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Abstract
We introduce a new hybrid minimal solver that admits combinations of
radially-distorted conjugate translations and radially-distorted parallel
lines from the common scene plane to jointly estimate lens undistortion
and affine rectification. The solver is the first to admit complementary
geometric primitives for rectification purposes. In addition, a novel
solver admitting three pairs of imaged parallel scene lines for the same
problem is introduced. The proposed solvers are used with the Man-
hattan scene assumption to auto-calibrate cameras from a single image.
The solvers are generated using elementary methods from algebraic ge-
ometry. As a result, they are simple, fast and robust. The solvers are
used in an adaptive sampling framework that favors the feature com-
binations that are most frequently consistent with accurate scene plane
rectifications. Auto-calibrations are recovered from challenging images
that have either a sparsity of scene lines or scene texture. The method
is fully automatic.
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Chapter 1

Introduction and
Motivation

1.1 Outline of the Problem

This thesis proposes two minimal solvers that jointly estimate affine
rectification and lens undistortion from complementary combinations
of point correspondences extracted from radially-distorted conjugately-
translated coplanar texture and the distorted images of parallel scene
lines. In particular, the proposed solvers are the first single-view min-
imal solvers that admit complementary feature types. Furthermore,
the proposed solvers admit all minimal configurations of imaged
translations and imaged parallel scene lines for affine rectification
of radially-distorted images within the division model of lens distor-
tion [20]. Sampling complementary feature types extends the class of
highly-distorted images where high-accuracy rectification and auto-
calibration are possible.

Joint undistortion and rectification of imaged scene planes and cam-
era auto-calibration are closely related tasks. Both are notoriously ill-
posed single-view geometry estimation problems [29]. Good feature
coverage over large spans of the image is necessary to properly con-
strain these estimation problems. The proposed solvers can leverage
combinations of corners, similarity-covariant regions, affine-covariant
regions, and contours as feature types. This flexibility to leverage com-
plementary feature types increases the chances of densely sampling
constraints from enough image regions so that the joint effects of per-
spective imaging and lens distortion are sufficiently observable to the
estimation framework which, in this work, is a locally-optimized hy-
brid RANSAC with the proposed minimal solvers generating models
from minimal samples [13, 9].

Metric rectification and auto-calibration both are estimations that
essentially rely on affine rectification. In fact, there is no minimal solver
that jointly undistorts and metrically-rectifies. Thus metric rectification
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Fujifilm X-E1 camera, Samyang lens: f = 12mm, f̂ = 11.71mm

(A) Input Image (B) 1st Scene Plane Metric-Rectified

(C) 2nd Scene Plane Metric-Rectified (D) 3rd Scene Plane Metric-Rectified

FIGURE 1.1: Auto-Calibration Result. Imaged scene planes are rectified using
the estimated distortion, focal length, and camera rotation. (A) An input im-
age. (B) The dominant scene plane rectified, which is given by the plane with
the most features. (C) The second scene plane rectified. (D) In addition, the
third “scene plane” can also be rectified, in the example, there is no plane but

the sky. The method is fully automatic.

from distorted images must be achieved by upgrading an affine recti-
fication. Single-view auto-calibration typically relies on the Manhat-
tan assumption, which assumes that two or three recovered vanishing
points correspond to orthogonal directions in the scene. Since the van-
ishing line is sufficient to estimate affine rectification and the vanishing
points are estimated from planar features, affine rectification is implic-
itly needed to auto-calibrate from the Manhattan assumption, which is
accomplished by recovering the image of the absolute conic [3, 21].

The proposed solvers directly recover lens undistortion and affine
rectification. This eliminates the need to check for pairwise consistency
between recovered vanishing points; however, the vanishing points are
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also recovered by the solvers as nuisance parameters. Metric rectifica-
tion can be recovered if reflected or rotated features are present [21,
22, 28]. If the Manhattan world is assumed, then auto-calibration (and
metric rectification) can be attempted from the minimal sample used to
estimate the affine rectification.

The code for the proposed minimal solvers, evaluation techniques,
and experiments has been made available at:
https://github.com/ylochman/auto-calibration.

1.2 Structure of the Thesis

Related Work Chapter 2 gives an overview of the recent methods for
radial lens undistortion, affine and metric rectification, vanishing point
detection and camera auto-calibration from a single image. A compar-
ison with the proposed work is provided. The contributions of the the-
sis are enumerated.

Background Chapter 3 introduces denotations and provides the nec-
essary theoretical background to model radially-distorted cameras
viewing scene planes.

Proposed Minimal Solvers Chapter 4 formulates the problem of
auto-calibrating distorted cameras using the Manhattan scene assump-
tion with the proposed minimal solvers. The feature configurations
that are inputs to the proposed solvers are defined. Best Minimal So-
lution Selection is introduced, which is an optimization problem to
choose the best constraints to use in the minimal solver for overcon-
strained feature configurations.

Experiments Chapter 5 discusses the synthetic scene generation and
related experiments that are used to test the stability and noise sensi-
tivity of the proposed solvers. The auto-calibration warp error is intro-
duced, which is a summary measure of the quality of auto-calibration.
Chapter 5 also describes the pipeline and data used for experiments on
real images and provides a comparative analysis of the proposed and
related methods from conducted performance benchmarks and exper-
imental results.

Conclusions Chapter 6 summaries the idea, main contribution, and
the potential impact of this thesis work. Experimental results are sum-
marized.

https://github.com/ylochman/auto-calibration
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(A) Barrel Distorted Image with Arc Labeling

(B) Barrel Distorted Image with Region Labeling

(C) Undistorted Image

FIGURE 1.2: Manhattan Scene Parsing. (A-B) Input is a scene containing a
plane with features in orthogonal directions (A) labelling of line correspon-
dences with vanishing points of the Manhattan directions (red, green, blue)
and (B) labelling of radially-distorted conjugately-translated features on the
scene plane i.e., vanishing lines (yellow, magenta, cyan), and the directions of
the conjugate translations of the repeats with the vanishing points; (C) image

undistorted with the estimated division model parameter.
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Chapter 2

Related Work

2.1 Overview and Analysis

We concern ourselves with the single-view geometry problems of ra-
dial lens undistortion, affine and metric rectification, vanishing point
detection, and camera auto-calibration. In this section, we give an over-
view of the recent work on these topics, compare it to the proposed
work and highlight our contributions.

2.1.1 Rectification and Undistortion

Various techniques for rectification from imaged coplanar repeated
pattern were proposed in recent years [16, 12, 2, 45, 23, 1], however,
all these methods assume the pinhole camera model i.e., do not model
real camera lens distortion. Pritts et al. have proposed several joint
undistorting and rectifying minimal solvers that admit various mini-
mal configurations of affine-covariant regions [32, 33, 30]. The solvers
assume either translational symmetries or rigidly-transformed scene
plane content. The solvers are sensitive, and the noise experiments in
[32, 33, 30] report the best solution after RANSAC. Dense planar texture
is required to achieve good results with these solvers.

The proposed by Pritts et al. [30] Directly-Encoded Scale (DES) sol-
vers use the invariant that rectified coplanar repeats have equal scales.
This invariant is utilized to construct a system of polynomial constraint
equations on rectified coplanar repeats to solve for the vanishing line
and radial undistortion parameter. The two-direction Eliminated Van-
ishing Point (EVP) solvers proposed by [31] use the invariant that the
undistorted meet of joins of radially-distorted conjugately-translated
point correspondences is a vanishing point lying on the vanishing line.
The solvers require two similarity-covariant region correspondences
that provide two pairs of two point correspondences relating to two
vanishing points of the translation direction, respectively. The Gröbner
basis method and the hidden-variable trick [15] were used to solve the
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systems of polynomial equations arising from the constraints given by
the aforementioned geometrical properties.

Antunes et al. [3] and Wildenauer et al. [41] are two methods that
affinely rectify lens-distorted images from circles fitted to contours ex-
tracted from the image by enforcing the constraint that scene lines are
imaged as circles under the division model of radial lens distortion.
The problem is simplified by assuming orthogonal raster (zero skew),
and unitary aspect ratio, (square pixels), also referred further as ORUA.
Sets of circles whose preimages are parallel scene lines are used to
induce constraints on lens undistortion and vanishing point location.
These methods require two or three distinct sets of imaged parallel
lines to estimate rectification, which is a strong scene-content assump-
tion.

2.1.2 Vanishing Point Estimation and Auto-Calibration

An earlier work of Wildenauer et al. [40] proposes minimal solvers
that auto-calibrate camera with known principal point; it requires four
lines, two of which have the same direction in the scene (or a single
vanishing point). However, the method does not account for radial
lens distortion which is usually presented on images.

Wildenauer et al. [41] proposed a method incorporating lens dis-
tortion estimation that requires five lines, three of which are used to
estimate the single parameter of the division model of radial lens dis-
tortion and the undistorted vanishing point. The remaining lines are
undistorted with estimated distortion model and, together with the
first estimated vanishing point, are used in the line-based method of
[40] in the undistorted image space.

The method of Antunes et al. [3] estimates the focal length, division
model parameter and relative orientation of the camera with respect
to the scene plane from seven fitted circles, four of which correspond
to lines with the same direction in the scene, and the remaining three
correspond to lines in the scene orthogonal to the first four. The auto-
calibration pipeline of [3] also estimating the principal point, which, in
this work, is assumed to be the image center.

The two-direction EVP solvers of [31] recover two vanishing points,
which, if orthogonal, can be used to estimate the auto-calibration pa-
rameters under the assumptions made in this work. See Table 2.1 for
details about the scene assumptions, features employed, and parame-
ters recovered by the state-of-the-art and the proposed methods.
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2.1.3 Comparative Analysis

The proposed minimal solvers complement radially-distorted conju-
gately-translated scene texture with circles fitted to imaged parallel
scene lines. Chapter 4 derives the systems of equations that jointly ad-
mit constraints from repeated local features and parallel scene lines.
Furthermore, the proposed solvers directly return the vanishing line
with lens undistortion, which is sufficient for affine rectification. The
vanishing points of the translation directions of the covariant regions
and the imaged parallel scene lines are also recovered. Furthermore,
the proposed solvers require fewer correspondences than the solvers
of [3, 41] and have a much faster time to solution than the solvers in-
troduced in [33, 30].

The fast time to solution and minimal feature correspondence re-
quirements of the proposed solvers make them good candidates for
use in a RANSAC framework [19]. However, the classic RANSAC sam-
pling strategy cannot accommodate multiple feature types, i.e., covari-
ant regions and contours. The scene content should jointly inform the
sampling strategy: covariant regions are sampled more frequently for
texture-rich scenes, while sampled contours are preferred for scenes
with many lines. Furthermore, the sampler’s preference for a particu-
lar hybrid solver should be mitigated if it is relatively less performant
than the others. Camposeco et al. [9] propose a method for pose es-
timation that uses hybrid solvers that admit combinations of 2D-2D
and 2D-3D correspondences. However, the approach of [9] assumes
that features have a one-to-one correspondence, which is not the case
for repeated patterns, which have many-to-many correspondences. We
propose a RANSAC framework that accommodates hybrid solvers ad-
mitting complementary feature types (distorted lines and covariant re-
gions) with many-to-many correspondences.

As in [40], the proposed framework utilizes a Manhattan scene as-
sumption to auto-calibrate cameras, specifically, to estimate the focal
length and scene-rectifying camera rotation. For the proposed mini-
mal solutions, the assumption does not affect either lens undistortion
or vanishing line estimation. However, auto-calibrations recovered
from the proposed minimal solvers are refined by a local optimizer
that imposes joint constraints from radially-distorted conjugate trans-
lations and imaged parallel lines on the focal length, lens undistortion
and the rectifying rotation, which affects vanishing line detection, too.
The scene, as modeled by translated points and parallel lines, is con-
structed on a plane in calibrated space. The difference between the
imaged reconstruction, as viewed by the auto-calibrated camera and
the extracted covariant regions and contours, is minimized. A genera-
tive model of repeated patterns was used in Pritts et al. [28]; however,
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this method does not impose constraints from scene lines and does not
auto-calibrate. Instead, the pattern is reconstructed in rectified space,
which provides weaker constraints.

Parameters
Approach Features Assumption recovered

λ f, R c

Wildenauer et al. [41] 3 arcs in cspond +
2 additional fitted arcs

Manhattan scene,
lines parallelism,

ORUA,
PP at the image center

+ + -

Antunes et al. [3] 4 arcs in cspond +
3 arcs in cspond

Manhattan scene,
lines parallelism,

ORUA

+ + +

EVP of Pritts et al.
[30]

2 LAFs in cspond +
2 LAFs in cspond

Manhattan scene,
translated repeats,

ORUA,
PP at the image center

+ + -

Proposed H2
2luλ-fR

Proposed H222luλ-fR

2 LAFs in cspond +
2 arcs in cspond

or
3 pairs of arc csponds

Manhattan scene,
translated repeats

and/or lines parallelism,
ORUA,

PP at the image center

+ + -

TABLE 2.1: Scene Assumptions, Feature Configurations, Recovered Calibration Pa-
rameters. The proposed hybrid solver H2

2luλ-fR jointly admits two radially-
distorted affine-covariant regions in correspondence (cspond in the table) and
two corresponded radially-distorted lines for affine rectification of distorted
images. Moreover, we propose a solver H222luλ-fR that jointly undistorts and
rectifies from three correspondences of distorted lines. In contrast, [41] re-
quires a corresponded set of three arcs and two arcs corresponding to sets of
parallel lines on the scene plane, and [3] requires two distinct set of four and

three arcs corresponding to sets of parallel lines on the scene plane.

2.2 Contributions

In this work, several contributions to the state-of-the-art for imaged
scene plane rectification and single-view autocalibration are proposed:

• A new minimal hybrid solver is developed that uses combina-
tions of radially-distorted parallel lines and radially-distorted
conjugately-translated affine-covariant regions to jointly undis-
tort and rectify the imaged scene plane, estimate the scene plane’s
vanishing points and, auto-calibrate the camera if the image is of
a Manhattan scene. This is the first single-view method admitting
such complementary geometric features.

• A new minimal solver admitting three pairs of imaged parallel
scene lines for the same problem is introduced. Both types of
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solvers are derived in a unified form, utilizing elementary tech-
niques from algebraic geometry. The problem reduces to requir-
ing the solution of a quartic and a small homogeneous linear sys-
tem, both of which are solved in closed form. This makes the
proposed solvers extremely fast and robust.

Moreover, if the image is not of a Manhattan scene, the solvers
can be used for the task of undistortion and rectification. The
proposed solvers admit different configurations of input features
that are consistent with either two or three independent vanish-
ing points. This number of vanishing points present can only be
tested with consensus sets, which is done quickly with best mini-
mal solution selection (see next item).

• A technique proposed in [31], called best minimal solution selec-
tion (BMSS), is adapted for the single-view auto-calibration prob-
lem from complementary features. The configurations of features
that are admitted by the proposed solvers provide more than one
option for drawing the minimal sample set (MSS) from an input
sample set of features required by the proposed solvers. We call a
solver incorporating BMSS an optimal solver. Minimizing the BMSS
objective gives the best sample of minimal constraints. BMSS in-
creases robustness and filters out near degenerate or putative in-
correct configurations, which eliminates consensus set construc-
tion and hypothesis evaluation in the verification step of RANSAC.

• For measuring the accuracy of camera auto-calibration, a metric
warp error is introduced, which is an extension of the measure
proposed in [29]. The metric warp error accounts for all param-
eters relating to auto-calibration: 1. radial undistortion, 2. focal
length, 3. and conjugate camera rotation.

• Experiments show that the proposed minimal solvers achieve
state-of-the-art results in undistortion, rectification, and auto-
calibration. The solvers were integrated into a fully automated
robust framework and tested on several benchmarking datasets
with challenging images that have either a sparsity of scene lines
or scene texture. Highly accurate results were obtained.



10

Chapter 3

Background

3.1 Notations

Table 3.1 outlines the common denotations used for solver derivation
and analysis.

We adapt the solver naming convention of Pritts et al. [31] to the
proposed and state-of-the-art solvers studied in this paper. The mini-
mal configuration of region correspondences is given as the subscript
to H denoting a homography. The minimal configuration of parallel
lines is given as the superscript to H. E.g., a solver requiring 2 affine- re-
gion correspondences and a pair of parallel lines is denoted H2

2, a solver
requiring three scene lines in correspondence with a single vanishing
point plus another pair of scene lines — H32.

The unknowns that are recovered by the solver are suffixed to H·,
the unknowns from the auto-calibration upgrade are also suffixed, sep-
arated by a hyphen to emphasize that it is possible to recover these
parameters with an additional assumption of the orthogonal vanish-
ing points which is not required for the former unknowns. E.g., the
proposed solver requiring one region correspondence and one pair of
lines returning the vanishing line l, the vanishing points ui and the di-
vision model parameter λ of lens distortion, and next extracting the
focal length and rectifying camera rotation, is denoted H2

2luλ-fR.

3.2 Camera Model

A camera’s purpose is to capture rays of light reflected from scene ob-
jects to form an image of the scene. Images are formed by projecting
points in the scene to points in the image plane. A general camera
forming an image is given by(

x, y
)>

= h(
(
X, Y, Z

)> , z), (3.1)
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Term Description

P 3× 3 camera matrix viewing z = 0 (see (3.9))
c principal point of the camera
f focal length of the camera
K camera intrinsics matrix (see (3.6))
R camera rotation rectifying orthogonal scene planes
λ division model parameter for undistortion (see Sec. 3.4)

f (·, λ) undistortion function under the division model
f d(·, λ) distortion function under the division model

Π, π the scene plane and image plane (in RP2)
X homogeneous scene point in RP2

x, x̃ homogeneous pinhole and distorted image point
x affine-rectified point (see (3.14))

x ↔ x′ x, x′ are in correspondence with a conjugate translation
R̃,R,R distorted, undistorted, and affine-rectified regions

M homogeneous scene line
m homogeneous line as imaged by pinhole camera

m̃ circle corresponding to a radially-distorted (under the
division model) image line (see Sec. 3.4)

ñ normal of the tangency to the circle m̃ at some point x̃

n, t undistorted normal of the tangency and the line defined
by this normal (see Sec. 4.1.3)

t (in context of LAFs) a join of undistorted point
correspondences x ↔ x′ (see Sec. 4.1.2)

m ↔ m′ m, m′ are from the same pencil of lines
m̃ ↔ m̃′ m̃, m̃′ are from the same pencil of circles or LCC

U,V,W translational directions on the scene plane and/or
directions of the parallel scene plane lines

u,v,w vanishing points of directions U,V,W
l∞ the line at infinity
l, l̃ vanishing line and distorted vanishing line
H affine-rectifying homography

Hu conjugate translation in the imaged trans. direction u
[·]× skew-symmetric operator for computing cross products

TABLE 3.1: Common Denotations. Derivations are in the real projective plane
RP2.

where h is a vector-valued function defining image capture, vector z
parameterizes the camera,

(
X, Y, Z

)> is a scene point and
(

x, y
)> is its

projection in the image plane by the camera h(·).
The pinhole camera, also called the camera obscura, is the simplest
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camera model. Image formation by a pinhole camera is a composition
of central projection through the pinhole onto the image plane followed
by a homography that changes the basis to the image coordinate sys-
tem implicit to the camera’s sensor [21].

Here and further, scene and image points will be modeled with
homogeneous coordinates. This enables many geometric transforma-
tions, e.g. perspective projections to be modeled as linear transforma-
tions, which simplifies the algebraic representation of the camera.

3.2.1 Perspective Projection

The perspective projection of a 3D point
(
X, Y, Z

)> to a 2D point on the

image plane
(
u, v
)> that is distance f from the center of projection is

given by the perspective projection equation(
u, v
)>

=
f

Z
(
X, Y

)> ,

where
(
X, Y, Z

)> is the Euclidean representation of a scene point [21].
Perspective projection as defined in (3.2.1) is non-linear but the

imaging transformations can be modeled with a linear transformation
by representing scene points as homogeneous 4-vectors and image
points as homogeneous 3-vectors [21]. Using the homogeneous repre-
sentation, perspective projection becomes

α

u
v
1

 = diag(f, f, 1)
[
I3 | 0

]
X
Y
Z
1

 , (3.2)

where α = 1/z.

3.2.2 Camera Coordinate System

A scene point
(
X, Y, Z, 1

)> is put into the camera’s coordinate system
by a change of basis given by a transformation defining a rigid trans-
form in Euclidean space [

R t
0> 1

]
, (3.3)

where R ∈ R3×3 is a rotation matrix (equivalently an orthonormal ma-
trix), t ∈ R3 is a translation, and t0 = −R>t gives the Euclidean coordi-
nates of the camera’s projection center in the scene coordinate system.



3.2. Camera Model 13

3.2.3 Image Coordinate System

Projected points are put into the image coordinate system by applying
a homography that encodes the geometry of the camera’s sensor. For
real cameras, the homography is upper triangularax ax cot θ cx

0 ay/ sin θ cy
0 0 1

 , (3.4)

where ax and ay are the scale factors of the image plane in units of

pixels/mm, c =
(
cx, cy

)> is the principal point or optical center of the
camera in pixels, and θ is the skew of the sensor. For a typical CCD
camera with ORUA, the simplifications fx = fy = f and θ = π/2
can be assumed. For a pinhole camera, in addition to these typical
constraints, we have ax = ay = 1 [21].

The convention is to denote the intrinsics matrix as K and incorpo-
rate the scaling due to the focal length (see (3.2)),

K =

ax ax cot θ cx
0 ay/ sin θ cy
0 0 1

f 0 0
0 f 0
0 0 1

 =

fx kc cx
0 fy cy
0 0 1

 . (3.5)

Due to the assumptions made in this work (see Table 2.1) the camera
intrinsics matrix K is assumed to have the following form:

K =

f 0 cx
0 f cy
0 0 1

 (3.6)

3.2.4 Camera Matrix

Positioning and orienting the camera, projection, and the imaging
transformation can be composed into a linear operation given by 3× 4
camera matrix [21]

P3×4 =
[
p1 p2 p3 p4

]
= K

[
I3 | 0

] [ R t
0> 1

]
= K

[
R | t

]
(3.7)

Columns pj have geometric meaning. Columns pj where j ∈ { 1 . . . 3 }
are the vanishing points of the axes of the scene coordinate system and
p4 is the image of the scene origin. The column representation of P3×4

will play an important role in modeling cameras viewing scene planes,
as will be seen in Sec. 3.2.5.
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Then the imaging of a scene point by the camera P3×4 is given as

α
(
x, y, 1

)>
= P3×4 (X, Y, Z, 1

)> , (3.8)

where α = 1/Z.

3.2.5 Camera Viewing a Scene Plane

Without loss of generality, coplanar scene points {Xi } are assumed to
be on the scene plane z = 0 (see Fig. 3.1). This permits the camera ma-
trix P to be modeled as the homography that changes the basis from the
scene-plane coordinate system to the camera’s image-plane coordinate
system in the real-projective plane RP2 [21],

α

x
y
1


︸ ︷︷ ︸

x

[
p1 p2 p3 p4

]︸ ︷︷ ︸
P3×4


X
Y
0
1

 =
[
p1 p2 p4

]︸ ︷︷ ︸
P

X
Y
1


︸ ︷︷ ︸

X

, (3.9)

where pj =
(

p1j, p2j, p3j
)> encode the intrinsics and extrinsics of the

camera matrix P3×4. The scene and image planes are denoted Π and π,
respectively. Imaged points are denoted x =

(
x, y, 1

)>, where x, y are
the image coordinates.

FIGURE 3.1: Camera Viewing a Scene Plane. Coplanar scene points {Xi } are
assumed to be on the scene plane z = 0. The assumption implies that a ho-
mography can transform a point X on the scene plane in the world coordinate
system to an image point x in the camera’s image-plane coordinate system.
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3.2.6 Homography Decomposition

The camera P can be uniquely decomposed into a similarity S affinity A

and projectivity H

P =

[
sR t
0> 1

]
︸ ︷︷ ︸

S

[
A2×2 0
0> 1

]
︸ ︷︷ ︸

A

[
I2×2 0
l1 l2 l3

]
︸ ︷︷ ︸

H

,

where l3 6= 0, s is non-zero scalar, R is a rotation, t is a translation, A2×2 is
an upper-triangular matrix specifying the anisotropic scaling and skew
components such that det A2×2 = 1, and the projective components are
specified by

(
l1, l2, l3

)>, where l3 6= 0 [21].
Note that since a homography is invertible, (3.2.6) implies that P

can be decomposed as the inverses of a similarity S′, affinity A′ and
projectivity H′ as P = H′−1A′−1S′−1.

3.2.7 Rectification

The pre-imaging homography P−1 can be decomposed into a similarity
S, affinity A and projectivity H as P−1 = SAH (see (3.2.6)). Metric rectifi-
cation is invariant to similarity transformations [21]. Thus AH = S−1P−1

is metric rectifying. Since The pre-imaging transform P−1 is homoge-
neous, it has 8 degrees of freedom, 4 of which are eliminated by multi-
plying it with the similarity S−1. This leaves 4 degrees of freedom for
the metric rectifying homography AH∞.

3.3 Affine Rectification

We denote the image of the scene plane’s vanishing line by l =(
l1, l2, l3

)>. Assuming l3 6= 0, a projective transformation H mapping

l back to a line at infinity l∞ =
(
0, 0, 1

)> is called an affine-rectifying
homography [21]. The transformation of an image point x to an affine-
rectified point x has the form

βx = H(l)x =

1 0 0
0 1 0

l>

 x, β 6= 0. (3.10)
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3.4 Radial Lens Distortion

In this work, we use a known one-parameter division model [20] for
lens undistortion

γx = f (x̃, λ) =
(

x̃, ỹ, 1 + λ(x̃2 + ỹ2)
)> , (3.11)

where x̃ is a distorted homogeneous point that is mapped to a pinhole
homogeneous point x.

By substituting (3.13) into (3.10) we get an undistorted affine-
rectified point

αx = H(l) f (x̃, λ) =
(
x̃, ỹ, l1x̃ + l2ỹ + l3(1 + λ(x̃2 + ỹ2))

)> . (3.12)

Affine rectification as given in (3.10) is valid only if x is imaged by
a pinhole camera. Cameras always have some lens distortion, and the
distortion can be significant for wide-angle lenses. For a lens distorted
point, denoted x̃, an undistortion function f is needed to transform x̃
to the pinhole point x. We use the one-parameter division model to
parameterize the radial lens undistortion function Sec. 3.4,

γx = f (x̃, λ) =
(

x̃, ỹ, 1 + λ(x̃2 + ỹ2)
)> (3.13)

where x̃ =
(
x̃, ỹ, 1

)> is a feature point with the distortion center sub-
tracted.

The strengths of this model were shown by Fitzgibbon [20] for the
joint estimation of two-view geometry and non-linear lens distortion.
The division model is especially suited for minimal solvers since it is
able to express a wide range of distortions (e.g., see Fig. 5.6) with a sin-
gle parameter (denoted λ), as well as yielding simpler equations com-
pared to other distortion models.

For the remainder of the derivations, we assume that the image cen-
ter and distortion center are coincident and that x̃ is a distortion-center
subtracted point. While this may seem like a strong assumption, Will-
son et al. [42] and Fitzgibbon [20] showed that the precise positioning of
the distortion center does not strongly affect image correction. No con-
straints are placed on the location of the principal point of the camera
to estimate radial division model parameter and vanishing line, how-
ever, we assume it to auto-calibrate camera from two vanishing points
restored by the proposed minimal solvers (see Chapter 4).
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3.5 Rectification of Radially-Distorted Points

Affine rectified points xi can be expressed in terms of distorted points
x̃i by substituting (3.13) into (3.10), which gives

αx =
(
αx, αy, α

)>
= H(l) f (x̃, λ) =(

x̃, ỹ, l1x̃ + l2ỹ + l3(1 + λ(x̃2 + ỹ2))
)> .

(3.14)

The rectifying function H(l) f (x̃, λ) in (3.14) also acts radially about the
distortion center, but unlike the division model in (3.13), it is not rota-
tionally symmetric.

The distortion function of the lens as parameterized by the divi-
sion model is denoted f d(·, λ). Under the division model, the radially-
distorted image of the vanishing line is a circle and is denoted l̃ [8, 20,
36, 39].

3.6 Camera Auto-Calibration

Given a camera, we may or may not have access to its intrinsic pa-
rameters. But having access to the images taken by a camera, one can
recover camera calibration information. A single-view camera auto-
calibration is a process of estimating the parameters of image forma-
tion from the properties of the observed scene. A camera matrix K can
be restored up to two signs [27] from the matrix:

ω = K−>K−1, (3.15)

which is called an Image of an Absolute Conic (IAC).
However, ω is unknown and the proposed minimal solvers make

assumptions on it structure, so computing the Cholesky decomposi-
tion of ω is not an option. Matrix ω is a 3× 3 symmetric matrix and
thus it has only six independent elements ω11, ω12, ω13, ω22, ω23 and
ω33. Since the intrinsics matrix have the form of (3.6), an IAC has the
following form:

ω =

 1/f 0 0
0 1/f 0

−cx/ f −cy/ f 1

1/f 0 −cx/ f
0 1/f −cy/ f
0 0 1

 =

= 1/f2

 1 0 −cx
0 1 −cy
−cx −cy f2 + c2

x + c2
y

 ∼
ω11 0 ω13

0 ω11 ω23
ω13 ω23 ω33

 (3.16)
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The following features configurations can be used to place con-
straints on the the unknowns of ω as defined in (3.16):

1. orthogonal vanishing points (one constraint for a pair of vanish-
ing points)

2. orthogonal vanishing lines (one constraint for a pair of vanishing
lines)

3. vanishing points orthogonal to vanishing lines (two constraints
for a vanishing point-vanishing line pair)

4. known principal point (two constraints)

This constraints listed above are not exhaustive. The proposed min-
imal solvers use the first and fourth constraints to auto-calibrate the
camera.
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Chapter 4

Proposed Minimal Solvers

This chapter introduces the joint undistorting and rectifying hybrid
minimal solver that admits a radially-distorted conjugately-translated
covariant region correspondence and a correspondence of circular arcs
whose preimages are parallel lines. The solver is denoted H2

2luλ-fR. The
motivation for introducing the H2

2luλ-fR solver is to extend robust rec-
tification to distorted images of scenes where neither texture nor scene
lines dominate. In this case, robustly and accurately solving the scene
may require sampling from both feature types.

In addition, we introduce a novel joint undistortion and rectifying
solver that admits three correspondences of circular arcs, which we de-
note H222luλ-fR. The state-of-the-art does not offer a joint undistort-
ing and rectifying solver that admits arc correspondences. Rather, the
state-of-the-art requires the corresponded sets of lines, either three for
the method of Wildenauer et al. [41] in addition to an arc correspon-
dence or corresponded sets of four and three lines for Antunes et al.
[3]. The proposed H222luλ-fR method admits the possibility of discov-
ering a third translation direction on the scene plane.

4.1 A Unified Approach

The proposed solvers jointly estimate the division model parameter λ
and the vanishing line of an imaged scene plane l. Recall that the re-
covery of l is sufficient for affine rectification. Each of the proposed
solvers uses the constraints that the meet of imaged parallel scene lines
t,t′ is a vanishing point, namely,

u = t × t′. (4.1)

and that the vanishing point u and vanishing line l are coincident,

u>l = 0. (4.2)
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The derivations of H2
2luλ-fR and H222luλ-fR use the same procedure for

generating scalar constraint equations on l by substituting vanishing
points constructed from the undistorted measurements into (4.2).

The solver derivations differ only by how lines t and t′ are con-
structed from distorted image measurements, i.e., from radially-distor-
ted conjugately translated points or circular arcs whose preimages are
parallel scene lines. Since lines t and t′ are constructed from undis-
torted measurements, they are functions of λ as well, which is made
explicit going forward. Thus the vanishing point u is determined by
polynomials of a certain degree in λ in each coordinate, namely,

u(λ) = t(λ)× t′(λ) =

u1(λ) ∈ P1
u2(λ) ∈ P1
u3(λ) ∈ P2

 , (4.3)

where Pk is the vector space of polynomials of degree less than or equal
to k.

Using (4.2), vanishing points ui(λ) can be used to generate con-
straint equations on l and λ. There are four unknowns to be recov-
ered, namely l =

(
l1, l2, l3

)> and the division model parameter λ (see
Sec. 3.4). The vanishing line l is homogeneous, so it has only two de-
grees of freedom. Thus three scalar constraint equations (two of which
are independent) of the form (4.2) generated by three vanishing points
u1(λ),u2(λ), and u3(λ) are needed.

The constraints can be concisely written as a homogeneous matrix-
vector equation by introducing M(λ), which is constructed by stacking
vanishing points ui(λ) row-wise such that

M(λ)l =

u>1 (λ)
u>2 (λ)
u>3 (λ)

 l = 0. (4.4)

Matrix M(λ) is singular, which generates the additionally needed
scalar constraint equation det M(λ) = 0. The determinant constraint
defines a univariate quartic with unknown λ, which is solved in closed
form. After recovering of λ, the null space of M is found, which gives
the vanishing line l.

This approach gives a unified procedure for generating the H2
2luλ-fR

and H222luλ-fR solvers. Sec. 4.1.2 and 4.1.3 detail how the construction
of the vanishing points ui(λ) differ based on the feature configurations
used to construct the lines ti(λ), t′i(λ).
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Minimal set of features for H2
2luλ-fR

Minimal set of features for H222luλ-fR

FIGURE 4.1: Geometry of Proposed Solvers H2
2luλ-fR and H222luλ-fR. Minimal

sample sets of features on the scene plane required by the proposed solvers.
(left) is a fronto-parallel view of the scene plane, whereas (right) illustrates an
undistorted camera view of the scene plane along with a vanishing line and
vanishing points arising from the perspective view. (top) The H2

2luλ-fR solver
requires one radially-distorted conjugately-translated affine-covariant region
correspondence and one correspondence of distorted lines. The features pro-
vide exactly five scalar constraint equations. Two equations are needed to
estimate l and three are necessary to jointly estimate l and λ. (bottom) The
H222luλ-fR solver requires three correspondences of distorted lines. The fea-
tures form exactly three scalar constraint equations. A degenerate case is pos-
sible when two vanishing points coincide (e.g., u1 and u2) because all the four
lines are in correspondence. This is addressed by incorporating an additional

constraint equation (see Sec. 4.1).
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4.1.1 Two Coplanar Vanishing Points

If the line pairs (ti, t′i) constructed from the minimal sample set sup-
plied to a solver do not meet at three distinct vanishing points, then
there are not enough independent constraints to recover the undistor-
tion parameter λ and vanishing line l. An example of such a dege-
neracy is provided by at least two of three correspondences of parallel
lines meeting at the same vanishing point. The necessary number of
constraints for this configuration is given by adding the constraint that
two line correspondences are coincident with the same vanishing point

ui × uj =

 0 −u3i u2i
u3i 0 −u1i
−u2i u1i 0

u1j
u2j
u3j


=

k13λ3 + k12λ2 + k11λ + k10 ∈ P3
k23λ3 + k22λ2 + k21λ + k20 ∈ P3
k33λ3 + k32λ2 + k31λ + k30 ∈ P3

 =

0
0
0

 .

(4.5)

It is not known apriori if the inputted minimal sample contains 3 dis-
tinct vanishing points. A test is proposed in Sec. 4.4 that can detect the
configuration by using the remaining unused constraints provided by
the feature configuration.

4.1.2 Radially-Distorted Conjugate Translations

Referring to Fig. 4.1, it can be seen that four vanishing points {ui }4
i=1

can be constructed from just one radially-distorted conjugately-trans-
lated affine-covariant region correspondence [31]. The geometry of
an affine-covariant region R is described by a local affine frame (LAF)
which is a right-handed affine basis in the image coordinate system.
LAF is minimally parameterized by three points { o, x, y } (see also
[38, 25, 24, 26]). The vanishing points are constructed from each meet
of joins of pairs of conjugate-translations that share the same transla-
tion direction in the scene plane, which are color-coded in red, green,
blue, and cyan in Fig. 4.1. There are six such meets to choose from,
three for u1 and one for each of u2,u3 and u4.

Joins t and t′ are constructed from either the intra-region conjugate
translations, which are red, green, and blue in Fig. 4.1 or inter-region
conjugate translations, which are cyan. Without loss of generality, we
choose the cyan direction,

t = xi × x′i t′ = xj × x′j, i 6= j. (4.6)
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Solver Input Set Assumptions # sol. (λ, l)

H2
2luλ-fR

(see Sec. 4.1.2)

2 LAFs +
2 arcs

2 LAFs in cspond with Hu,
2 arcs in cspond with v

4

H2
2luλ-fR∗

(see Sec. 4.1.1)

2 LAFs +
2 arcs

2 LAFs in cspond with Hu,
2 arcs in cspond with an

inter (Hu) or intra-rgn
conjugate translation

3

H222luλ-fR
(see Sec. 4.1.3)

6 arcs
2 arcs in cspond with u,
2 arcs in cspond with v,
2 arcs in cspond with w

4

H222luλ-fR∗

(see Sec. 4.1.1)
6 arcs 2 arcs in cspond with u,

4 arcs in cspond with v
3

TABLE 4.1: Minimal Sample Set of Features. The assumptions for LAFs and
arcs forming a minimal sample set, which is to be drawn for H2

2luλ-fR and
H222luλ-fR solvers. Denoted by H2

2luλ-fR∗ and H222luλ-fR∗ are the solvers
variants assuming the degeneracy described in Sec. 4.1.1. Further by H2

2luλ-fR
an optimal solver that chooses the best solution from H2

2luλ-fR and H2
2luλ-fR∗

will be considered (the same goes for H222luλ-fR). Three scalar constraint
equations formed by the features in MSS are needed for each solver to gener-
ate four (for H2

2luλ-fR and H222luλ-fR) or three (for H2
2luλ-fR∗ and H222luλ-fR∗)

solutions of (λ, l).

Under the division model, the equation for a join t in the undistorted
space becomes

t(λ) = f (x̃i, λ)× f (x̃j, λ) = [ f (x̃i, λ)]× f (x̃j, λ)

=

 0 −1− λr̃2
i ỹi

1 + λr̃2
i 0 −x̃i

−ỹi x̃i 0

 x̃j
ỹj

1 + λr̃2
j


=

k11λ + k10 ∈ P1
k21λ + k20 ∈ P1

k30 ∈ P0

 ,

(4.7)

where [·]× is the skew-symmetric operator, kij are the coefficients of
the linear equations in λ occurring in the join. The joins t(λ) and t′(λ)
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are used in (4.1), where the procedure outlined in Sec. 4.1 is used to
generate two scalar constraints on l and λ.

4.1.3 Distorted Parallel Scene Lines

FIGURE 4.2: Geometry of a Distorted Line. Barreto et al. [5] showed that under
the division model of lens distortion, a straight line is imaged as a circle. When
undistorted, a tangent t to the detected circular arc is transformed such that
it coincides with the original straight line [41] in the undistorted image space
that passes through the vanishing point under a perspective view of a scene.

The figure is adapted from [41]

Wildenauer et al. [41] used elementary differential geometry to de-
rive an expression for how normals to tangents of a circle transform
with respect to f (·, λ), the division model for undistortion. Barreto
et al. [5] showed that under the division model of lens distortion, a
straight line is imaged as a circle. Thus parallel scene lines distorted
by the division model will be imaged as circles intersecting at a dis-
torted vanishing point. Using this relation, Wildenauer observed that
the undistorted normal to the tangent line of a distorted scene line m̃
(equivalently circle) defines a line t that is collinear with the scene line
m in undistorted space and thus coincident with its vanishing point
(see Fig. 4.2). The expression for t is derived in terms of the unknown
division model parameter λ and the normal of the tangency to the cir-
cle ñ =

(
ã, b̃
)> at point x̃ =

(
x̃, ỹ
)> estimated from the measurements,

t(λ) =

 ã
b̃
−ñ>x̃

 + λ

ã x̃2 + 2b̃x̃ỹ − ãỹ2

b̃ỹ2 + 2ã x̃ỹ − b̃x̃2

0

 , (4.8)
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Therefore, t is decomposed as the sum of the λ-independent term t0

and λt1 term. Since t1 × t′1 = α
(
0 0 1

)> for α 6= 0, we conclude that

u(λ) = t × t′ =

u1(λ) ∈ P1
u2(λ) ∈ P1
u3(λ) ∈ P2

 . (4.9)

Again, by substituting (4.9) into (4.2), we create an independent scalar
constraint equation.

4.1.4 Constructing the Solvers

By using the unified approach detailed in Sec. 4.1, constraints induced
by radially-distorted conjugately-translated affine-covariant regions in
(4.7) can be included with constraints induced by distorted scene lines
in (4.8) into (4.4) to generate the solvers.

The H2
2luλ-fR is simply constructed by stacking two constraints of

the form (4.7) with one constraint of the form (4.8). The H2
2luλ-fR solver

requires one radially-distorted conjugately-translated affine-covariant
region correspondence and one arc correspondence.

The H222luλ-fR is constructed by using three constraints of the form
(4.8). The H222luλ-fR solver requires three correspondences of distorted
lines.

4.2 Vanishing Point Estimation

Having vanishing line l and the division model parameter λ recovered
by either H2

2luλ-fR or H222luλ-fR, vanishing points from the minimal
sample set that were not used in the construction of the minimal con-
straints can be recovered. There are a total of five vanishing points
that can be estimated from the input feature set required by H2

2luλ-fR
and there are a total of three (or two for the degenerate case) vanish-
ing points that can be estimated from the input feature set required by
H222luλ-fR.

The relations between region correspondences or line correspon-
dences and the vanishing point u, and the enforcement of the vanish-
ing point-vanishing line incidence constraint u>l = 0 are encoded in
the constrained least squares problem,

minimize
u

‖Mu − y‖2

subject to Cu = d.
(4.10)
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For the translation direction of { xi ↔ x′i }i, (4.10) takes the form that
is formulated in [31]:

M =


...

−l>xi 0 x′i(l
Txi)

0 l>xi y′i(l
>xi)

...

 ,

y = (. . . , xi − x′i, yi − y′i, . . . )>, C = l>, d = 0.

(4.11)

For the corresponded lines of {mi ↔ m′i }i, which are gotten from
the arcs that are imaged lines, the constraint becomes

M =

[
m>

m′>

]
, y = 0,

C =

[
l>

0 0 1

]
, d =

(
0
1

)
.

(4.12)

For both types of features, the matrices
[
M> C>

]> have linearly in-
dependent columns, and C is row independent. Thus u is recovered by
solving [

M>M l
l> 0

] (
u
z

)
=

(
M>y

0

)
, (4.13)

where z is the Lagrangian multiplier [7].

4.3 Auto-Calibration from Vanishing Points

The recovered vanishing points are used for auto-calibration. A Man-
hattan scene is assumed, which means that the vanishing points corre-
spond to orthogonal directions in the scene. The assumption enables
the recovery of the focal length and conjugate rotation of the camera.
We also assume zero skew and square pixels for the CCD. Denoting
the two orthogonal vanishing points as u, v, and setting the principal
point to the image center c, the focal length is computed as follows

f =
√
−ůxv̊x − ůyv̊y, (4.14)

where ů = u− c, v̊ = v− c. The camera intrinsics matrix is constructed
using (3.6).

The focal length is used to recover the rotation R of the camera with
respect to the scene plane. R is a rotation matrix whose columns are
orthogonal unit vectors of vanishing points pre-imaged to calibrated
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ray space by K−1

R =
[
U V W

]
, (4.15)

where U = K−1u, V = K−1v, W = K−1w, and the third vanishing point
w is computed from u, v to complete the orthonormal basis

w = u × v. (4.16)

4.4 Best Minimal Solution Selection

The subset of constraints needed to construct vanishing points from
the input set is referred here as minimal configuration. The number of
minimal configurations for an input set required by H2

2luλ-fR (a LAF
correspondence and a correspondence of two circular arcs) is 12. If
considering a case of two coinciding vanishing points (see Sec. 4.1.1,
plus 36 minimal configurations) and also a case of constructing vanish-
ing points from affine-covariant region correspondence only (see Elim-
inating Vanishing Line solver of [31], plus 10 minimal configurations)
the total number is 58. An input feature set required by H222luλ-fR has
only one minimal configuration. If also considering a degeneracy of
two coinciding vanishing points, then there are three additional mini-
mal configurations, so it is four in total for an input set.

Thus a minimal configuration returned by each solver is automat-
ically chosen such that it minimizes the cost of the input sample with
respect to a model. The input sample error is computed as a weighted
sum (with weight w = 0.52 that was empirically chosen) of two terms
corresponding to two types of features from the input sample

E = w · EXFER + (1− w) · ELC. (4.17)

The first term is the symmetric transfer error used to measure the
accuracy of the estimated radially-distorted conjugate translation of the
point correspondences,

EXFER = ∑
i

d(x̃i, f d(Ĥ−1
u f (x̃′i, λ̂), λ̂))2 + d( f d(Ĥu f (x̃i, λ̂), λ̂), x̃′i)

2
, (4.18)

where Hu is a conjugate translation u [31]

Ĥu = I3 + ŝuûl̂>, (4.19)

where the scalar su is the magnitude of translation in the direction u
for the point correspondence x̃ ↔ x̃′ [35].

The correspondences x̃ ↔ x̃′ used as input to the minimal solver
will have zero symmetric transfer error. The remaining constraints that



28 Chapter 4. Proposed Minimal Solvers

are available from the affine-covariant regions correspondence can bee
used to estimate the consistency of the correspondence with the pro-
posed model.

The second term of (4.17) is the distorted line consistency measure
computed for the parallel scene line segments,

ELC = ∑
k

∑
x∈Ak

dl(x, f d
l ([ēk]× ûk, λ̂))2, (4.20)

where ûk is an estimated vanishing point (see. Sec. 4.2), ēk is the geo-
metric median of undistorted points of the circular arc Ak, and dl(x, C)
is an orthogonal distance from the point x to a circle C. Note that the
term [ēk]× ûk in (4.20) is the line passing through the estimated vanish-
ing point ûk. The line [ēk]× ûk approximates the maximum likelihood
estimate of the line fitting the undistorted points and is computed as
in [37]. However, it is preferable to minimize the error in the distorted
space where the measurements come from because neglecting the dis-
tortion causes bias in the estimates [21, 18, 36]. Thus the line is back
distorted to a circle C with the estimated division model parameter λ̂
(see Fig. 4.3) and the geometric error dl(x, C) is computed.

FIGURE 4.3: Arc Consistency Measure. An algorithm for computing a circular
arc consistency with the model is similar to [37]. An line joining the geometric
median of points and the estimated vanishing point ûk of the scene plane
line direction is calculated according to (4.20), then distorted (on the right)
with an estimated radial division model parameter, and the sum of orthogonal

distances to a circle dl(x, C) is computed.

BMSS can pre-empt the verification step of the RANSAC estimator.
If the minimum total cost is not sufficiently small, then the model is
labeled incorrect, and verification against all measurements is pre-
empted. An advantage of including BMSS is also shown in the ablation
study in the synthetic experiments, where the optimal solvers that use
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BMSS are compared to solvers that randomly choose a minimal con-
figuration (see Sec. 5.2.3). Note that BMSS makes all the region-based
solvers competitive with the contour-based solvers.
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Chapter 5

Experiments

5.1 Evaluation Strategy

We report the numerical stabilities (see Fig. 5.2) and noise sensitivities
(see Fig. 5.3) of the proposed minimal solvers H2

2luλ-fR and H222luλ-fR
for the problem of auto-calibrating cameras viewing synthetic scenes.
Auto-calibration accuracy is measured with relative errors of undistor-
tion and focal length estimation, as well as with the metric warp error
(see. Sec. 5.1.1) on 1000 synthetic images of 3D Manhattan scenes.

The proposed solvers are compared with three state-of-the-art af-
fine-rectifying solvers that admit feature configurations that can be
used for auto-calibration. The bench of state-of-the-art affine-rectifying
solvers consists of 1. HDES

222 luλ of [30], which affinely rectifies from three
correspondences of coplanar affine covariant regions, 2. H22luλ-fR [31],
which requires two correspondences of radially-distorted conjugately
translated covariant regions, and 3. H32luλ-fR [41], which requires a
corresponded set of three imaged parallel scene lines and a correspon-
dence of imaged parallel scene lines, where each set is consistent with a
distinct vanishing point. The Manhattan frame is assumed to upgrade
from affine-rectified to calibrated space.

5.1.1 Metrics

Camera auto-calibration accuracy is reported in terms of the estimated
parameters. Relative error of the estimated division model parameter
is used to report the accuracy of the lens undistortion estimate

µλ = (λ− λ̂)/λ. (5.1)

and focal length accuracy is reported as

µf = (f− f̂)/f. (5.2)
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Metric Warp Error The accuracy of metric rectification is used to
jointly assess the accuracy of the recovered auto-calibration parame-
ters. The metric-rectifying conjugate rotation of the camera is used to
rectify points

αx = Hx = KRK−1x = KRK−1 f (x̃, λ). (5.3)

Using the conjugate rotation as the rectifying homography links the
accuracy of the metric rectification with the accuracy of the estimations
of f, R and λ, which are directly recovered from the minimal solvers.

We modify the affine warp error introduced by Pritts et al. in [29]
to admit conjugate rotations. A scene plane is tessellated by a 10x10
square grid of points {Xi }100

i=1 and imaged as { x̃i }100
i=1 by the lens-

distorted ground-truth camera. The tessellation ensures that error
is uniformly measured over the scene plane. A round trip between
the image space and rectified space is made through the following
sequence of transformations: 1. The imaged tessellation { x̃i }100

i=1 is
undistorted using the ground truth division model parameter λ, 2. the
undistorted points are back-projected to rays and rotated using R>K−1

such that the scene plane is fronto-parallel, giving the rectified points
{ xi }100

i=1, and 3. the metric rectified points are imaged and distorted by
the estimated camera using K̂R̂ and λ̂.

Ideally, the estimated camera K̂R̂ images the rectified points { xi }100
i=1

onto the distorted points { x̃i }100
i=1. The metric warp error for estimated

camera K̂R̂ is defined as

∆metric
warp = ∑

i
d2(x̃i, f d(K̂R̂R>K−1 f (x̃i, λ)), λ̂), (5.4)

where d(·, ·) is the Euclidean distance, f d is the inverse of the division
model (the inverse of (3.13)). The root mean square metric warp error,
denoted ∆metric

warp , is used in the sensitivity and stability studies.

5.2 Synthetic Scene Experiments

Cameras with realistic focal lengths and lens distortions are randomly
placed such that an imaged scene plane occupies a majority of their
view. Image resolution is set to 1000× 1000 pixels. The ground-truth
division model parameters and focal lengths are generated randomly
within realistic bounds such that the synthetic cameras are similar to
GoPro Hero 4 cameras (see also [31]). Parallel line segments and trans-
lated affine frames are oriented on the scene plane so that they are
mutually orthogonal. For the sensitivity experiments, white noise is
added to the images of the sampled line segments and translated affine
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frames. Fig. 5.1 refers to examples of the synthetically generated Man-
hattan frames with inlying affine features arranged in the pattern of
lattice.

FIGURE 5.1: Examples of Synthetic Scenes Used for Evaluation. Illustrated are
imaged two orthogonal scene planes each containing affine-covariant features
arranged in a lattice (colored blue and red). The dominant scene plane (blue)
also contains sets of parallel lines corresponding to orthogonal directions (col-
ored green and magenta). The scene planes also incorporate outliers (yellow

and purple) to test the robustness of the framework (see Sec. 5.2).

5.2.1 Numerical Stability

The numerical stability measures the RMS metric warp error ∆metric
warp

of the two proposed (H2
2luλ-fR and H222luλ-fR) and two state-of-the-

art (H22luλ-fR [32, 30] and H32luλ-fR [41]) solvers on noiseless features.
Configurations of coplanar mutually orthogonal translated affine fra-
mes and parallel lines that are consistent with each solver’s required
inputs are generated for a realistic scene and camera configurations
described in the introduction of this section.

Fig. 5.2 reports the distribution of log10 warp errors ∆metric
warp . All of

the proposed solvers demonstrate superior numerical stability, which
is consistent with the simple structure of the solvers. The solver
H32luλ-fR [41] admitting fitted circles also has the simple structure
and is quite stable. The H22luλ-fR solver of Pritts et al. [32] has a signif-
icant failure frequency. H22luλ-fR is generated with the Gröbner bases
method, which solves a complicated system of polynomial equations.
In contrast, the proposed solvers require solving only a quartic and a
small linear system (see Chapter 4).
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Solvers Stability Study for Noiseless Features
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FIGURE 5.2: Numerical Stability. For the synthetic experiments, the normal-
ized division model parameter is set to -4, focal length and camera pose are
generated randomly within realistic bounds such that the synthetic camera
is close to GoPro Hero 4. The RMS metric warp error is reported, which ac-
counts for all the estimated calibration parameters λ, f and R. The proposed

solvers are stable.

5.2.2 Noise Sensitivity

The proposed H2
2luλ-fR ans H222luλ-fR solvers and the state-of-the-

art HDES
222 luλ, H22luλ-fR and H32luλ-fR solvers, upgraded for auto-

calibration as described in Sec. 4.3, are evaluated for their robustness
to sensor noise. The RMS metric warp error ∆metric

warp is used to measure
the accuracy of the auto-calibration (see Sec. 5.1.1). White noise is sam-
pled from a zero-mean Gaussian and added to the arcs and radially-
distorted conjugate translations. Solver sensitivity is measured at noise
levels of σPT ∈ { 0.5, 1, 2 }.

The solvers are used in a basic RANSAC estimator that minimizes
the RMS metric warp error ∆metric

warp over 25 minimal samples for each of
the 1000 scenes at each noise level. Each boxplot of Fig. 5.3 has a con-
stant arc noise level and varying affine frame noise level. As expected,
the solvers admitting arcs give superior performance since the entirety
of the arc is used for fitting. The proposed H222luλ-fR gives the best
performance, handles the case where correspondences are consistent
with either two or three vanishing points, and requires only arc pairs
(in contrast, to H32luλ-fR which requires a corresponded set of three
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along with an arc pair). The proposed H2
2luλ-fR shows significantly im-

proved stability over the state-of-the-art solvers HDES
222 luλ and H22luλ-fR

of Pritts et al. [32, 30, 31]. The state-of-the-art solver H32luλ-fR of [41],
which uses only arcs, also demonstrates good robustness across all the
noise levels.

5.2.3 Impact of Best Minimal Solution Selection

The ablation study in Table 5.1 compares the performance of the pro-
posed solvers with best minimal solution selection to variants that
randomly select from feature configurations (see Sec. 4.4). BMSS has
a significant impact and reduces warp error by 49.2% on average for
H2

2luλ-fR solver and by 30.2% on average for H222luλ-fR solver. The
inclusion of BMSS is further justified by the extremely fast time-to-
solution of the proposed solvers.

Solver ∆metric
warp at 1px-σ Improvement

Random BMSS

H2
2luλ-fR 6.9 3.5 49.2%

H222luλ-fR 5.3 3.7 30.2%

TABLE 5.1: Ablation Study. The study illustrates an advance of the solvers
H2

2luλ-fR and H222luλ-fR that use BMSS, comparing to H2RND
2 luλ-fR and

H222RNDluλ-fR that randomly choose one of possible configurations given a
minimal sample set.

5.3 Performance on Real Images

5.3.1 Robust Estimation

The proposed solvers are utilized in a LO-RANSAC-based robust esti-
mation framework [13, 14, 28]. A RANSAC hypothesis consists of the
estimations of radial division model parameter, focal length, and rec-
tifying camera rotation H = {λ, f , R}. The hypothesized models with
the best-so-far maximal consensus sets are locally optimized by an ex-
tension of the method introduced in [28].

MSS configurations for the proposed minimal solvers are given in
Table 4.1 and the examples are illustrated in Fig. 4.1. For each itera-
tion of RANSAC, appearance clusters are selected with the probability
which is equal to the cluster’s relative cardinality to the other appear-
ance clusters, as well as LCC clusters are chosen with the probability
given by its relative cardinality to the other LCC clusters. The required
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RMS Metric Warp Error on Noisy Features
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FIGURE 5.3: Noise Sensitivity Benchmark. Reported is RMS metric warp error
after 25 iterations of a simple RANSAC for the state-of-the-art and proposed
minimal solvers that were upgraded for auto-calibration of the Manhattan
synthetic scene with increasing levels of the noise σPT added to the local affine
frames, and the noise σARC added to the points of the circular arcs in the or-
thogonal directions of the circles. The synthetic camera parameters were gen-

erated in the same way as for solvers’ numerical stability experiment.

number of feature correspondences are then drawn from the selected
clusters to generate a RANSAC hypothesis using the proposed minimal
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solvers and evaluate it based on the cardinality of the consensus set
computed.

Covariant Features Extraction and Tentative Correspondences Af-
fine frames are tentatively labeled as a repeated pattern by their ap-
pearance. The appearance of an affine frame is given by the RootSIFT
description of the image patch local to the affine frame [4]. Affine-
covariant regions are also extracted and embedded in the reflected im-
age, where the detections are transformed into the original image space
and have a left-handed representation.

The RootSIFT embeddings are agglomeratively clustered, which es-
tablishes pair-wise tentative correspondences amongst connected com-
ponents [31]. Since the proposed hybrid solver does not admit reflec-
tions, the appearance clusters are partitioned based on the handedness
of the affine frames associated with the clustered embedded regions
[31].

(A) Tentative LAFs clusters (B) Tentative LCCs

FIGURE 5.4: Tentative Correspondences of Features. (A) The RootSIFT descriptors
are used to tentatively cluster LAFs as radially-distorted conjugately-trans-
lated affine-covariant regions (an image is taken from [32]), and (B) LCCs are
used to tentatively group the circular arcs as radially-distorted imaged paral-

lel scene lines.

Circluar Arcs Extraction and Tentative Correspondences Arc extrac-
tion consists of two stages: 1. arc segment detection and 2. circle fitting.
The approach is similar to [40]. A subpixel Canny edge detector is used
to [10] extract edges from the input image. Short edges are removed,
and the remaining contours are split into circular arcs. The circular arcs
are segmented with the Ramer–Douglas–Peucker simplification algo-
rithm [17]. Over-segmented arcs (arcs belonging to the same circle)
are connected. Each arc is fitted to a circle using Taubin’s circle esti-
mator. The Taubin estimate is used as an initial guess to a non-linear
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least squares minimizer, which gives the maximum likelihood estimate
[11]. The endpoints of contours are projected onto the fitted circles and
are used to compute the midpoint and the normal of the circle located
at the midpoint. These parameters are the required inputs to the pro-
posed solvers as detailed in Sec. 4.1.3.

Tentative correspondences of detected circular arcs are established
by utilizing the geometry of the imaging process of the lines by
radially-distorted cameras modeled with the division model. Paral-
lel scene lines are projected by a pinhole camera to a pencil of lines
intersecting at a vanishing point and imaged by a radially-distorted
camera to a pencil of circles intersecting at two points corresponding
to the opposite directions of these lines, where one of these points is a
distorted vanishing point. The circle centers of the distorted parallel
scene lines are lying on the same line called Line of Circle Centers (LCC).
Essentially, the LCC can be seen as a circle pencil [3]. Thus different
correspondences of distorted scene lines relate to different LCCs.

The join of a pair of circle centers is drawn and used to fit a line.
Then, a set of inlying circle centers is found by thresholding the or-
thogonal distance from the point to the line. All the pairs of circle
correspondences are created from this set of inliers. The procedure is
repeated for each pair of circles in the set of extracted circles and the
union of all the tentative pairs of circles in correspondence is formed.

Fig. 5.4 illustrates an example of the tentative correspondences es-
tablished for extracted image features.

5.3.2 Experimental Results

On Fig. 5.6 and Fig. 5.5 we present the performance of the proposed
solvers on the real images. Integrated into the robust estimation frame-
work, the solvers show an accurate undistortion, as well as focal length
estimation and metric rectification. The experiments indicate that the
algorithm effectively handles various camera lens distortions, from the
cell phone and near rectilinear lens up to fish-eye cameras that have a
high distortion, as well as different field of view options. We are also
able to label the distorted line correspondences and the directions of the
conjugate translations of the regions on the imaged scene planes with
the estimated vanishing points of the Manhattan direction; on Fig. 5.6
and Fig. 5.5 labelling is shown as as red, green, blue circles; we also
label the repeated regions with estimated vanishing lines correspond-
ing to multiple imaged scene planes. The distorted vanishing lines are
colored yellow, magenta, and cyan for the three scene planes.
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f = 13.51mm
f̂ = 13.15mm

f = 13.51mm
f̂ = 13.03mm

f = 13.51mm
f̂ = 13.81mm

FIGURE 5.5: Real Data Experiments: AIT. The proposed solvers accurately es-
timate distortion and focal length, and metric-rectify even for strong distor-
tion and wide fields-of-view. The outputs are vanishing point labeling of arcs
and region correspondences (first row), and vanishing line labeling of regions
(second row); undistorted (third row) and rectified images (bottom row). The
left-most result represents a very good performance (a highly accurate esti-
mation of undistortion can be seen, as well as very low relative error in focal
length). The middle column is for a good performance, and the right-most col-
umn one represents a moderate outcome. The experiments were conducted

for AIT dataset [41].

5.4 Further Analysis

5.4.1 Computational Complexity of the Solvers

We present a comparison of the mean time-to-solution in the wall clock
time of the proposed solvers—H2

2luλ-fR, H222luλ-fR—with the state-of-
the-art solvers H22luλ-fR of [32] and HDES

222 luλ of [30]. All solvers were
written and optimized in C++. Relative speeds are reported with re-
spect to the H2

2luλ-fR solver for easy comparison. The proposed solvers
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f = 12.24mm
f̂ = 11.02mm

f = 16mm
f̂ = 17.81mm

f = 21.14mm
f̂ = 21.24mm

FIGURE 5.6: Real Data Experiments: Challenging Images. The proposed solvers
were tested on challenging images taken by various cameras with different
fields-of-view and distortions. Presented are examples of estimated focal
length (top title), visual outputs: vanishing point labeling of arcs and region
correspondences (first row) and vanishing line labeling of regions (second
row); radially undistorted (third row) and metric-rectified images (bottom

row).

have similar algebraic structure and have the same mean time-to-solu-
tion of 0.5 µs. Each gives a 2153.6× speed up over the HDES

222 luλ solver
and a 69.2× speed up over the H22luλ-fR solver (see Table 5.2). The
slow run times of the HDES

222 luλ and H22luλ-fR solvers can be attributed
to their need to solve complicated polynomial systems of equations us-
ing the Gröbner bases method. All of the proposed solvers are much
more suitable for fast sampling in RANSAC for scenes containing trans-
lational symmetries and lines.
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Solver Wall Clock Relative Time

H2
2luλ-fR 0.5 µs 1.0×

H222luλ-fR 0.5 µs 1.0×
H22luλ-fR 34.6 µs 69.2×
HDES

222 luλ 1076.8 µs 2153.6×

TABLE 5.2: Runtime Analysis. Wall-clock times are reported for optimized
C++ implementations of the proposed solvers—H2

2luλ-fR, H222luλ-fR—versus
H22luλ-fR and HDES

222 luλ of [32, 33, 30]. The proposed solvers are significantly
faster then the state-of-the-art.

Camera Id Zhang [46] Minimal Solution MLE
f, mm f̂, mm µf f̂, mm µf

Left-Most Camera 1.939 1.893 0.024 1.954 0.008
Right-Most Camera 1.946 1.975 0.015 1.968 0.011
Right-Side Camera 1.944 1.962 0.009 1.929 0.008

Right-Center Camera 1.946 1.994 0.025 1.989 0.022
Right-Front Camera 1.945 1.957 0.006 1.956 0.006

Left-Front Camera 1.937 1.898 0.02 1.939 0.001

TABLE 5.3: Single-View vs. Multi-View Study. For the Zhang’s calibration tech-
nique [46], which is a golden standard, 63 images of the calibration targets
were utilized to estimate the focal length whereas the proposed method gives
as accurate estimates using a single image. See Fig. 5.7 illustrating typical out-
put of the proposed method for the calibration data used in this experiment.

5.4.2 Single-View vs. Multi-View Camera Calibration

Table 5.3 reports the focal length estimates obtained by Zhang’s cali-
bration technique [46] from acquired 63 images versus the proposed
technique. Fig. 5.7 gives an example of the input data (the information
about the calibration targets was not utilized) and the results obtained
by the proposed method in this experiment. It is noteworthy to high-
light several advantages of the proposed method: only one input im-
age is needed, and no knowledge of the calibration target is required
while the estimates are comparably accurate; still camera calibration
from multiple images can be easily incorporated to improve the results.
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(A) Barrel Distorted Image
with Labeling

(B) Undistorted Image

(C) Rectified Chessboards

FIGURE 5.7: Rectification from Radially Distorted Points. The chessboard scene
was undistorted and rectified using a minimal solver that jointly estimates
lens distortion and rectification. (A) The corners of each chessboard are color
coded with the distorted image of the vanishing line. The radially-distorted
conjugate translations used in the estimation are color coded with the dis-
torted vanishing point where they meet. (B) Undistorted with the division

model. (C) Each chessboard is metrically-rectified.
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Chapter 6

Conclusions

6.1 Summary

This work proposes the first hybrid solvers that jointly admit corre-
spondences of points and circular arcs for camera auto-calibration. This
novelty is achieved by incorporating constraints on the tangents of
circular arcs from differential geometry with constraints on points in-
duced by radially-distorted conjugate translations. Remarkably, these
constraints can be combined and simplified such that the joint estima-
tion of lens undistortion and affine rectification from two or three cor-
respondences of points and arcs is possible by sequentially solving a
quartic and a simple linear system. Auto-calibration is also directly re-
covered if a Manhattan scene is assumed. The simple structure of the
equations results in very robust and fast solvers. The solvers extend
accurate auto-calibration to images where there is a sparsity of either
translational symmetries or scene lines, and they are ideal for use in
robust estimators designed to use complementary feature types, like
Hybrid Ransac [9].

6.2 Discussion

Many computer vision tasks can be alleviated with known camera cal-
ibration parameters. The most widely-known is the problem of 3D re-
construction [43, 34, 44]. Unfortunately, the camera calibration infor-
mation is rarely available, especially if considering imagery taken from
the Internet. A proposed approach to an automatic camera calibration
from a single image is based on the geometric properties of imaging
a man-made world under several assumptions on camera (zero skew,
square pixels and principal point coinciding with an image center) and
the scene (a Manhattan frame, but optional if only distortion and hori-
zon estimations are needed). The proposed minimal solvers are sim-
ple but efficient, and can be easily integrated into a robust framework
such as RANSAC as was illustrated in Chapter 5. A geometric approach
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makes the proposed method more accurate than learning techniques
e.g., [6], which do not incorporate geometric constraints.
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