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Abstract

Today virtual and augmented reality applications become more and more popular.
Such a trend creates a demand for 3D processing algorithms which may be applied
to many areas. This work is focused on sign language video sequences. There are a
lot of prerecorded photo and video dictionaries that can be transformed into 3D and
unified in one place.

We research nuances of hand pose video sequence analysis as well as the in-
fluence of results refinement for 2D and 3D keypoint detection. Besides that, we
designed a solution for the parametrization of hand shape and engineered system
for 3D hand pose reconstruction.

Model show good results on train data but lack generalization. Retraining on
multiple datasets and usage of various data augmentation techniques will improve
performance.
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Chapter 1

Introduction

1.1 Context

Today virtual and augmented reality technologies (AR/VR) are becoming more and
more popular. Prominent mobile applications like Snapchat or the Pokemon Go
reflect that. Such a trend creates a high demand for 3D image data processing, which
applies to many areas.

Samsung, in August 2019, released an application called ’3D Scanner’ that al-
lows users to scan objects and create their 3D model, which then can be shared with
others. For such a program, it is convenient to use algorithms based on data from a
depth camera. However, algorithms based on the use of depth data cannot be easily
applied to a vast amount of 2D data recorded using RGB sensors. And despite the
growing availability of depth cameras and the information obtained from them, 2D
data and RGB sensors themselves are still more accessible. We propose methods that
can be used for a similar kind of 3D modeling applications.

1.2 Problem

Sign language dictionaries are widely available but lack the methods for their con-
version into 3D. There is plenty of single images as well as video sequences in 2D.
Even though there is a cases of dictionaries recorded from multiple views, often peo-
ple who want to learn sign language see only the front view of the hands. However,
views from all angles carry value, as they reflect the nuances between similar words.
Besides that, existing dictionaries don’t unify into one universal solution. We don’t
observe a sequence of works dedicated to the reconstruction of existing sign lan-
guage dictionaries in one unified 3D database. Our goal is to speed up research of
3D reconstructions of available sign language lessons for further usage in AR/VR
applications.

We need to cover the processing of both sequences and single images to make
future reconstruction into 3D video dictionaries more flexible. Working with video
implies computational problems related to blurred frames which exist due to high
speed of movement, and complex hand poses with overlapping hand parts along
the z-axis.

Besides that, sign language is a very broad field. As an initial step, we decided to
create 3D annotations for the fingerspelling. Fingerspelling is a process of showing
words by letters, which often used to show titles, people’s names, brands, etc.

To analyze the nuances of video hand pose reconstruction and engineer solution
for subset of ASL we set research questions and engineering goals.
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Research questions

• How addition of synthetic video frames affect performance of 3D reconstruc-
tion methods.

• How refinement of results affects performance of 3D reconstruction methods.

Engineering goal

• Crate system for annotation of American Sign Language subset.

Contributions

• We researched how additional input data influence 3D keypoint estimation.

• We researched how additional supervision reflects on 3D keypoint estimation
results.

• We used RNN to parameterize hand shape. We didn’t find mentions of this
approach in literature.

• We designed a modular system for training and evaluation of hand pose re-
construction.

1.3 Descriptions of the thesis chapters

In chapter 2, we review the main technical concepts on which based techniques for
3D hand pose reconstruction. The chapter also provides an overview of existing
end-to-end systems for hand.

In chapter 3, we propose our solution for hand pose estimation. And discuss
differences between architectures that can be used for intermediate computations of
key points in 2D and 3D. We are also covering datasets suitable for the training and
evaluation of our algorithm.

In chapter 4, we show training results and discuss how differences in architec-
tures influence performance. This chapter also showcases performance on the Amer-
ican Sign Language dataset.

In chapter 5, we are summing up research outcomes and discussing how the
system for sing language reconstruction can be improved.
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Chapter 2

Background and Related Works

2.1 Background overview

The task of determining the position of an object in space is not new. Over the past 20
years, a large number of works have been aimed at solving this problem [1], [2]. A lot
has changed with the advent of depth sensors and neural networks. These technolo-
gies introduce new approaches to comprehensive scene analysis. Depth cameras
produce information about the distance to an object, which allows reconstructions
of more accurate 3D models, and neural networks calculate complex correlations
in image patterns. Since 2012, neural networks started to overperform most of the
classical methods in segmentation and classification problems. A large number of
methods use a combination of depth-camera output and neural network for 3D re-
construction of the body position [3], [4]. The above technologies also apply widely
to the hands. Often, researchers use a combination of depth sensors and gloves,
which record the 3D position of the hand. Several sensors are used for the collection
of fully labeled training samples for 3D reconstruction, which may include depth
map, joint angles, and 3D positions [5]–[7].

Because we are solving the problem without the usage of depth sensors, from
two stated technologies, we will provide only neural networks review.

2.1.1 An artificial neural networks

An artificial neural network is a mathematical model well suited for the approxi-
mation of highly nonlinear functions. The main component of a neural network is
a neuron, which usually consists of a linear regression followed by the activation
function. Activation functions are responsible for the addition of nonlinear transfor-
mations. Neurons can be combined into various layers, for example, fully connected
layers or convolutional layers.

Neurons in a fully connected layer extend the idea of a linear model, where out-
put is a linear combination of fixed nonlinear basis functions φ(.), passed to the
nonlinear activation f (.) [8]:

y(x, w) = f (
M

∑
j=1

wjφj(x)) (2.1)

The extension of the idea consists of two facts. First is that nonlinear basis function
is parametrized too and optimized alongside parameters w. Second is that basis
function has the same form as 5.1.[8]

The basic neural network model can be described as a series of functional trans-
formations. First, we construct M linear combinations of the input variables x1, . . . , xD
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in the following form:

aj =
D

∑
i=1

w(1)
ji xi + 2(1)j0 (2.2)

where j = 1, . . . , M, and the superscript (1) indicates that the corresponding param-
eters are in the first ‘layer’ of the network. The output of 2.2 called activation and
transformed using a differentiable, nonlinear activation function h(.):

zj = h(aj) (2.3)

where zj is called hidden unit.
A popular choice of an activation function for multiple binary classification prob-

lems is a sigmoidal activation. It is a convenient activation function for computer
vision tasks such as image segmentation or key-points detection:

σ(a) =
1

1 + exp(−a)
(2.4)

So then, a multilayer neural network with sigmoidal activation function can be rep-
resented by the equation 2.5:

yk(x, w) = σ

(
M

∑
j=1

w(2)
kj h

(
D

∑
i=1

w(1)
ji xi + w(1)

k0

)
+ w(2)

k0

)
(2.5)

where w is a matrix of all trainable parameters [8].
Convolutional layers are a fundamental part of most networks described in this

thesis. The core component of a layer is the sliding kernel matrix (filter) with train-
able parameters. Elements of the kernel matrix multiplied element-wise with a re-
gion of the input matrix. The following equation describes the process:

G[m, n] = ( f ∗ h)[m, n] = ∑
j

∑
k

h[j, k] f [m − j, n − k] (2.6)

where f - is an input matrix, h kernel, m - rows, n - columns
Multiplication results are summated with bias, and output is represented as an

element of the feature map matrix. Feature map usually transformed with some
activation function. Because for one feature map exist only one kernel matrix with
trainable parameters, a number of weights are significantly smaller than in a fully
connected layer. The trainable convolution can be described as linear regression
trained on segments of the input data, not all data at once. By changing the dimen-
sion of the kernel or sparseness of the input region, we can determine the logic of
pattern recognition performed by the layer.

In the simplest case, the trainable parameters of the network are only weights of
a linear regression that optimized using gradient descent. Various techniques, such
as batch normalization, dropout, or skip connections, are used to prevent overfitting
or speed up the optimization of parameters.

In all the reviewed and proposed methods for 3D hand modeling, convolutional
neural networks (CNNs) play an essential role.

2.1.2 Blocks and cells

In this section, we review two structures built from layers. Both of them mainly
solve the problem of vanishing gradient. The first one is called residual block and
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FIGURE 2.1: Convolution

FIGURE 2.2: Residual learning: a building block [9].

was introduced as a solution for efficient training of deep networks with depth in
hundreds of layers [9] . Residual block returns not the output of the single final layer
but the sum of multiple outputs. This design allows the optimizer to update weight
at the beginning of the network more efficiently.

The second structure is called LSTM cell and related to Recurrent Neural Net-
works that weren’t touched before in a thesis. RNNs are used for sequence mod-
eling where there is a task of mapping one sequence to another. Each element of a
sequence is fed to network cell, which extracts patterns of elements. The problem, in
this case, again vanishing gradient for the case of long sequences and can be solved
by LSTM cell. The sequence of computational operations is listed on equations 2.7-
2.12 and illustrated on Fig 2.3.

ft = σg(W f xt + U f ht−1 + b f ) (2.7)

it = σg(Wixt + Uiht−1 + bi) (2.8)

ot = σg(Woxt + Uoht−1 + bo) (2.9)

ot = σg(Woxt + Uoht−1 + bo) (2.10)

ct = ft ◦ ct−1 + it ◦ σc(Wcxt + Ucht−1 + bc) (2.11)

ht = ot ◦ σh(ct) (2.12)
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FIGURE 2.3: LSTM cell

2.2 Methods for 3D shape estimation

Most methods for 3D hand pose generation from a single RGB image can be gener-
alized into four stages. The first stage is the detection of hands in the input image
and cropping localized area; the second is the detection of hand key-points in 2D;
the third is a mapping of 2D locations into 3D, and the fourth is a generation of the
3D hand model.

FIGURE 2.4: Generalized schema of 3D hand pose estimation

2.2.1 Networks for 2D key-point detection

Estimation of 3D structures such as 3D key-points or 3D hand model is the hardest
to train part of the pipeline. For higher accuracy of those stages, it is essential to
accurately estimate 2D key-points of the hand, because this data contains two-thirds
of the 3D locations. We will review a few models suitable to address tasks of 2D key-
points estimation. We will discuss three CNNs, namely U-Net, Stacked Hourglass
Network, and Open Pose.

The UNet is an architecture which first extracts image features by downsampling
layers and then upsamples them alongside sequential concatenation of outputs from
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FIGURE 2.5: a) UNet architecture [10] , b) Stacked Hourglass Network
[11]
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FIGURE 2.6: Illustration of parallel computational pipelines used in
Open Pose [14]

previous layers [10]. U-Net like architectures have proven to work with the task of
2D key-points detection [12].

Stacked Hourglass Network extends the idea of U-Net and stacks several archi-
tectures of a similar type into one pipeline with supervision after each step [11].
Building blocks are residual and skip connections are implemented by the addition
of feature maps rather than concatenation.

Open pose detector is a CNN that consists of multiple computational stages and
two parallel computational pipelines. Each stage is estimating both locations of 2D
key-points and connections between them. All stages except the first one are estimat-
ing information about joints based on previous results. In such a way, the detector
is reffing computational results with each iteration.

2.2.2 Systems for 3D reconstruction

The paper [13] introduces a three-stage algorithm that localizes the hands and deter-
mines the key-points in 2D at the first two stages and calculates 3D reconstruction at
the third.

The first stage is the YOLOv2 neural network (‘you only look once’), which iden-
tifies the position of the hands. YOLOv2 is a CNN which used for localization and
classification of multiple objects at once.

The localized hands are passed to the OpenPose detector.
These two neural networks localize 21 2D key-points on the video frames, which

are then used as a target in the inverse kinematic optimization problem. A distinct
drawback of this method is the limitation caused by the error of the OpenPose de-
tector. This error causes the algorithm to optimize 3D locations using the wrong
2D key-points. Nevertheless, the addition of a hand position from a different view
makes it possible to improve the optimization problem, and hence the accuracy. The
runtime of the method on Nvidia GTX 1070 GPU is close to 53 ms.

The work [15] describes one of the few methods which fully reconstructs the
3D shape of the hand. It introduces a graph convolutional neural network (CNN)
for generating 3D mesh. The work uses centered images of hands as input, thus
hand detection was not necessary. Therefore, the first part of the approach is 2D
key-point detection, which is based on Stacked Hourglass Networks. The second is
the encoding of 2D features, and the third is 3D reconstruction with a graph CNN
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FIGURE 2.7: Scheme of the method described in paper 3D Hand
Shape and Pose Estimation from a Single RGB Image. [15]

network. The network outperforms state-of-the-art methods on RHD [16] and STB
[17] datasets. The runtime of the method on Nvidia GTX 1080 GPU is, on average,
19.9ms. The pretrained model is available, but the training dataset is not.

2.2.3 MANO model

MANO is a differentiable parametric model of the hand, which can be integrated
into computational pipelines. MANO learned from around 1000 3D scans of hands
in various poses. The model takes as input parameters of pose and shape, which
then mapped to the cloud of points, which represent the hand surface [18].
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Chapter 3

3D hand pose reconstruction

3.1 Overview of proposed methods

The work is aimed at solving three tasks: studying the influence of preliminary
frames on the reconstruction of video sequences; investigating the process of re-
sults refinement; image reconstruction of hands displaying the letters of American
Sign Language. We are solving all by the introduced 3-stage computational pipeline,
where every stage is a neural network designed to solve a small task.

The proposed method can be described by the schema of 3D hand pose estima-
tion close to specified in Fig 2.4. Except it does not have the first stage of the hand
localization stage and work directly with centered hands. In that way, the intro-
duced method can be generalized to the sequence of architectures A, B, and C. We
sequentially compute locations of 2D key-points by network A, depth for each key
point by B, and after that, calculate the vector of MANO parameters from key points
by C.

In total, 13 ANN architectures were tested for tasks A, B, and C combined. Six
designs were studied as candidates for network A, five - for B, and two for C. The
networks A and B can be considered as one architecture for 3D key-point detection.
For A and B, we were focused on the influence of two factors on the training pro-
cess. Those factors are additional frames at input and refinement of predictions. To
investigate the difference in the training trends was developed a system for parallel
training and evaluation of multiple networks. Network C stands alone from net-
works A and B because it doesn’t process images. Its task is to estimate the vector of
MANO hand surface generation parameters from a set of 3D points. This stage fin-
ishes the computational pipeline, which allows us to annotate a subset of American
Sign Language.

3.2 Neural networks for 2D key point detection

Network A takes as an input RGB information and outputs 22 heatmaps of size
224x224, {H1, H2,..., H22}, where each heatmap Hk from indicates the probability
of observing the kth keypoint and for k=22 probability of no key points. A similar
approach has proven to work efficiently in [14].

Two Stacked Hourglass Like and one U-Net architecture are candidates for main
network at stage A for 2D key-point detection. Each candidate has a variation for
video and image processing. In total, there are 6 architectures for 2D key point local-
izations with the following id’s: UNET_VID, STH_2_VID, STH_3_VID, UNET_PIC,
STH_2_PIC, STH_3_PIC. Where ‘STH_’ stands for Stacked Hourglass like architec-
ture; _VID means that input contains concatenated RGB frames and 2D points of the
previous frame; _PIC means that input contains a single RGB image.
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FIGURE 3.1: Building blocks and assembled networks for 2D key
point detection: a)U-Net architecture; b)Hourglass Like Module

c)Architecture of STH_2; d)Architecture of STH_3.
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Let kc denote the convolutional layer with k filters and stride 1, kd - the convolu-
tional layer with k filters and stride 2, ku - the transposed convolutional layer with
k filters and stride 2, kfc - fully connected layer with k neurons, mp - max pooling
with 2x2 filter, up2 is x2 upsampling by interpolation, kr - residual block from Fig
2.2 with k filters. All convolutional layers except for the last one are followed by
batch normalization and ReLU activation.

Implementation of U-Net is: 64c, 64c, mp, 128c, 128c, mp, 256c, 256c, mp, 512c,
512c, mp, 512c, 512c, up2, 256c, 256c, up2, 128c, 128c , up2, 128c, 128c, up2, 64c, 64c,
up2, 64c, 64c, 22c. Outputs of layers are concatenated in order shown in Fig. 3.1 a).

The architecture of proposed HGM is: 22d, 22c, 22c, 32d, 32c, 32c, 64d, 64c, 64c,
128d, 128c, 128c, 196d, 196c, 196c, 196r, 128u, 128c, 128c, 96u, 96c, 96c, 64u, 64c, 64c,
32u, 32c, 32c, 22u, 22c, 22c, 22u, 22c, 22c, 22c. Outputs of layers summed in order
shown in Fig. 3.1 b).

The architecture of STH_2 consist of two hourglass like modules where the sec-
ond module takes as input image concatenated with the initial prediction from the
first module, as illustrated in Fig 3.1 c). The architecture of STH_3 set in the same
way as STH_2, except there is one additional module for refinement, as shown in
Fig 3.1 d).

It is important to accentuate that architectures drastically differ in size.

net_id num_of_parameters num_of_refinements skip-connection type
STH_2_PIC 6106056 2 addition
STH_2_VID 6115956 2 addition
STH_3_PIC 9161262 3 addition
STH_3_VID 9176112 3 addition
UNET_PIC 13396694 1 concatenation
UNET_VID 13411094 1 concatenation

TABLE 3.1: Differences between nets A

3.3 ANN for depth estimation (Network B)

Network B is used for the estimation of 21 depth values for each key point. We
propose 5 architectures for depth estimation marked as B_PIC, B_VID, B_R_PIC,
B_R_VID, AB_PIC. Where B_R means that output is calculated multiple times (re-
fined), AB stand for additional usage of features from network A, _VID means that
input contains concatenated RGB frames and 2D points from current and previous
frame, as well as depth from the previous frame; _PIC means that input contains
concatenated RGB data with 2D key points from a single image.

All networks have two parts. The first part is Feature Extractor (FE), and the sec-
ond is a set of fully connected blocks (FC). The set of convolutional layers followed
by dense layers is an effective solution for the image to vector problems [19]. Archi-
tecture of FE is same for B_PIC, B_VID, B_R_PIC, B_R_VID: 16d, 16c, 16c, 32d, 32c,
32c, 64d, 64c, 64c, 128d, 128c, 128c. Feature Extractor of network with id AB_PIC
has following architecture: 128d, 128c, 128c, 256d, 256c, 256c, 512d, 512c, 512c, 512d,
512c, 512c, 512d, 512c, 512c, 512d, 512c, 512c. Outputs of Feature Extractor layers for
network AB_PIC concatenated with outputs of UNET layers in a way shown at Fig.
3.2

Sets of fully connected blocks are different for all networks. Networks B_PIC,
B_VID, B_R_PIC, B_R_VID ends with 7 dense layers. Networks that work with
video sequences have additional inputs at first three blocks, as shown at Fig 3.2 b).
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FIGURE 3.2: Studied building blocks and networks for depth estima-
tion: a)Feature Extractor; b)Dense layers with additional depth in-

puts; c)Dense layers with additional depth outputs.
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Id’s of networks with refinement of results marked with _R and optimized so that
each of 4 ending layers has 22 neurons responsible for depth info. Network AB_PIC
has 4 fully connected layers with no additional info or refinement, and the output of
the last layer only is depth.

3.4 Network for estimation of shape parameters

The 3D shape of a hand is represented as a mesh with 778 vertices. Those vertices
are encoded in 51 parameters and decoded by the MANO model. We convert 21 3D
key-points into MANO parameters by network C.

FIGURE 3.3: Studied architectures for shape parameterization. a)
Shema of MANO input-output mapping; b)Architecture of C_RNN

network; c)Architecture of C_MLP network.

We considered two architectures as candidates for network C. The first model has
id ’C_RNN’ and consists of 4 LSTM layers and fully connected output. The second
model with id ’C_MLP’ is a set of fully connected layers. Illustrated in Fig. 3.3.
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Chapter 4

Experiments and results

4.1 Datasets

Several datasets were examined, and the most suitable was selected for our task.
Large portion of datasets for 3D reconstruction contain depth maps, key points,
but not RGB image: NYU, ICVL, MSRA15, BigHand2.2M, SynHand5M, FHAD,
MSRC(FingerPaint), HandNet, Hands in Action, MSRA14 [5]–[7], [20]–[26]. For
the problem of reconstruction from a single image, most appropriate datasets are
those that feature both RGB records and key points: FreiHAND, GANerated Hands,
EgoDexter, SynthHands, STB, Dexter+Object, UCI-EGO, MHP [17], [20], [27]–[30].
The possible complication of combining different datasets is that the number of key
points, record types, and camera parameters may not match. We left only datasets
with a central position of a hand and 21 labeled key points.

FreiHAND Dataset is a hand pose dataset for hand pose estimation from a single
image. The dataset contains shots with 4 different data augmentations annotated
with 21 key points for 2D and 3D spaces. The total amount of training samples is
130240 for single view training. So 32560 poses for training [20].

GANerated Hands Dataset contains 330,000 examples annotated with 21 key
points for 2D and 3D spaces. The downside of this dataset is that images are syn-
thetically generated and have distorted edges of hands. All of them are recorded
from one viewpoint [27].

SynthHands is a synthetic dataset, which provides information about 63,530 frames
recorded from 5 views. Learning examples contain both RGB and depth records and
represent records with and without object interaction. Data annotated for 21 points
in 3D space. Hands were generated using Unity3D engine but animated using data
captured from real motion [28].

We chose FreiHAND Dataset and SynthHands dataset for training and evalua-
tion, respectively. Also, we used Home Object Dataset for background augmentation
of SynthHands dataset. Home Object Dataset [31] contains 450 photos of random
objects. Augmented SynthHand dataset denoted in work as ’SynthHands_A’.

Dataset name Number of
images

Synthetic / Real Number of
camera views

FreiHAND 32,560 Real 1
GANerated
Hands

330,000 Synthetic 1

SynthHands 63,530 Synthetic 5

TABLE 4.1: Datasets info
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Besides annotated datasets for training and testing, we used the ASL dataset for
reconstructions. Kaggle ASL dataset [32] contains 87000 of hand poses. Images were
labeled for the task of sign language recognition. There are 26 classes for letters and
three classes with images for SPACE, DELETE, and NOTHING.

4.2 Data preprocessing algorithms

As there were no 3D annotated video dictionaries of sign language available at the
time of the study, an artificial sequencing procedure was proposed. It is proposed
to sort images of hands with annotations to mimic real-world transition of hands
from frame to frame. For each record in a dataset, we search one with the closest 3D
position and use both in the training process. Because frame n and n-1 have close
3D positions in the real world, such sorting allows us to use a non-video dataset for
usage in tasks of video processing. Usage of fake video sequences different from
real-world applications in two ways. First - the transition between hands not as
smooth as in the real world. Second - in our study, we used ground truth annotation
for the previous frame at the input for the network. Because the previous frame is
more random than in real videos - ground truth data in a way mimic noisy prediction
for the previous frame. But, of course, training on annotated synthetic video does
not suffer from an accumulation of noise as much as if for each next frame, we would
use the previous prediction of the network.

To solve the task of shape reconstruction, we are adding additional data prepro-
cessing. First, we are masking density estimation of MANO annotations to sample
more data. We are creating a new dataset by sampling vectors from distribution,
passing it to a MANO model, and obtain corresponding 3D shape and key-points.
The new dataset allows us to train network C on a large number of sampled vectors.

4.3 Training 3D shape estimation stages

For training and testing was used Frei Hand Dataset split for test and train subsets in
ratio 1:4. As an additional dataset for evaluation, we used SynthHand dataset with
and without the addition of background.

It is needed to account for different scales of key point spaces. Datasets or hand
models encode certain magnitude of hand, so simultaneous work with different co-
ordinates requires unification. In our case MANO model, Synth Hand Dataset and
Frei Hand Dataset are all in different scales. Frei Hand Dataset hands are 990 times
smaller than MANO reconstructions. In contrast, Synth Hand Dataset is 0.94 times
smaller than MANO hands. It does not influence training for 2D key-points because
data projected to the image plane and unified in that way. For depth, it is more im-
portant to have annotation in one scale. Networks for depth estimation learn both
ratios between fingers depth as well as absolute depth. We have transformed the
absolute depth of SynthHand Dataset annotations to match the average depth of
FreiHand Dataset. For calculation of 3D error, we transformed all coordinates to
MANO model space. It is the shortest way to achieve unification given that vector
of MANO parameters is part of our pipeline, and that scale is used for training.

4.3.1 Training and testing of networks for 2D key-point detection

We trained and tested 6 architectures in parallel. Adam optimizer was used with
learning rate 0.0001 and trained on mini-batches of size 4 from FreiHand dataset for
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40820 steps. We tested Mean Squared Error of predicted probabilities of location
for each key point as well as absolute distance between the predicted location of
key point and ground truth in 2D. For each network, we tested performance on 300
random images from 4 datasets. Results of testing on the train and test subsets of
FreiHand Dataset are presented in tables 4.4 and 4.5, respectively. Metrics measured
on Synth Hand Dataset presented in Table 4.6 for data without background, and
table 4.7 tests on images with augmented backgrounds.

Results in tables 4.2-4.5 show that providing additional video frames decreases
mean errors in most cases by 5-30%. And additional refinement improves results
only after a certain number of iteration. The proposed variation of Stack Hourglass
Model has better results than larger UNET architecture on train subset as well on
Synth Hand data-set with and without background. But since it has a larger error
on test subset on real data, we assume that UNET generalizes better.

STH_2_PIC STH_2_VID STH_3_PIC STH_3_VID UNET_PIC UNET_VID
mse

(points) 2.64E+02 1.63E+02 1.92E+02 1.67E+02 2.15E+02 1.16E+02
l1

(points) 10.097 7.198 7.861 7.545 7.192 6.259
mse

(heatmaps) 8.11E-04 7.68E-04 7.89E-04 7.82E-04 7.60E-04 7.62E-04

TABLE 4.2: Mean errors on train dataset for networks A

STH_2_PIC STH_2_VID STH_3_PIC STH_3_VID UNET_PIC UNET_VID
mse

(points) 2.86E+02 2.01E+02 2.17E+02 1.89E+02 1.92E+02 1.67E+02
l1

(points) 10.582 8.448 8.507 8.59 6.906 7.757
mse

(heatmaps) 8.26E-04 8.11E-04 8.09E-04 8.24E-04 7.77E-04 7.99E-04

TABLE 4.3: Mean errors on test dataset for networks A

STH_2_PIC STH_2_VID STH_3_PIC STH_3_VID UNET_PIC UNET_VID
mse

(points) 8.66E+02 6.62E+02 7.47E+02 3.66E+02 8.91E+02 4.02E+02
l1

(points) 20.327 15.222 18.373 11.857 21.03 12.5
mse

(heatmaps) 8.87E-04 8.47E-04 8.86E-04 8.33E-04 9.15E-04 8.42E-04

TABLE 4.4: Mean errors on SynthHand dataset for networks A

STH_2_PIC STH_2_VID STH_3_PIC STH_3_VID UNET_PIC UNET_VID
mse

(points) 8.61E+02 5.34E+02 8.33E+02 5.41E+02 1.15E+03 4.24E+02
l1

(points) 21.201 14.359 20.305 14.486 24.221 13.042
mse

(heatmaps) 9.04E-04 8.69E-04 9.12E-04 8.76E-04 9.13E-04 8.68E-04

TABLE 4.5: Mean errors on SynthHand_A dataset for networks A
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4.3.2 Training and testing of networks for Depth detection

We trained and tested in parallel 4 architectures, their id’s start with B. We have used
Adam optimizer with learning rate 0.01 and trained on mini-batches of size 64 from
FreiHand dataset for 5719 steps. We trained networks to predicted relative distances
between fingers as well as the tilt of the hand as the 22nd parameter. We measured
the absolute distance between predicted and ground-truth values of depth for each
key point. Also, we measured errors of predictions for relative positions of fingers
and hand tilt.

Network AB_PIC was trained for the labeling of sign language letters. We pre-
trained UNET architecture for 141800 steps with batch size 16 and used Adam op-
timizer with a learning rate 0.001. We have used U-Net as a basis on top of which
trained depth estimator for 44000 steps with batch size 8 and used Adam optimizer
with learning rate 0.001.

Measurement on splitted FreiHand dataset shown in table 4.6 for training data,
4.7 for test data. Tables 4.8 and 4.9 present values of metrics on Synth Hand Dataset
for default and augmented data, respectively.

From tables we can see that the usage of additional frames improves the qual-
ity of depth estimation. Additional refinement improves quality for all cases except
synthetic data without data augmentation. AB_PIC has the best results among ar-
chitectures for single image analysis.

B_VID B_PIC B_R_VID B_R_PIC AB_PIC
mse

(network
output) 1.13E-02 1.83E-02 1.69E-02 1.91E-02 1.07E-02

l_1
(network
output) 7.29E-02 9.57E-02 9.22E-02 9.97E-02 7.70E-02

l_1
(depth) 1.21E-02 1.40E-02 1.45E-02 1.54E-02 1.04E-02

TABLE 4.6: Mean errors for networks B on train dataset

B_VID B_PIC B_R_VID B_R_PIC AB_PIC
mse

(network
output) 1.75E-02 2.19E-02 2.76E-02 2.08E-02 1.49E-02

l_1
(network
output) 9.12E-02 1.01E-01 1.15E-01 1.06E-01 8.92E-02

l_1
(depth) 1.33E-02 1.55E-02 1.69E-02 1.52E-02 1.15E-02

TABLE 4.7: Mean errors for networks B on test dataset
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B_VID B_PIC B_R_VID B_R_PIC AB_PIC
mse

(network
output) 2.92E-02 1.90E-01 1.87E-02 1.81E-01 8.63E-02

l_1
(network
output) 1.31E-01 3.51E-01 1.01E-01 3.54E-01 2.47E-01

l_1
(depth) 2.05E-02 7.14E-02 1.61E-02 4.10E-02 2.79E-02

TABLE 4.8: Mean errors for networks B on SynthHand dataset

B_VID B_PIC B_R_VID B_R_PIC AB_PIC
mse

(network
output) 2.45E-02 2.01E-01 2.54E-02 1.63E-01 8.10E-02

l_1
(network
output) 1.18E-01 3.65E-01 1.17E-01 3.25E-01 2.24E-01

l_1
(depth) 1.79E-02 4.32E-02 2.07E-02 3.83E-02 2.79E-02

TABLE 4.9: Mean errors for networks B on SynthHand_A dataset

4.3.3 Training and testing of networks for shape parameterisation

At first we tested multilayer perceptrons with various architectures and various
losses, but results always were unsatisfying and could be generalized to two scenar-
ios. The first one is the total inability of the network to learn hand 3D parametriza-
tion, and second is remembering of average hand. We tested dropout and normal-
ization layers, loss of parameters only, loss of both parameters, and hand shape re-
construction. In the end, we have selected the best performing of our perceptrons
and compared its performance with the LSTM network.

’C_MLP’ was trained for 1183 steps. Training setting: Adam optimizer, learning
rate = 0.01, batch size = 16384. LSTM was trained for 2400 steps with the same
learning rate, but batch size 2048.

Results of how well networks preserve the position of 3D key-points after decod-
ing of estimated parameters are shown in Table 4.10. ’C_RNN’ network turned out
to be more precise in performed tests.

RNN MLP
mse 145.25008 286.72867
l_1 5.887265 9.51802

TABLE 4.10: Mean errors for C networks

4.4 Annotation system analysis

We have combined AB_PIC network with proposed RNN for shape parameteri-
zation and tested how the addition of shape influences predicted positions of key
points. The results of the experiments are shown in Table 4.11.
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TRAIN TEST SynthHands SynthHands_A
MSE AB_PIC 267.01346 329.91776 2865.1726 3540.065

l1 AB_PIC 11.493821 12.303339 39.867397 44.1231

MSE MANO 322.8869 360.14267 3814.0867 4494.155

l1 MANO 12.073699 12.662715 46.253853 50.823338
Deviation 4.8% 2.9% 13.8% 13.2%

TABLE 4.11: Intermediate and final 3D key point errors

First two rows inform how far predicted points deviate from the ground truth.
We see the same pattern of descending accuracy for unseen data as in tables from
4.2 to 4.9. Rows 3,4 show the accuracy of key-points extracted from the MANO 3D
model (Fig 3.3 a)). The final row reflects the impact of adding hand surface on key
points position.

From tables from 4.2 to 4.11 we see that error on SynthHands Dataset always
significantly larger. Fig 4.1 to 4.3 show images presented in 3 datasets. On top,
we see detected 2D key points and at the bottom predicted 3D shapes. 3D shapes
displayed reflected and rotated due to the camera position of rendering software.
Predicted shape and points are actually not rotated that way and transformed only
by scaling and translation.

FIGURE 4.1: Examples of FreiHand 3D reconstructions

On Fig 4.1 we see accurate detection of key-point on Frei Hand Dataset. Even
occluded points predicted on 2D and 3D. For instance, 3rd image from the left at Fig
4.1 show the accurate prediction of occluded little finger, which is seen at reflected
reconstruction at the bottom.
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FIGURE 4.2: Examples of SynthHands_A 3D reconstruction

In Fig 4.2 we see images from Synth Hand Dataset with an augmented back-
ground. The errors obtained on the SynthHands_A dataset was the largest among
all tests. Top images show a misdetection of 2D points. Now we can better un-
derstand a larger deviation of 3D model from 3D key-points detected by network
AB_PIC. Network C_RNN estimates MANO parameters that encode some anatomy
by design. The final shape it creates is more realistic than detected 3D points by
AB_PIC.

FIGURE 4.3: Examples of ASL 3D reconstruction

On Fig 4.3 we see predicted hand shapes for ASL. Most shapes mismatch orig-
inals. Even though in some cases, as for letter ’A’ we see that the system can ac-
curately reconstruct sign language pose. It is also a good example of how the final
shape can fix misdetected points. 2D Key Points and depth were undetected on an
index finger, but the final shape filled them to match the anatomy of the hand.
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Chapter 5

Conclusion

Several architectures of neural networks were studied for the purpose of 3D hand
shape reconstruction from video. It was shown that the addition of approximated
hand positions at network input improves the quality of the final results. Also, it
was observed that additional refinement of results is less efficient than the usage of
extra annotated frames for both 2D key-point detection and depth estimation on all
used datasets.

Also, a modular method for 3D shape estimation was introduced [33]. The
method differs from the nearest known analog by RNN, which maps detected key-
points to space of shape parameters. Method can be iteratively improved by making
changes to certain parts and be adapted for 3D reconstruction from both photo and
video sign language dictionaries. Implementation can be changed by the integration
of architecture for a particular stage.

The selection of architecture for each stage heavily influences the quality of the
reconstructed 3D hand shape. Although modular methods suffer from error accu-
mulation, integration of networks that refine output from previous layers can help
to overcome such performance degradation.

Achievements

• Thesis introduces a method for hand shape parametrization.

• Complete 3D hand shape reconstruction method from video sequences was
developed, and its performance was studied with different ANN architectures
based on UNET, STH, and introduced RNN.

5.1 Future work

The next logical step would be to retrain the system on multiple datasets with data
augmentation. After that, it needs to be compared with state of the art methods.
Also, currently, the model does not distinguish between left and right hands and
can not perform simultaneous detection of left and right hand. The integration of
Part Affinity Fields can solve the limitation of single-hand detection [14].
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