE 5.2: The evolution of the population during the training of
Feudal Networks (FuN) on MS Pacman. Pink dots represent initial

agents, blue ones the final ones (Jaderberg et al., 2017).

5.2 Environment

Environment is an OpenAI Gym environment (Gym: A toolkit for developing and
comparing reinforcement learning algorithms). To test our approach we decided to start
with a simple environment - CartPole. The noise is added as a parameter of the
environment. Noise influences the state that the agent observes.

Before the agent observes the current state (St) and the next state (St+1), the states
are being multiplied by the number sampled from the Gaussian probability:

S′t = St ∗ X and S′t+1 = St+1 ∗ X, where X is sampled from Gaussian probability

density function P(X) = 1
σ
√

2π
e−

(X−µ)2

2σ2 with µ = 1 and σ = βi, where βi is the
parameter of the environment.

5.3 Agent

An agent is any RL algorithm. It can be DQN, A2C, DDPG or any other. It will
interact with its environment and train its Neural Network (or anything else that is
needed for the algorithm if it is not based on the Deep Learning, e.g. Q table). For
simplicity, we decided to start with the DQN and A2C algorithms.
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5.3.1 DQN

DQN is a model-free and value-based learning algorithm. DQN uses a neural network
to predict the q-value.

Q(st, at) = (1− α)Q(st, at) + α(rt + γmaxaQ(st+1, a)), where α - is a learning rate,
γ - is a discount rate.

To update the weights of the network experience replay approach is used. Ex-
perience replay is a biologically inspired process that uniformly (to reduce the
correlation between subsequent actions) samples experiences from the memory
and for each entry updates its q-value by fitting calculated q-values Q(st, at) =
(rt + γmaxaQ(st+1, a)) for the specified action to the network to update the weights
of the network.

There are few hyperparameters of this algorithm:

• Training number of episodes - how many games an agent will play to train.

• Learning rate - determines the trade-off between the old q-value importance
and the new q-value Takes 0..1 values.

• Discount rate - determines the discount factor to balance between immediate
and future reward.

• Exploration rate - determines if the agent should take a random action or behave
greedily by taking action with the max q-value.

• Max exploration rate, min exploration rate, exploration decay rate - values to
adjust exploration rate during the training.

• Memory size - the size of the queue that stores (state, action, reward, next state,
done) combinations obtained during the training.

• Batch size - size of how many (state, action, reward, next state, done) combi-
nations should be taken into account during experience replay to update the
DQN.

5.3.2 A2C

A2C (Advantage Actor-Critic) is a combination of policy-based and value-based
learning approaches. A2C uses a neural network with 2 heads: the actor and the
critic. The actor takes as input the state and outputs the best action. It controls how
the agent behaves by learning the optimal policy. The critic evaluates the action
chosen by the actor by computing the value function (Figure 5.3). The actor is being
improved in choosing the right action by the critic using the Temporal Difference
(TD) error: δt = rt+1 + γV(st+1)−V(st) at every step. The critic is also improved by
the TD error.

The advantage function shows how better an action is compared to the others
at a given state. Q(st, a) = V(st) + A(st, a) =⇒ A(st, a) = Q(st, a) − V(st) =
rt+1 + γV(st+1)−V(st). In A2C instead of learning Q values (or V values) agent is
learning advantage values.

Entropy is used in the loss function to improve exploration of the agent:
H(π(At|st, θπ) = −∑t π(At|st, θπ)logπ(At|st, θπ).
Resulting Loss function:
minL = −log(π(At|st, θπ))δt − βH(π(At|st, θπ)) + ζ(v̂(st)− Gt)2, where
log(π(At|st, θπ))δt - policy loss, that maximizes expected log rewards
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FIGURE 5.3: Actor-Critic (Sutton, Barto, and Others, 1998).

βH(π(At|st, θπ)) - entropy loss, that maximizes entropy to explore
ζ(v̂(st)− Gt)2 - value loss, that minimizes predicted value error
Hyperparameters of the A2C algorithm:

• Training number of episodes - how many games an agent will play to train.

• Learning rate - determines the trade-off between the old q-value importance
and the new q-value Takes 0..1. values.

• Discount rate - determines the discount factor to balance between immediate
and future reward.

• Batch size - size of how many (state, action, reward, next state, done) combina-
tions should be taken into account.

• Entropy loss factor - multiplier to tune the influence of the entropy in the loss
function.

• Value loss factor - multiplier to tune the influence of the value in the loss
function.

5.4 Replica Exchange

The idea of the replica-exchange is to switch the agent to the environment with
higher noise if it "stuck" in some sense in local-minima, comparing to the agent from
the environment with higher noise. It means that every k iterations we will swap
the environments for the adjacent agents with the probability by the Metropolis-
Hastings scheme. Similarly to the "Training Deep Neural Networks by optimizing
over nonlocal paths in hyperparameter space" work (Pushkarov et al., 2019) we will
arrange the environment noises in an ascending manner. Global detailed balance
condition guarantees that in the long-time limit the joint probability distribution will
be sampled faithfully, which means that there is no dependence on the initial state.
Exchange occurs with analytically computable acceptance probability:

P(Wp, βp; Wn, βn) =

{
1, x > 0,
exp(x), x ≤ 0
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Where

x = ∆(βn − βp)(L(Wn)− L(Wp))

And L(Wn) is the average score of the nth agent for the last m episodes.

5.5 Hypotheses

Combining the mentioned approaches we have next hypotheses:

• Higher noise improves the exploration of the agent. This should be possibly
reflected in the speed of how the model weights change over time.

• A single agent in a low-noise environment can exploit it and overfit - stuck in
some corner of the parameter space. Metropolis-Hastings exchange between
agents in different environments fixes the exploration (ergodicity) of the model
and leads to better and stable training.
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Chapter 6

Solution

To test our solution we implemented two RL learning algorithms: DQN and A2C. We
used the CartPole environment from OpenAI Gym as a place for our tests (Dmitri
Glusco, 2019). Implemented architecture can be viewed on the Figure 6.1. Code with
algorithm consists of the next parts:

• Noise Learning - main code of the proposed algorithm to train agents with
different level of noise and agent exchanges.

• Agents - implemented agents: DQN and A2C.

• Environments - wrapper on the OpenAI gym environment to add noise.

• Metrics Manager - manager to work with agent metrics.

• Results Manager - manager to store the results of one execution of the proposed
algorithm.

• Visualizer - shows the aggregated results for multiple executions to analyze.

6.1 Noise Learning

This part contains the main code of the algorithm (Algorithm 1).
Algorithm of SmartExchangeAgents function is described in algorithm 2.
Our approach has next hyperparameters:

• Agents number - number of agents that will be simultaneously trained using
noise learning.

• Noise environment step - amount to increase the noise for each next new
environment. E.g. if the value for this hyperparameter is 0.1 then the noise of
the first environment is 0, the noise of the second environment is 0.1, the noise
of the third environment is 0.2 and so on.

• Training episodes - general hyperparameter required for both (A2C and DQN)
RL agents to train.

• Play episodes - general hyperparameter required for both (A2C and DQN) RL
agents. Determines the number of episodes to play on the zero-noise environ-
ment after the training.

• Warm-up steps - the number of steps to proceed before the first exchange
attempt. It should be tuned with respect to the chosen environment.

• Exchange steps - the number of steps to proceed for every exchange attempt.
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FIGURE 6.1: Implemented architecture diagram.

• Random exchange probability - probability to perform exchange with Random
Exchange Type (for each agent).

• Exchange delta - coefficient to tune exchange probability. Lower value increases
exchange probability.

• Exchange items reward count - number of agent’s last rewards to get average
for exchange probability.

6.2 Agents

This part contains implemented RL agents.

6.2.1 DQN

One of the implemented algorithms is DQN. For a CartPole environment, DQN is a
pretty simple fully-connected network: 4 input neurons, one hidden layer with 256
neurons and relu activation, 2 output neurons with linear activation and MSE loss. 4
input neurons because CartPole has 4 parameters in observation space and 2 output
neurons to predict 2 q-values for 2 actions from action space.

6.2.2 A2C

Second implemented algorithm is A2C. For a CartPole environment, A2C is also a
pretty simple fully-connected network: 4 input neurons, first hidden layer with 64
neurons and relu activation, second hidden layer with 128 neurons and relu activation,
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2 output heads: actor has 2 output neurons with softmax activation to choose the
action, critic has 1 output neuron with linear activation to evaluate the state.

6.3 Environments

Environments contains wrapper on the OpenAI gym environment. Wrapper adds
noise in the manner described in the Chapter 5. For our tests we focused on the
CartPole environment.

FIGURE 6.2: CartPole (Gym: A toolkit for developing and comparing
reinforcement learning algorithms).

A pole is attached by an un-actuated joint to a cart, which moves along a fric-
tionless track (Figure 6.2). The system is controlled by applying a force of +1 or -1 to
the cart. The pendulum starts upright, and the goal is to prevent it from falling over.
A reward of +1 is provided for every timestep that the pole remains upright. The
episode ends when the pole is more than 15 degrees from vertical, or the cart moves
more than 2.4 units from the center, or the episode length is greater than 500 steps
(Gym: A toolkit for developing and comparing reinforcement learning algorithms).

The observation space of the environment has 4 dimensions with continuous
values (Table 6.1) and the action space has 2 dimensions (Table 6.2).

6.4 Metrics Manager

The metrics manager contains the manager to work with agent metrics. The manager
can aggregate metrics for multiple executions and track the noise exchange for each
iteration for each agent. For our experiments, we focused on three metrics: loss, score
(reward), distance (diffusion). They are stored as an average value for each iteration.

The loss is simply a value of the loss function for every neural network weights
update procedure. The score or reward is the reward of the environment.

The distance or diffusion is the euclidean distance between the initial weights
matrix (flattened to the vector) and the weights matrix of the current iteration. We
also call it diffusion because of the analogy from physics. This metric shows how far
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the weights vector reached compared to the initial state. In other words, it shows the
exploration of the agent. We expect it to be higher compared to the case when the
exchange is off. Also, we expect that the agent with higher noise explores more in the
long run.

6.5 Results Manager

Agent metrics in RL usually have high variance. To have statistically correct results
we implemented the possibility to save the metrics for each agent of one execution as
the result. With that functionality we processed multiple executions and obtained
averaged results for different cases:

• DQN without exchange

• DQN with random exchange

• DQN with smart exchange

• A2C without exchange

• A2C with random exchange

• A2C with smart exchange

6.6 Visualizer

This part contains functionality to average on multiple executions using previous
parts (Results Manager, Metrics Manager) and visualize different plots of the training
process for analysis:

• The average reward for each iteration per noise.

• The average distance for each iteration per noise.

• The average loss for each iteration per noise.

• Agent reward for each iteration with different noises.

• Agent distance for each iteration with different noises.

• Agent loss for each iteration with different noises.

• Noise exchanges for each iteration per agent.

• Exchange rates for each agent.

• Average reward.

And there is one additional plot to visualize the performance of the agents after
the training: average reward for each iteration per agent on the environment with
zero noise.
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Algorithm 1: Noise learning algorithm
input :k - number of agents

n - number of training episodes
exchangeType - type of exchange (No, Random, Smart)
exchangeSteps - the number of steps to proceed for every exchange
attempt
warmUpSteps - the number of steps to proceed before the first
exchange attempt
envNoiseStep - the number to increase the noise for each next new
environment
r - number of agent’s last rewards to get average for exchange
d - coefficient to tune exchange probability

environments[k];
for i← 0 to k do

environments[i] = Environment(i * envNoiseStep)
end
agents[k];
for i← 0 to k do

agent[i] = Agent()
end
agentsResults[k];
for i← 0 to k do

agentsResults[i] = AgentResults()
end
for i← 0 to n do

for j← 0 to k do
agent = agent[j];
env = environments[j];
results = agentsResults[j];
TrainAgent(agent, env, results); /* Common RL train algorithm */

end
if i % exchangeSteps = 0 and i >= warmUpSteps then

if exchangeType = No then
continue;

else if exchangeType = Random then
PerformRandomExchange(); /* To compare with smart
exchange */

else if exchangeType = Smart then
if int(i / exchangeSteps) % 2 = 0 then /* exchange direction */

for p← 0 to k - 1 do
SmartExchangeAgents(p, p + 1, environments,
agentsResults, r, d);

end
else

for p← k− 1 to 0 do
SmartExchangeAgents(p - 1, p, environments, agentsResults,
r, d);

end
end

end
end
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Algorithm 2: SmartExchangeAgents function
input : i - index of the current agent

j - index of the next agent
environments - array of environments
agentsResults - array of agents results
r - number of agent’s last rewards to get average for exchange
d - coefficient to tune exchange probability

noise1 = environments[i].noise;
noise2 = environments[j].noise;
reward1 = mean(agentsResults[i].rewards[-r:]);
reward2 = mean(agentsResults[j].rewards[-r:]);
prob = min(exp(d * (noise2 - noise1)(reward2 - reward1)), 1);
if random() < prob then

SwapEnvironments(i, j)
end

Num Observation Min Max
0 Cart Position -2.4 2.4
1 Cart Velocity -Inf Inf
2 Pole Angle ~-41.8◦ ~41.8◦

3 Pole Velocity At Tip -Inf Inf

TABLE 6.1: Observation space of the CartPole environment.

Num Action
0 Push cart to the left
1 Push cart to the right

TABLE 6.2: Action space of the CartPole environment.
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Chapter 7

Evaluation

For the setup with CartPole environment and our implemented DQN and A2C agents
we tried next hyperparameter setup for the noise learning algorithm:

• Agents number = 10

• Noise environment step = 0.1

• Training episodes = 5000

• Play episodes = 500

• Warm up steps = 30

• Exchange steps = 5

• Random exchange probability = 0.05

• Exchange delta = 0.1

• Exchange items reward count = 30

7.1 A2C

To train A2C agent next hyperparameter values were used:

• Learning rate = 0.001

• Discount rate = 0.99

• Batch size = number of steps achieved during one CartPole game (max = 500).
I.e. if agent failed at the tenth step then the batch size for the current learning
procedure was 10.

• Entropy loss factor = 0.0001

• Value loss factor = 1

7.1.1 No Exchange

We can see the results of agents learning on environments with different noise levels
without exchange. Metrics are calculated as a moving average over the last 100
iterations every 50 iterations to visualize them on the charts. The figure 7.1 shows
distances and scores for each noise level, it proves our assumption that increased
noise level improves exploration in the long run. On the other hand, we can observe
that at the beginning increased noise level slows down the learning procedure. The
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FIGURE 7.1: A2C. Average Distance and Score during training for 10
runs per Noise with No Exchange.

score chart also shows the same idea that increased noise level slows down the
learning procedure from the start. We can see that during training even the best
agents do not reach the best possible score of 500.

FIGURE 7.2: A2C. Average Score during play for 10 runs per Agent
with No Exchange.

After the training, we tested the performance of all agents by playing the game
with zero-noise for 500 episodes. Looking at play results (Figure 7.2) we can see that
the best performance after training has agents that were trained with higher noises.
It again proves the work made in the mentioned paper (Packer et al., 2018). Agents
with a medium level of noise are pretty stable at the high score value around 450-460.
Agents with a low level of noise have very unstable results with big drops from 500
to 420 scores, which means that they were overfitted during training. This figure
basically shows that the noise is a pretty good regularization technique. The average
score of the ensemble of all agents for play is 481.79 with standard deviation equals
65.35.

7.1.2 Random Exchange

With Random Exchange in Figure 7.3 we can see that there is no observable pattern in
distances, which is expected. All curves are combined into one curve. The score chart
looks similar to the case with No Exchange (Figure 7.1) just with increased volatility
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FIGURE 7.3: A2C. Average Distance and Score during training for 10
runs per Noise with Random Exchange.

because of the exchanges. On average scores with the random exchange are lower on
10 than scores with no exchange during the training.

FIGURE 7.4: A2C. Average Score during play for 10 runs per Agent
with Random Exchange.

Looking at play results (Figure 7.4) we can see that all agents have a pretty high
score, but looking at each agent we can see different results compared to Figure 7.2.
Agents have some instability because of random exchanges, though the average score
of the ensemble of all agents is pretty similar to the situation with No Exchange -
483.78 (σ = 61.3), which is a little bit higher.

7.1.3 Smart Exchange

With Smart Exchange in Figure 7.5 we also see a similar picture in the distance chart
to the case with Random Exchange (Figure 7.3). Scores picture looks much more
stable for small noise in the long run than the case with No Exchange (Figure 7.1) and
much better than the case with Random Exchange (Figure 7.3). Agents, that were
exchanged to the environments with lower noises achieved the highest score. At the
same time agents, that were exchanged to the environments with higher noises have
a little bit worse picture than the case with No Exchange (Figure 7.1).

Looking at play results (Figure 7.6) we can see that all agents have a pretty high
score again. Looking at individual agents we can see that agents are much more
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FIGURE 7.5: A2C. Average Distance and Score during training for 10
runs per Noise with Smart Exchange.

FIGURE 7.6: A2C. Average Score during play for 10 runs per Agent
with Smart Exchange.

stable than in Figure 7.2. As the result average score of the ensemble of all agents is
higher than in Random or No Exchange cases: 486.76 (σ = 49.72).

7.2 DQN

To train DQN agent next hyperparameter values were used:

• Learning rate = 0.001

• Discount rate = 1

• Exploration rate = 0.02

• Max exploration rate = 0.02

• Min exploration rate = 0.02

• Exploration Rate Decay = 0.9996

• Memory size = 50000

• Batch size = 32
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7.2.1 No Exchange

FIGURE 7.7: DQN. Average Distance and Score during training for 10
runs per Noise with No Exchange.

Looking at Figure 7.7 we can see that our implementation of the DQN agent is
performing much worse than the A2C agent. With that said it is irrelevant to compare
DQN visualizations with A2C. We can treat the experiments with DQN as the task
of having an environment with higher complexity and agent that cannot fully solve
the environment. We are interested in comparing results with different types of
exchanges.

Looking at distances we see a different picture than we saw with the A2C agent.
Big noises do not force agents to explore more. This may be a result of what we see
about scores: agents with high noises have a very bad performance. Agents with
small noise have better performance but it looks like they are overfitting on some
biased sample of environment states time to time.

FIGURE 7.8: DQN. Average Score during play for 10 runs per Agent
with No Exchange.

Only the agent with low noise achieved decent results (Figure 7.8). The agent
with the highest noise was not able to train. The average score of the ensemble of all
agents for play is 202.64 (σ = 170.46).

7.2.2 Random Exchange

With Random Exchange in Figure 7.9 we can see that distances do not have an
observable pattern, which is expected. Strong ordering presented in Figure 7.9
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FIGURE 7.9: DQN. Average Distance and Score during training for 10
runs per Noise with Random Exchange.

changed to random.

FIGURE 7.10: DQN. Average Score during play for 10 runs per Agent
with Random Exchange.

Similarly to A2C the average score of ensemble of all agents for play is a little bit
higher - 207.78 (σ = 179.14) - for Random Exchange (Figure 7.10) comparing to No
Exchange - 202.64 (Figure 7.8).

7.2.3 Smart Exchange

With Smart Exchange in Figure 7.11 we also see a similar picture on the distance chart
to the case with Random Exchange (Figure 7.9), but overall total exploration looks
better. Also, similar to A2C case (Figure 7.5), score looks more stable for small noise
than the case with No Exchange (Figure 7.7) and with Random Exchange (Figure 7.9).
Agents, that were exchanged to the environments with lower noises achieved the
best score. At the same time agents, that were exchanged to the environments with
higher noises have a worse picture than the case with No Exchange (Figure 7.7).

Looking at play results (Figure 7.12) we can see that almost all agents combined to
a group except the Agent 9. The average score of the ensemble of all agents is 166.76
(σ = 166.77).
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FIGURE 7.11: DQN. Average Distance and Score during training for
10 runs per Noise with Smart Exchange.

FIGURE 7.12: DQN. Average Score during play for 10 runs per Agent
with Smart Exchange.
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Chapter 8

Conclusions

We implemented a few RL agents - DQN and A2C -, environment wrapper for noise
addition and a noise learning algorithm based on the replica-exchange with the
Metropolis-Hastings scheme. We ran preliminary experiments that qualitatively
validate several hypotheses and open up multiple directions for further research. In
Chapter 5 we formulated a few hypotheses, let us start with them.

8.1 Noise improves exploration

To analyze exploration abilities we implemented a metric called distance (or diffusion).
It is calculated as Euclidean distance between initial weights matrices and weight
matrices at the exact iteration.

A2C (Figure 7.1) shows that noise slows down the learning speed in the initial
phase and at the same time improves exploration a little bit in the long run. The
CartPole environment is a pretty simple environment with only 4 state dimensions.
The more complex environment may show a better result in having more exploration
potential.

On the other hand, DQN (Figure 7.7) does not show the same result partly because
implemented DQN shows generally poor performance in such a simple environment.
We also observe the effect of noise which is inverted to what we see in the A2C and
one needs to adjust replica-exchange trick for such a case. Hence, results from two
different RL agents cannot be compared.

We do not have enough results to say that we empirically approved the idea that
noise improves exploration. We have some small trend (Figure 7.1) towards our
hypothesis and we have results that show that noise can also make agents not able to
train at all. We need more experiments with improved DQN and with more complex
environments to empirically approve the hypothesis.

We, also, proved again (Figure 7.2) that agent, trained on the environment with
high noises, have better and stable results (Packer et al., 2018).

8.2 Metropolis-Hastings replica-exchange improves RL train-
ing

To analyze better the exchange impact we ran three types of experiments: no exchange,
random exchange, smart exchange (based on Metropolis-Hastings scheme). We
further compare resulting trained agents via analysis of their performance in the new
rounds of the game.

With the no exchange case, we obtained baseline metrics to compare with. For
A2C we saw that during training the agents with smaller noise have better results
(Figure 7.1). This is reflected in the fact that between the games such agents explore
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high noise environments and, hence, perform better in the low noise environment.
Quite the opposite results we observed during the play phase (Figure 7.2). For DQN
the agent could not handle the noise and showed bad results during both training
(Figure 7.7) and play (Figure 7.8) phases hence we exclude DQN results from further
analysis.

With the random exchange case, we learned how exchanges impact the agents
comparing different metrics with no exchange case. With A2C we got slightly bet-
ter results (Figure 7.4, Figure 7.10) comparing with no exchange case (Figure 7.2,
Figure 7.8). That implies that simply exchanging the environment gives the agent
additional augmented (noised) data and improves the whole ensemble.

For the smart exchange, the results (Figure 7.6) are slightly improved and more
stable compared to no exchange (Figure 7.2) or random exchange (Figure 7.4), which
means that the Metropolis-Hastings exchange scheme improved the performance of
the agent.

For DQN with the smart exchange the results (Figure 7.12) are worse than in both
cases: no exchange (Figure 7.8) and random exchange (Figure 7.10). It is unclear the
reason for such results for DQN. It may be because of the performance of the agent or
maybe the results of the agent are too volatile and more experiments are necessary to
draw conclusions. Thus, further research is needed in this direction.

Agent, Exchange Type Score
A2C, No Exchange 481.79± 65.35
A2C, Random Exchange 483.78± 61.3
A2C, Smart Exchange 486.76± 49.72
DQN, No Exchange 202.64± 170.46
DQN, Random Exchange 207.78± 179.14
DQN, Smart Exchange 166.76± 166.77

TABLE 8.1: Average scores of ensemble of all agents during play phase.

Table 8.1 shows the result comparison of different exchange types for different
agents. We showed that the Metropolis-Hastings exchange scheme may improve the
performance of the agent, but it depends on the complexity of the environment and
capacity of the agent. With the agent, which is unable to perform in the environment
with big noise, it is unclear if the proposed solution can improve the results.
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Chapter 9

Future Work

The work done gave us a few answers:

• Noise slightly improves exploration, but only under special circumstances when
the agent is able to handle the noise and train.

• Metropolis-Hastings replica exchange improves training, but only if the agent
is able to perform under the big noises.

And these answers are working only under specific conditions. We need to
understand these conditions better and to do that there is a lot of work that can be
done:

• In this work, we had a weak DQN agent, which was treated as the case of
having an environment with higher complexity. On the other hand, the A2C
agent reached the highest reward of 500. Try a different environment with
actually much higher complexity, where the agent cannot reach the highest
reward and compare the results.

• We used noise on the environment side. It is external noise to the agent. It is
interesting to compare the results with internal noise, like dropout or regular-
ization.

• As we have shown in the work, under specific conditions noise improves the
exploration. But the agent has it’s internal ability to explore (different agents
implement it in a different way). Find a way to compare these two exploration
techniques and investigate under which conditions the one technique dominates
the other.

• Investigate exploration potential of the environment: some environments have
much higher exploration potential than others. Find a way to evaluate the
exploration potential of the environment. How exploration potential affects the
performance of the agents trained with smart exchanges?

• Training multiple agents at the same time in different environments create the
opportunity of parallelizing the process or making it asynchronous. In this
work, it was computationally inefficient to parallelize the process, because
exchanges were happening too often and the exchange procedure had to wait
for all agents. For environments with more complexity, RL agents may use
much more complicated Neural Networks with more layers and neurons, which
may lead to having a bigger exchange interval. In such case parallelization of
the agents should improve the training time. Or change the exchange approach
to make it asynchronous by removing the synchronization point (waiting for all
agents).
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Appendix A

Additional Charts

This appendix contains more detailed experiments charts.

FIGURE A.1: A2C. Average Loss for 10 runs per Noise with No Ex-
change.
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FIGURE A.2: A2C. Average Loss for 10 runs per Noise with Random
Exchange.

FIGURE A.3: A2C. Average Distance for 1 run for agent 1 with Random
Exchange.
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FIGURE A.4: A2C. Average Score for 1 run for agent 1 with Random
Exchange.

FIGURE A.5: A2C. Average Loss for 1 run for agent 1 with Random
Exchange.
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FIGURE A.6: A2C. Noise exchanges for 1 run per agent with Random
Exchange.

FIGURE A.7: A2C. Exchange rates for 10 runs for each agent with
Random Exchange.
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FIGURE A.8: A2C. Average Loss for 10 runs per Noise with Smart
Exchange.

FIGURE A.9: A2C. Average Distance for 1 run for agent 1 with Smart
Exchange.
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FIGURE A.10: A2C. Average Score for 1 run for agent 1 with Smart
Exchange.

FIGURE A.11: A2C. Average Loss for 1 run for agent 1 with Smart
Exchange.
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FIGURE A.12: A2C. Noise exchanges for 1 run per agent with Smart
Exchange.

FIGURE A.13: A2C. Exchange rates for 10 runs for each agent with
Smart Exchange.
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FIGURE A.14: DQN. Average Loss for 10 runs per Noise with No
Exchange.

FIGURE A.15: DQN. Average Loss for 10 runs per Noise with Random
Exchange.
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FIGURE A.16: DQN. Average Distance for 1 run for agent 1 with
Random Exchange.

FIGURE A.17: DQN. Average Score for 1 run for agent 1 with Random
Exchange.
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FIGURE A.18: DQN. Average Loss for 1 run for agent 1 with Random
Exchange.

FIGURE A.19: DQN. Noise exchanges for 1 run per agent with Random
Exchange.
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FIGURE A.20: DQN. Exchange rates for 10 runs for each agent with
Random Exchange.

FIGURE A.21: DQN. Average Loss for 10 runs per Noise with Smart
Exchange.
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FIGURE A.22: DQN. Average Distance for 1 run for agent 1 with Smart
Exchange.

FIGURE A.23: DQN. Average Score for 1 run for agent 1 with Smart
Exchange.
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FIGURE A.24: DQN. Average Loss for 1 run for agent 1 with Smart
Exchange.

FIGURE A.25: DQN. Noise exchanges for 1 run per agent with Smart
Exchange.
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FIGURE A.26: DQN. Exchange rates for 10 runs for each agent with
Smart Exchange.
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