
UKRAINIAN CATHOLIC UNIVERSITY

MASTER THESIS

Aspects of software naturalness through
the generation of identifier names

Author:
Oleksandr ZAITSEV

Supervisors:
Stéphane DUCASSE
Alexandre BERGEL

A thesis submitted in fulfillment of the requirements
for the degree of Master of Science

in the

Department of Computer Sciences
Faculty of Applied Sciences

Lviv 2019

http://www.ucu.edu.ua
http://www.johnsmith.com
http://www.jamessmith.com
http://www.jamessmith.com
http://researchgroup.university.com
http://department.university.com

i

Declaration of Authorship
I, Oleksandr ZAITSEV, declare that this thesis titled, “Aspects of software naturalness
through the generation of identifier names” and the work presented in it are my
own. I confirm that:

• This work was done wholly or mainly while in candidature for a research de-
gree at this University.

• Where any part of this thesis has previously been submitted for a degree or
any other qualification at this University or any other institution, this has been
clearly stated.

• Where I have consulted the published work of others, this is always clearly
attributed.

• Where I have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have
made clear exactly what was done by others and what I have contributed my-
self.

Signed:

Date:

ii

UKRAINIAN CATHOLIC UNIVERSITY

Abstract
Faculty of Applied Sciences

Master of Science

Aspects of software naturalness through the generation of identifier names

by Oleksandr ZAITSEV

Modern-day programming can be viewed as a form of communication between the
person who is writing code and the one reading it. Nevertheless, very often de-
velopers neglect readability of software, and even well-written code becomes less
comprehensive through the course of software evolution. In this work, we study
how naturalness of source code written in Pharo allows us to train machine learning
models that extract semantic information from method’s body and map it to a short
descriptive name. We collect a dataset of methods from 10 biggest projects written
in Pharo and build an attention-based sequence to sequence network that generates
method names by translating source code into a couple of English words. We eval-
uate our model on an independent test set and report the precision of over 50%. To
our knowledge, this is the first application of machine learning and natural language
processing to the source code of Pharo.

HTTP://WWW.UCU.EDU.UA
http://department.university.com

iii

Acknowledgements
I want to thank Dr. Stéphane Ducasse from RMoD team at Inria Lille and Prof.
Alexandre Bergel from the University of Chile for supervising my work and invit-
ing me to do internships at those institutions. I am also grateful to ObjectProfile,
Inria Lille, and Pharo Association for funding those internships, and separately to
the European Smalltalk User Group (ESUG) Board for providing me with financial
support for the participation in the 26th ESUG conference in Cagliari where I was
able to present my work at its early stage and receive valuable feedback. I am very
grateful to Alejandro Infante and Prof. Jorge Pérez from the University of Chile for
providing me with their helpful advice, as well as to Dr. Nicolas Anquetil, Cyril
Ferlicot-Delbecque, and Julien Delplanque from Inria Lille for sharing their ideas
and assisting me at various stages of my project. Finally, I want to thank Ukrainian
Catholic University and the Faculty of Applied Sciences for organizing a fantastic
Master’s Program in Data Science and covering the significant portion of my tuition
fee.

iv

Contents

Declaration of Authorship i

Abstract ii

Acknowledgements iii

1 Introduction 1
1.1 Context . 1
1.2 Problem . 1
1.3 Our approach in a nutshell . 3
1.4 Contributions . 3
1.5 Structure of the thesis . 3

2 Related work 5
2.1 Next token in a sequence . 5
2.2 Variable names . 6
2.3 Class and method names . 6
2.4 Comments and documentation . 7

3 Naturalness of Pharo 8
3.1 Software naturalness . 8
3.2 Collecting and filtering methods . 9

3.2.1 Dataset of Pharo methods . 9
3.2.2 Dataset of Java methods . 10
3.2.3 English corpora . 11

3.3 Limited vocabulary . 11
3.4 Specialized vocabulary . 12
3.5 Repetitive code . 13

4 Translating source code 14
4.1 Reasoning behind translating code . 14
4.2 Formal problem statement . 15
4.3 Data preparation . 15

Duplicated methods . 15
Non-informative methods . 16
Overriden methods . 16

4.3.1 Tokenizing source code . 16
Removing comments and literals 17

4.3.2 Tokenizing identifier names . 17
4.3.3 Encoding tokens with numbers 18
4.3.4 Splitting dataset into training, validation, and test subsets . . . 18

4.4 Training the model . 19
4.5 First look at the results . 20

v

5 Evaluation 21
5.1 Why is it hard to evaluate names? . 21

5.1.1 Human evaluation . 21
5.1.2 Automatic evaluation . 21

5.2 Automatic evaluation . 22
5.2.1 Hypothesis for automatic evaluation 22
5.2.2 Selecting metrics . 22
5.2.3 Baseline models for comparison 24

Random model . 24
TF-IDF model . 25

5.2.4 Results of automatic evaluation 26

6 Conclusion 28
6.1 What we discovered . 28
6.2 Directions of future work . 29

6.2.1 Additional features . 29
6.2.2 Grouping packages by conceptual similarity 29

A Theoretical background 31
A.1 Language models . 31
A.2 Entropy and cross-entropy . 31

A.2.1 Entropy . 32
A.2.2 Kullback-Leibler divergence . 32
A.2.3 Cross-entropy . 32
A.2.4 Why do we minimize the cross-entropy? 32

A.3 Recurrent neural networks . 34
A.3.1 Sequence to sequence networks 35
A.3.2 LSTM and GRU cells . 36

Bibliography 37

vi

List of Abbreviations

AST Abstract Syntax Tree
FN False Negative
FP False Positive
GRU Gated Recurrent Unit
IDF Inverse Document Frequency
KL Kullback-Leibler (divergence)
LSTM Long Short-Term Memory
NLP Natural Language Processing
NLTK Natural Language ToolKit
NMT Neural Machine Translation
RNN Recurrent Neural Network
RQ Research Question
TF Term Frequency
TN True Negative
TP True Positive

1

Chapter 1

Introduction

1.1 Context . 1
1.2 Problem . 1
1.3 Our approach in a nutshell . 3
1.4 Contributions . 3
1.5 Structure of the thesis . 3

1.1 Context

The approach to programming has significantly changed in the past few decades.
These days, when we write code, not only do we instruct computers what to do, we
also explain other human beings who read our code what we want computers to do.
Knuth, 1984 calls this approach literate programming and goes as far as suggesting
that we should consider programs to be works of literature and regard people who
write them as essayists.

When writing code we care about its correctness and executability, as well as its
ability to solve the given problem and do it efficiently. However, we also need source
code to be readable and comprehensible by programmers that will be maintaining
and updating the given software system in the future. Indeed, developers spend
most of their time reading the source code. According to Martin, 2009, the ratio of
time spent reading versus writing is well over 10 to 1. Making source code easier to
read decreases the cost of software development and maintenance.

Deissenboeck and Pizka, 2006 show that around 72% of source code written in
Java consists of identifiers. In some languages, such as Pharo, there are no built-
in elements of the syntax and user-defined names exist in the same scope as any
other name in the system and can be renamed by a programmer. Which means that
every token in such language, except for comments, string and number literals, is an
identifier. Therefore, the quality of identifier names is the most influential factor for
the readability of source code.

1.2 Problem

In practice, readability of source code is often overlooked. Despite understanding
the importance of having proper names, developers often choose them poorly. They
are pressed by deadlines and care more about writing code that solves the given
problem than making it understandable by the next developer who will be reading
this code and trying to understand or modify it.

Chapter 1. Introduction 2

But maintaining good development ethics and writing readable code is not enough
to ensure that the system remains clean and comprehensive over time. Software
evolves, code gets refactored and modified, which often changes the purpose vari-
able names, functions, and classes. This means that identifier names, especially class
and method names, tend to degrade over the course of software evolution. They
need to be constantly maintained and updated.

This is hard because the reasoning that we use when creating names or com-
ments goes way beyond the local context. Which means that changes in one part
of the system often make names and comments of many other parts obsolete. For
example, a class with a method named withIndexDo: may become inconsistent
with other classes if their methods get renamed to doWithIndex:. Argument name
aNumberOrArray will be misleading if someone renames class Array to Vector. And
class FastTable implies the existence of a slow table and may need renaming once
the performance of that other table is improved. Keeping all names of a large and
evolving software system concise, consistent, and up to date requires a profound
understanding of the whole system at all times. In practice, this is nearly impossi-
ble, which is why we need automated tools to assist developers both in naming
new entities and refactoring the existing ones, tools that would allow us to test the
readability of source code in the same way as we test its executability.

In this work, we concentrate on conciseness of method names and study how
semantic information needed to give an informative name to a method can be ex-
tracted from method’s source code. Generating method names based on their bod-
ies is, in fact, counter-intuitive because good names must be functionally descriptive
(Allamanis et al., 2015) meaning that the good name of a method describes how and
for what it should be used or what action does it model in a class hierarchy, not how
it is implemented. Nevertheless, as we show in the following chapters, the source
code of most methods contains a lot of semantic information closely related to the
concepts modelled by the class or package to which this package belongs. We argue
that probabilistic models can retrieve this semantic information and can be used to
generate descriptive method names.

Most work in this area has been based on Java. But just as natural language pro-
cessing of structurally and morphologically different languages such as English and
Chinese requires different approaches, NLP solutions applied to source code cannot
be completely language invariant. In our study, we take a look at the source code
of Pharo1 - a pure object-oriented programming language and a dialect of Smalltalk.
Pharo is not a C-family programming language which means that its syntax is very
different from languages like Java, C, or JavaScript which are studied in all related
work.

In this work, we exploit the naturalness of Pharo programming language to build
a deep learning model that suggest better names for existing methods. Here are the
two most important questions that we try to answer in our work:

RQ1: Is source code of Pharo natural enough to allow us to use its regularities in
machine learning models?

RQ2: Does source code of a method contain enough semantic information to gener-
ate a name that would express the purpose of that method?

1https://pharo.org/

https://pharo.org/

Chapter 1. Introduction 3

1.3 Our approach in a nutshell

We argue that the naturalness of source code written in Pharo can be exploited to
the extent when after careful preprocessing we make no difference between source
code and text written in natural language. We build an attention-based sequence to
sequence model and train it to translate source code of Pharo into English in the same
way as it would be done with French or Chinese. By taking a sequence of source
tokens as input and producing a short sequence of English words the model learns
to summarize this code in few words which can be concatenated into a descriptive
method name.

1.4 Contributions

• We explore statistical properties of source code written in Pharo and compare
it to natural English texts and the code of Java.

• We collect a dataset of Pharo methods and names grouped into packages and
propose a novel approach to tokenization of source code.

• We build an attention-based sequence to sequence model for neural machine
translation of source code into English and use it to generate method names in
a cross-project setting.

• To our knowledge, this is the first study of software naturalness outside the
C-family of programming languages and the first successful application of ma-
chine learning and natural language processing to Smalltalk code.

1.5 Structure of the thesis

Chapter 2. Related work
This chapter contains a detailed overview of the research around software nat-
uralness and applications of NLP to the source code, tracing the roots of these
ideas in building statistical language models and showing how they led to the
use of deep learning models for generating method names and source code
documentation.

Chapter 3. Naturalness of Pharo
In this chapter, we analyse statistical properties of Pharo programming lan-
guage and compare its source code to natural language corpora. We introduce
the datasets that we have collected and try to understand how we should filter
and preprocess source code before learning.

Chapter 4. Translating source code
Here we describe our solution that exploits the naturalness of Pharo to gener-
ate method names by translating source code into English. We explain how we
collected the dataset and emphasize the process of data preparation which we
find to be most important for the performance of a model. We then define the
architecture of our model and show some examples of method names that it
generated.

Chapter 5. Evaluation
In this chapter, we do a careful evaluation of generated names using different

Chapter 1. Introduction 4

numeric metrics for automatic evaluation. We report those results and com-
pare them to the selected baselines.

Chapter 6. Conclusion
We conclude this work by summarizing our discoveries, discussing their im-
portance and talking about the potential directions of future work.

Appendix A. Theoretical background
Here we provide a brief introduction to the most important concepts of ma-
chine learning and natural language processing required for understanding
this thesis. If you are relatively new to those fields, take a look at this appendix
before reading the following chapters.

5

Chapter 2

Related work

2.1 Next token in a sequence . 5
2.2 Variable names . 6
2.3 Class and method names . 6
2.4 Comments and documentation . 7

In this chapter, we provide an overview of research in the field of software nat-
uralness and the application of NLP to the source code. We show how ideas that
emerged from the studies of statistical properties of source code were first used
for building language models for code completion and inspired later applications
for improving the readability of source code. We explain how high demand for re-
versing the minification of JavaScript motivated research of predicting local variable
names and how success in this area was adopted for a more complex problem of
generating method and class names. Finally, we show how similar solutions can be
made for a more challenging problem of automatically generating code documenta-
tion.

2.1 Next token in a sequence

Inspired by a paper of Gabel and Su, 2010 who performed the first study of the
uniqueness of code and found that very few fragments of code in this very large cor-
pus were actually unique (not repeated), Hindle et al., 2012 studied the predictability
of such repetitions (Devanbu, 2015). By measuring cross-entropy of code in several
large Java and C projects and comparing it to the cross-entropy of English measured
on Brown and Gutenberg corpora, they found that source code is even more repeti-
tive and predictable than natural languages. They claimed that this predictability al-
lows us to model code with statistical language models and supported this claim by
building an Eclipse plug-in that uses n-gram language model to predict next token
in a sequence. In this paper, they introduced the software naturalness hypothesis
that became the foundation for all later applications of NLP to the source code.

Following this work White et al., 2015 emphasized the usefulness of applying
NLP techniques to software corpora and motivated deep learning for software lan-
guage modelling. Using deep recurrent neural networks (RNN) they built their own
code suggestion engine that recommends the next token given the context. Their
model significantly outperformed n-gram models of Hindle et al., 2012 on a corpus
of Java projects.

Raychev, Vechev, and Yahav, 2014 solved a slightly different problem. Given
a program with holes, they synthesized completions for holes with the most likely
sequences of method calls. They compared RNN, 3-gram model, and the combined

Chapter 2. Related work 6

model built by averaging the results of the other two models which allowed them to
generate sequences of calls across multiple objects together with their arguments.

2.2 Variable names

Most of the deployed JavaScript code gets minified by removing all unnecessary
characters and replacing identifier names with short arbitrary meaningless names.
This significantly reduces the size of the source code and therefore the amount of
data that needs to be transferred on the Internet. It also makes the code extremely
difficult to manually inspect and understand. There is a high demand for reversing
the effect of minification which involves the task of generating meaningful identifier
names. The most successful tools for deminifying JavaScript apply natural language
processing to predict names for local variables based on code context.

Raychev, Vechev, and Krause, 2015 applied probabilistic graph-based models
such as conditional random fields to build a prediction engine called JSNice1 for
predicting both identifier names and type annotations of variables in JavaScript.

Bavishi, Pradel, and Sen, 2018 proposed to reverse the minification of JavaScript
with a deep learning-based technique. They used an auto-encoder neural network to
summarize usage contexts and a recurrent neural network to predict natural names
for a given usage context. Their model had similar performance to JSNice but was
an improvement in terms of efficiency.

2.3 Class and method names

Successful applications of NLP for automatically suggesting names for local vari-
ables inspired Allamanis et al., 2015 to replicate those results with method and class
names. Authors emphasized that unlike variable names, good method and class
names need to be functionally descriptive, and therefore suggesting such names re-
quires that the model goes beyond local context. They introduced the first neural
probabilistic language model for source code which learned from a large set of hard-
coded features, such as features from the containing class and the method signature.
To our knowledge, this was the first probabilistic model designed for the method
naming problem.

In their work Allamanis, Peng, and Sutton, 2016 considered a more general prob-
lem: given an arbitrary snippet of code — without any hard-coded features — pro-
vide a short, descriptive summary, in the form of a method name. This problem is
described as extreme summarization of source code. Authors reported very good
results using the convolutional neural network with attention in a simplified setting
of predicting names within the scope of a single project. Alon et al., 2018 repro-
duced this experiment but reported much lower results because they did not make
the restrictive assumption of having a per-project model and trained convolutional
attentional model to generate names for a method from any possible project.

Alon et al., 2018 learned distributed representations of source code by represent-
ing code as a collection of paths in its abstract syntax tree (AST) and aggregating
these paths into a single fixed-length code vector. They used these vector represen-
tations of source code to predict a method’s name from its body. They report it as
the first model to successfully predict method names based on a large, cross-project,
corpus.

1http://jsnice.org/

http://jsnice.org/

Chapter 2. Related work 7

2.4 Comments and documentation

Iyer et al., 2016 used LSTM networks with attention to producing sentences that
describe C# code snippets and SQL queries. They trained their model to translate
between the titles of questions posted on StackOverflow and code snippets from
answers that were marked as accepted.

8

Chapter 3

Naturalness of Pharo

3.1 Software naturalness . 8
3.2 Collecting and filtering methods . 9

3.2.1 Dataset of Pharo methods . 9
3.2.2 Dataset of Java methods . 10
3.2.3 English corpora . 11

3.3 Limited vocabulary . 11
3.4 Specialized vocabulary . 12
3.5 Repetitive code . 13

In this chapter, we briefly discuss the idea of software naturalness and try to un-
derstand how similar is source code written in Pharo both to the natural English
texts and to the programming languages that were studied in other literature. We
describe how we collected the dataset of Pharo methods which we will use in Chap-
ter 4 to train a neural machine translation model. For the comparison, we have also
collected similar dataset of Java methods and used two public corpora of English
texts. We use those datasets to explore differences between Pharo, Java, and English,
emphasizing the vocabulary that is used in those languages, size of basic units such
as sentences in English and methods in the source code, and repetitiveness of those
units.

3.1 Software naturalness

The concept of software naturalness was first introduced by Hindle et al., 2012. It
states that

Programming languages, in theory, are complex, flexible, and power-
ful, but "natural" programs, the ones that real people actually write, are
mostly simple and rather repetitive; thus they have usefully predictable
statistical properties that can be captured in statistical language models
and leveraged for software engineering tasks.

Hindle et al., 2012 demonstrate the repetitiveness of software by training the n-
gram model to predict the next token in a sequence and comparing cross-entropy of
this model over several Java and C++ projects as well as the two English corpora.
Authors claim that source code is more regular and repetitive than natural English
and those properties of code can be exploited by probabilistic models to assist tradi-
tional software analysis tools. As we have seen in Chapter 2, there have been many
successful applications of those ideas, most recent of which (Allamanis, Peng, and

Chapter 3. Naturalness of Pharo 9

Sutton, 2016, Iyer et al., 2016) use end-to-end deep learning approaches to describe
source code with natural text in the same way as we summarize news articles or
translate books.

The naturalness of software means that source code is predictable to the extent
to which human beings who write it are predictable. From a certain point of view,
programming languages are not so different from other languages that we use to
communicate our ideas. Following this assumption, we can take the same models
that have proved to be successful in modelling natural languages and apply them to
the source code.

Nevertheless, it is also essential to understand how different is source code from
natural languages and also, how different is the source code of Pharo from that of
Java, which was studied in most related work. Understanding these differences is
important to accurately collect and prepare the dataset that can be used for training
the model. As we show in chapter 4 after careful preprocessing of source code, in
some problem settings, we can treat it as another natural language and apply to it the
same models that are used for translating English to French or Spanish to German.

3.2 Collecting and filtering methods

In this section, we describe two datasets of source code that we have collected for
Pharo and Java programming languages, as well as the public corpora of English
texts that we use in our comparative analysis.

3.2.1 Dataset of Pharo methods

We have collected a dataset of 132, 046 methods from 10 biggest Smalltalk projects.
In Table 3.1 you can find the list of those projects together with commit SHA from
which each project was loaded and the counts of packages, classes, and methods
in each project. Methods of different classes often have the same names, but we
counted unique methods and not method names.

Project Commit Packages Classes Methods

Moose 57cb811 224 4,199 59,784
GToolkit b465367 110 961 15,072
Roassal2 dfcf44d 35 922 12,320
Bloc bff10d5 37 990 11,790
Seaside 0724b99 55 855 11,184
Iceberg b05fb25 28 524 6,459
Spec 64829bb 28 400 5,992
PolyMath 52662a7 56 294 4,078
Voyage ef3e6aa 19 95 2,867
Telescope 09033b3 11 143 2,500

Total: — 510 8,318 132,046

TABLE 3.1: Pharo projects collected into our dataset. Only non-empty
methods, packages, and classes are included

Pharo does not have namespaces, so all classes exist in a global context and must
have unique names. Every method and every class in Pharo (including classes like
Object, Class, Smalltalk, Integer and methods such as new, superclass, assert:

Chapter 3. Naturalness of Pharo 10

that would be considered "built-in" in other languages). Many packages add their
own methods to classes such as String or Integer. When certain package X is
adding methods to external classes, this is called "extending the class", added meth-
ods are stored inside package X and loaded together with it. This means that meth-
ods of certain classes are distributed among different packages. For example, ev-
ery project in our dataset extends classes of package Kernel with its own methods.
We count them in the following way: each row of Table 3.1 contains the number
of unique methods defined by the corresponding project, as well as the number of
unique packages and classes to which methods of this project belong. And the bot-
tom row contains the unique number of packages, classes, and methods in the whole
dataset. This explains why total counts of packages and classes in the bottom row
are lower than the sum of numbers in the corresponding columns.

We have also excluded all methods that do not have the source code. There
are many methods in class hierarchies that override superclass methods with an
empty body and a comment such as "Do nothing". This is a study of source code in
which we do not take features like class hierarchy into account. Therefore, we have
removed all empty methods from the dataset.

All source code was tokenized first into tokens: identifier names, literals, paren-
theses etc., and then into subtokens: individual identifier names were split into
words based on camel case notation, such that OrderedCollection becomes two
words (subtokens) ordered and collection. Method names were also tokenized on
a subtoken level because, as you will see in the following chapter, we will be learn-
ing to generate names word by word. Class and package names were not tokenized
and left as-is just for grouping method name-body pairs into categories and being
able to find each method in Pharo image. Tokenization of source code and method
names will be discussed in more details in Chapter 4 as it is closely related to the
presented approach to generating names.

3.2.2 Dataset of Java methods

Additionally, we have collected 136, 811 methods from 9 Java repositories. The se-
lection of Java projects was based on the work of Hindle et al., 2012 who selected 10
Java projects for the study of software naturalness. We have collected source code
from 9 of those 10 projects but loaded them from the most recent commits.

Project Commit Classes Methods

lucene-solr 4d23ca2 6,891 60,229
cassandra 3dcde08 2,258 25,340
ant 25de4f2 1,137 13,051
batik 289f228 1,332 12,374
xerces2-j fa002ac 608 8,410
xalan-j cba6d7f 764 8,235
maven-3 3339789 539 4,499
log4j 7be00ee 274 2,403
maven-2 1243643 267 2,270

Total: — 14,070 136,811

TABLE 3.2: Java projects collected into our dataset. Only non-empty
methods and classes were included. We removed constructors be-

cause they have the same name as class

Chapter 3. Naturalness of Pharo 11

In Table 3.2 you can see the list of those projects together with commit SHA from
which they were loaded and numbers of unique classes and methods in each project.
Unlike Pharo, Java allows methods overloading - having more than one method with
the same hame if their argument list is different. For that reason, numbers presented
in the table are not just counts of unique method names, but of unique class - method
- implementation (source code) combinations. Java does not allow extending classes
from external packages, so the total counts of methods and classes in our dataset,
presented in the bottom row of the table, are equal to the sum of those counts in
individual packages.

Constructors in Java classes have the same names as those classes. Since we
are interested primarily in the mapping of source code to a method name, we have
removed constructors from Java dataset to make sure that the problem of generating
method names is not mixed with the problem of generating class names which is
similar but requires different approaches.

Similarly to what we did with the dataset of Pharo methods discussed in Section
3.2.2, source code and names of Java methods were tokenized on a subtoken level,
and class names were preserved in their original state1.

3.2.3 English corpora

To compare source code to natural English, we used two of the most widely used
oper corpora of English texts. Both corpora were loaded from NLTK (Natural Lan-
guage Toolkit) Platform (Bird, Klein, and Loper, 2009):

The Brown Corpus (The Standard Corpus of Present-Day Edited American English)
- the first computer-readable general corpus of texts prepared for linguistic re-
search on modern English. It contains 500 samples of English texts printed in
the United States during the year 1961 (Kucera and Francis, 1979) The version
provided by NLTK includes all 500 texts.

Gutenberg Dataset - a collection of 3,036 English books written by 142 authors.
Those books were manually cleaned to remove metadata, license informa-
tion, and transcribers’ notes (Lahiri, 2014). We use the subset of the Gutenberg
Dataset provided by NLTK, which contains 18 books from 12 different authors.

3.3 Limited vocabulary

Unlike natural languages which have the predefined set of words, programming
languages allow us to use any sequence of alphanumeric characters (usually with
a condition that the first character must not be a number) as identifier names. And
since on a character level more than 72% of the source code consists of identifiers
(Deissenboeck and Pizka, 2006), there is a large degree of freedom, and we have
strong reason to believe that the vocabulary of tokens will be very large.

In practice, however, programmers follow the convention of using names that are
the concatenation of several English words such as OrderedCollection or asInteger.
This makes names descriptive and introduces semantics into the source code, mak-
ing it more similar to natural languages.

1Tokenization of source code written in Pharo was done by writing a visitor for the abstract syntax
tree (AST) of each method. Using JavaParser provided by Moose, we acquired AST for every method
in Java as well and wrote a similar visitor for those trees. The code of both visitors we used for code
tokenization can be found in this repository: https://github.com/olekscode/CodeTokenizer/

https://github.com/olekscode/CodeTokenizer/

Chapter 3. Naturalness of Pharo 12

As it was mentioned in Section 3.1 and will be explained in more details in Sec-
tion 4.3, we have split tokens such as ifFalse: into lowercase subtokens if, false,
and :. This allows us to study the vocabulary of actual English words that are used
in source code. In Table 3.3 we compare the vocabularies of English words used
in Pharo, Java, Gutenberg, and Brown corpora. Word is defined as a sequence of
alphabetic characters (a-z or A-Z), meaning that special symbols like {, [, : were ex-
cluded from the study, so from the list of tokens if, false, :, only if and false were
counted. We have put this restriction because we are only interested in subtokens
that have semantic meaning and do not want our numbers to be skewed by punctu-
ation. The first row shows the total number of words in each dataset. In second row
you can see the number of unique words, and in the third row - the proportion of
unique words to the total number of words.

Gutenberg Brown Pharo Java

Total words 2,135,400 981,716 2,605,330 6,223,002
Unique words 50,286 46,185 6,415 13,516
% of unique words 2.35 4.70 0.25 0.22

TABLE 3.3: Comparison of the vocabulary sizes used in programming
languages and English corpora

Considering the freedom programmers have when choosing identifier names, it
is surprising how little words they actually use. One might argue that many tokens
in source code are non-alphabetic characters such as brackets and braces. But keep
in mind that we are counting only the unique occurrences of each word. The total
count of unique non-alphabetic subtokens in all methods from our dataset is only
62 for Pharo and 48 for Java. This can be explained by the striving of developers
to choose names that are consistent with existing names in the system. Using a
wide variety of synonyms for referring to similar concepts or using words that have
many different meanings makes natural language rich and resourceful, but it is not
considered a good practice in programming.

3.4 Specialized vocabulary

Another thing that distinguishes language used in source code from regular English
is the high frequency of neologisms. Programmers often use words specific to the
domain of their project. In Table 3.4 we show the number of unique words in Pharo
and Java distributed among projects and what percent of those unique words are
novelties - words that only appear in this project and never in other ones. We can
draw two conclusions from those numbers. First of all, it is amazing how much
domain-specific language is used in some projects. It can be an interesting direction
for future work to study the nature and semantic similarity of those novel words.
Another interesting observation is that numbers of unique words in source code
corpora are not size-invariant. In second and third rows of Table 3.3 we saw that
the number of unique words in natural English corpora is close to 50,000 both in
a larger and smaller corpus. For Pharo and Java, it is different: larger corpus has
more unique words. This could be explained by the higher semantical richness of
Java, but now we can see from Table 3.4 that every project introduces many novel
words. We assume that the size of unique words used in source code corpora will
grow linearly together with the number of projects.

Chapter 3. Naturalness of Pharo 13

Project Unique
words

% of novel
words

Moose 4,632 19.65
PolyMath 1,656 19.08
Seaside 2,590 9.50
Bloc 2,456 9.41
GToolkit 3,144 9.26
Iceberg 1,686 6.70
Spec 1,847 5.58
Telescope 1,224 3.59
Voyage 1,544 2.53
Roassal2 2,790 0.04

Project Unique
words

% of novel
words

lucene-solr 8,023 47.91%
batik 3,640 31.73%
cassandra 4,548 28.03%
xalan-j 2,632 27.47%
ant 3,468 26.70%
xerces2-j 2,322 21.83%
log4j 1,273 10.45%
maven-3 1,481 6.14%
maven-2 1,222 2.62%

TABLE 3.4: Novel words used in the source code of different software
project of Pharo (left table) and Java (right table). The second column
shows the number of unique words in each project, and the third col-

umn - the percentage of those that never appear in other projects

People who come up with method names use specialized technical vocabulary,
often even domain-specific vocabulary related to the project they are working on.
Words like node, tree, leaf, root that are very common in computer science usu-
ally mean something different in texts written in plain English. Words that are usu-
ally used as verbs in a past tense, for example updated, sorted, translated almost
always have adjective meaning in source code. This problem makes it ineffective
to use many corpus-based NLP tools that were trained on natural texts, including
word embeddings and tools for PoS tagging, relationship extraction, or word sense
disambiguation. To perform well on a specialized vocabulary of source code, those
tools must be redesigned and trained on large code corpora.

3.5 Repetitive code

The source code is much more repetitive than natural language. While writers in
English try to use their own unique style and copying the work of others is criti-
cized as plagiarism, developers are encouraged to reuse certain patterns and follow
the same conventions that are adopted by most people in the specific community.
Conventions that are considered to be good practices and help us better understand
the code written by others. On a high level this repetitiveness can be observed as
the number of methods that have exactly the same name and implementation in dif-
ferent classes. In Section 4.3 we explain why we remove duplicate method name –
source code pairs from our dataset. Because many classes have the same methods
with the same implementation (such as method name implemented as ↑ name) we
have removed a large portion of methods from Pharo dataset as duplicates.

On the lower level, developers try to follow certain conventions in how they
choose identifier names (for example, test methods start with the word test and
prefix is identifies that the variable or method is boolean), how they implement
their algorithms (for example, Pharo programmers try to avoid if statements and use
double dispatch instead). Repetitive behaviour of many programmers expressed in
those small details creates patterns in the source code that deep learning models can
recognize and use as features for themselves.

14

Chapter 4

Translating source code

4.1 Reasoning behind translating code 14
4.2 Formal problem statement . 15
4.3 Data preparation . 15

4.3.1 Tokenizing source code . 16
4.3.2 Tokenizing identifier names 17
4.3.3 Encoding tokens with numbers 18
4.3.4 Splitting dataset into training, validation, and test subsets . 18

4.4 Training the model . 19
4.5 First look at the results . 20

In this chapter, we describe our solution which is based on generating and eval-
uating method names by translating the source code of a method into English. We
first explain why it makes sense to think of our problem in terms of machine transla-
tion, then we describe our solution in detail, including how we prepared the dataset
for training, what model we used and how we tuned its parameters.

4.1 Reasoning behind translating code

As we have seen in Chapter 3, the source code has statistical properties similar to
natural languages that allow us to build predictive models on source code similarly
to how we do it in natural language processing.

Translating source code from one programming language into another is not a
trivial task and it can not be done with end-to-end deep learning approaches, as we
do it with natural languages. This is explained by the differences between code and
natural text. Code is formal and executable. Changing order of words in a sentence,
or incorrectly translating one word can reduce the quality of the translation, but we
will still be able to understand the overall meaning of a sentence. This is differ-
ent in source code - consider swapping two arguments of a function, or choosing a
wrong token - such code will most likely be non-executable or produce wrong re-
sults. Therefore, when translating code between programming languages, we must
combine our probabilistic language models with complex heuristics that will pre-
serve the executability of results.

In our work, however, we consider a different problem. We translate source code
of Smalltalk into very short English sentences, a couple of words that describe what
a given piece of code is doing and can be concatenated into a method name. Even
though Smalltalk, the source language of our translation, is formal and executable,
English, the target language, is natural. This means that the noisy results produced
by our model will be just as useful as the result of English-French translation.

Chapter 4. Translating source code 15

4.2 Formal problem statement

We are given a set of methods represented by pairs

P = {(x(i), y(i))|i = 1, . . . N}

where

x(i) = x(i)1 , x(i)2 , . . . , x(i)ni , x(i)k ∈ Vx

is a method body tokenized into a sequence of source tokens and

y(i) = y(i)1 , y(i)2 , . . . , y(i)mi , y(i)k ∈ Vy

is a sequence of English words that can be concatenated with camel-case into a
method name. For example,

x(i) = "self", "assert", ":", "<num>", "+", "<num>", "equals", ":", "<num>", "."

y(i) = "test", "add"

|x(i)| = ni is the length of the input sequence, number of tokens in the source
code of a method, and |y(i)| = mi is the length of the output sequence, number of
words in the method name. Both sequences can have various length, it is possible
that for i 6= j, ni 6= nj, mi 6= mj, or ni 6= mi.

We need to find a function f which maps x to y by assigning a sequence h(i) =
h(i)1 , h(i)2 , . . . , h(i)pi , h(i)k ∈ Vy for every input sequence x(i) in such way that it minimizes
the negative log-likelihood1 (cross-entropy) between y(i) and h(i).

4.3 Data preparation

In this section, we discuss in details how we filtered and preprocessed the dataset
of Pharo methods to prepare it for our model (we have explained how this data was
collected in Section 3.1). This is a very important part of our solution because we
have noticed that the selection of good training examples and their correct repre-
sentation has a more significant impact on the performance than the good choice of
model and values of hyperparameters.

Duplicated methods

Some methods are highly repetitive across different classes, which means that some
source-name pairs will be better represented in the dataset, which makes it harder
to interpret how the model is learning (did it learn to map semantics of source code
to method names, or does it simply memorize highly repetitive patterns?). It is also
crucial that the replicas of the same method do not appear in both training and test
sets (discussed in more details in Section 4.3.4). For that reason, we have removed
all duplicates from our dataset.

1In Section A.2.4 of the Appendix we explain why cross-entropy is called negative log-likelihood
and why we train machine learning models by minimizing it.

Chapter 4. Translating source code 16

Non-informative methods

We have removed all abstract methods since their bodies consist of a single line
self subclassResponsibility which does not provide enough information to sug-
gest a name. We also removed instance side methods that return the receiver ↑ self
because the name suggestions for these methods can only be based on class names,
not the source code. We didn’t remove methods that return constant values such as
numbers, string literals, and points 400@500 because the model can learn to assign
them with names such as defaultSize, title, extent etc.

Overriden methods

Allamanis, Peng, and Sutton, 2016 also remove the overridden methods based on
the claim that they are highly repetitive and easy to predict. However, we keep
these methods because their implementations are different and it is not trivial for
a machine learning model to notice the similarity between two implementations of
the same method and label them with the same name. And in the end, that is exacly
what we want our model to learn.

Dictionary >> collect: aBlock
| newCollection |
newCollection := self species new.
self associationsDo:[:each |

newCollection at: each key put: (aBlock value: each value).
].
↑newCollection

LinkedList >> collect: aBlock
| aLink newCollection |
newCollection := self class new.
aLink := firstLink.
[aLink == nil] whileFalse:

[newCollection add: (aBlock value: aLink value).
aLink := aLink nextLink].

↑ newCollection

4.3.1 Tokenizing source code

Unlike natural languages, executable source code can always be non-ambiguously
divided into tokens. However, the process of tokenizing source code is much harder
than that on English. Even though English may have ambiguous compound words
(ice box = ice-box = icebox), in general we can separate words by spaces and punctua-
tion: "Mrs. Smith is sleeping"→ "mrs", "smith", "is", "sleeping". This can not be easily
done with most programming languages because

1. In many languages (Java, C) spaces are optional and in languages like Pharo,
where spaces separate receivers and messages, they are still optional about
operators +, -, *, /, =, > etc. and brackets (), [], {}.

2. In programming languages, both string literals and comments are treated as a
single token; however, they can have multiple spaces inside.

Chapter 4. Translating source code 17

Therefore, tokenization of source code such as the line in the following example
can not be done by simply splitting the code by space. It requires a complex parser
which has the full knowledge of a syntax of the given language.

student.name=form.getValue("First name");

Pharo is almost entirely written in itself which allows us to tokenize the source
code of each method using its abstract syntax tree (AST) - the same one that is used
by the environment to parse and execute that code. We have created a simple visitor
that goes through the nodes of an AST of a given method and collects the values
from its leaves. This way, for example, we can tokenize the following code into a list
of tokens using a native language engine of Pharo.

(aNumber > 0)
isTrue:[↑self]
ifFalse:[self error:’error message ’].

Tokens: "(", "aNumber", ">", "0", ")", "isTrue:", "[", "↑", "self", "]", "ifFalse:", "[",
"self", "error:", "error message", "]", "."

Removing comments and literals

We removed all comments from the bodies of methods. In many cases, comments
and documentation strings contain much more semantic information about the pur-
pose and implementation of a method than its source code. But the goal of this
research is to show that source code itself contains enough information for naming
a method.

Approximately 50% of source tokens were string and number literals. Non-
informative string literals like ’ab528ddbee4c39cf2e4c2111184d21fbf217bc82’ and
numbers, contain no semantic information from which we can learn (32 + 5 has the
same semantic information as 0.5 + 199) and can be considered noise in our dataset
that greatly increases the dimensionality of input and therefore the complexity of
the problem.

Other string literals such as ’Invalid window size’ are too informative and
should be removed for the same reason we removed comments. But instead of
removing these literals entirely, we replaced them with special tokens <num> and
<str>. We still benefit from knowing that there are strings and numbers at certain
positions in source code, even though we do not need to know their actual values.
For example, <num> + <num> can be labeled as add and <str> + <str> can be called
concatenate.

4.3.2 Tokenizing identifier names

Except for the binary messages, all variables, methods, and classes in Pharo have al-
phanumeric camel case names. They consist of several words linked together with-
out spaces with each word (except for the first one in local variable and method
names) starting with a capital letter (Black et al., 2009): basicNew, aNumber, example1,
OrderedCollection, asLinkedList, GTExample. We split them into tokens using a
simple regular expression:

’[A-Z][A-Z]+|[0-9]+|[A-Z][a-z]+|[a-z]+|[A-Z]+\>’

Chapter 4. Translating source code 18

Tokens: basic new, a number, example 1, ordered collection, as linked list.

We replaced number literals with <num> in the same way as we did it when to-
kenizing source code. This way the name example1 was tokenized as example,
<num>.

Unlike many other languages in which arguments are passed to a function in
parentheses text.copy(1, 5), arguments in Smalltalk are preceded by colon char-
acter text copyFrom: 1 to: 5. This strongly affects the logic we use when coming
up with method names and makes the semantics of Smalltalk code very different
from other languages. We decided to separate the colon as a separate token. This
significantly decreased the size of the vocabulary because, instead of distinguishing
"to" and "to:", "new" and "new:", we only stored tokens "to" and "new", as well as the
separate token ":".

We used tokenization of identifier names described above both on method names
in our dataset and the tokens of method bodies some of which are identifier names.
This way messages like ifFalse: become three tokens: "if", "false", and ":". And the
example method from Section 4.3.1 gets tokenized as:

(a number > <num>) is true : [↑ self] if false : [self
error : <str>] .

4.3.3 Encoding tokens with numbers

To pass the tokens of source code as input to a neural network we encoded them
with numeric vectors using one-hot encoding. We started by building a vocabulary
of size N containing all unique source tokens present in our training set. We assigned
numbers to each token in the vocabulary by simply enumerating them.

a → 1, abbrev → 2, . . . , zoomable → N

Then we encoded each number k with a one-hot vector of size N where k-th
element is 1 and all other elements are 0.

OH(a) =



1
0
0
...
0
0


N×1

OH(abbrev) =



0
1
0
...
0
0


N×1

. . . OH(zoomable) =



0
0
0
...
0
1


N×1

We created a separate vocabulary for M unique name tokens in our training set
and encoded each name with one-hot vectors of size M. The trained model will
produce a sequence of vectors of size M - probability distributions across the whole
vocabulary. This means that the trained model can only generate names from the
name tokens that appeared in the training set.

4.3.4 Splitting dataset into training, validation, and test subsets

It is a common practice in machine learning to split the available dataset into three
non-intersecting subsets.

Chapter 4. Translating source code 19

Training set is used to fit the model. Everything that a model learns it will take from
this subset of data, so it must be big enough and representative of the general
population.

Validation set is used to estimate prediction error for model selection and parame-
ter tuning.

Test set is used for assessment of the generalization error of the final chosen model.
This subset contains examples that model has never seen during training. We
evaluate our model on the test set and report these results (see Chapter 5) be-
cause if the trained model performs well on the test set, it means that it is able
to generalize and can be expected to perform just as well on new real-world
data.

In other words, we use the training set to train the model, test set for final evalu-
ation, and validation set to evaluate the model while we can still change it. Having a
separate validation set allows us to hide test set both from the model during training
and the person conducting the experiment who is affecting the model with his or her
decisions.

There is no single rule on what should be the proportion of this split. According
to Friedman, Hastie, and Tibshirani, 2001, the typical split might be 50% for training,
and 25% for validation and testing. Due to the specificity of our domain, we have
decided to keep 70% of data for training, 10% for validation, and 20% for the test set.

As it was discussed in Section 4.3, we have removed duplicated methods from
the dataset to make sure that all methods in the test set are new to the model.

4.4 Training the model

We used a sequence to sequence recurrent neural network with attention-based de-
coder - the same kind of neural network that is commonly trained to translate human
languages. As it was explained in Chapter A, sequence to sequence networks allow
us to have variable-size input and output, which means that we can feed a sequence
of tokens into this network of any size N and receive a sequence of name tokens of
size M, where M is controlled by the network itself and on average N > M.

Attention mechanism ensures that extent to which a certain token of the input
sequence xk affects the output does not depend on its position k. This was especially
important in our case. On average English, sentences have around 20 words. But the
average number of source tokens in methods from our dataset exceeds 130. By using
attention we can be sure that by the time the information from first tokens reaches
the decoder, it will not be saturated. Regardless of its position in the input sequence,
every token has the same chance to affect the decision and the only decoder decides
to which tokens it wants to pay more attention.

Chapter 4. Translating source code 20

We used GRU cells to avoid exploding and vanishing gradient and chose them
over LSTM because they have fewer parameters to train and allow us to learn faster.
Because of the big length of input sequences that we feed to our network we chose
the hidden vector of size 256, which is larger than what is typically used for machine
translation with the sequence to sequence networks.

4.5 First look at the results

In this section, we do a manual overview of the method names proposed by our
model. Different approaches to the numeric evaluation of these results are discussed
in Chapter 5. All methods presented in this section are taken from the test set. The
model has not seen any of them during training.

"Real name: test is comment
Generated name: test is comment"

self assert: self newNode isComment.

"Real name: color
Generated name: color"

r := aColor red.
g := aColor green.
b := aColor blue.
a := aColor alpha.

"Real name: accept with
Generated name: accept"

aVisitor
visitDraggableInteractreion: self
with: args.

"Real name: add package
Generated name: add package"

aPackage isPackage ifFalse: [↑self].
self

addElement: aPackage
in: self packages.

21

Chapter 5

Evaluation

5.1 Why is it hard to evaluate names? 21
5.1.1 Human evaluation . 21
5.1.2 Automatic evaluation . 21

5.2 Automatic evaluation . 22
5.2.1 Hypothesis for automatic evaluation 22
5.2.2 Selecting metrics . 22
5.2.3 Baseline models for comparison 24
5.2.4 Results of automatic evaluation 26

In this chapter, we evaluate the method names generated by our model. We
start by discussing the complexity of such an evaluation. Then we describe several
metrics that we have selected for automatic evaluation, apply them to the generated
names, and compare the scores of our model to several baseline models.

5.1 Why is it hard to evaluate names?

While consistency of naming can be evaluated using simple heuristics that measure
how much a given name fits into the family of existing names, there is no objective
way to tell how well a given name represents certain concepts, usage, or implemen-
tation details. Human languages are complex and not formal. There can be many
ways of describing the purpose of a method, class, or variable in 2-5 English words.
And there can be many opinions on how comprehensive and informative a certain
name is.

5.1.1 Human evaluation

Since our goal is to improve the readability of source code, the best way to evaluate
the conciseness of identifier names would be asking a group of developers to evalu-
ate them independently and then aggregating these results to produce a single score
that would be most representative of human comprehension. The main drawback
of human evaluation is its high cost in terms of human-hours and very low speed
of evaluation. This means that we can only evaluate a reasonably small subset of
methods using human experts and can only conduct this evaluation once or twice.

5.1.2 Automatic evaluation

Automatic metrics such as precision can be calculated quickly and do not require any
additional expenses or involvement of human experts. The disadvantage of those

Chapter 5. Evaluation 22

metrics is the fact that they are very simplified approximate measures of goodness
and informativeness of method names which nevertheless are very useful in prac-
tice.

Automatic metrics can only compare generated names to a set of reference names
provided by humans that are considered to be a golden standard. More specifically,
precision can measure the percentage of words in a generated method name that also
appear in the real name of that method. When averaged over a big dataset of meth-
ods, precision can be very useful for comparing two different models. However, it
can not be reliably used for evaluating a single name or interpreted as a standalone
measure of model’s performant because everything that is different from a reference
name will be given a score of 0. Automatic metrics are very simple measures that
cannot recognize synonyms or different grammatical forms of words.

For example, if the real method name is sumOfIntegers, a reasonably good name
such as addAllIntegerNumbers will be scored with 0 by all metrics discussed in the
following section, because none of the words in those names match exactly. How-
ever, as we have seen in section 3.3, vocabulary used by programmers is very lim-
ited. Synonyms and different word forms are rather rare in practice, which means
that in real-world scenarios automatic metrics can provide a pretty good approxi-
mation of the true model performance.

5.2 Automatic evaluation

As we said before, all metrics for automatic evaluation of method names are based
on comparing the generated name to one or more reference names that are given
by humans and considered the ground truth. Since all methods in our study were
collected from real projects, each of them has exactly one name associated with it
that was given by a programmer.

5.2.1 Hypothesis for automatic evaluation

As it was explained in Section 5.1, automatic metrics are very simplified and imper-
fect. However, we can use them to compare different models based on the hypothe-
sis that on average better model will generate more names similar to the real names
of the methods.

Given a set of method bodies and a set of real method names, on average
the names generated by a good model will be more similar to real names
than the names from a bad model.

It is important to keep this assumption in mind when looking at the results of
the automatic evaluation and remember that it only holds when averaging multiple
scores. On the level of individual observations, a method name with low precision
score can be more relevant and informative than the name with a higher score.

5.2.2 Selecting metrics

In this section, we define the metrics that we have used for the automatic evaluation
of method names generated by our model. We explain how each one of them works
and provide examples of method names together with scores assigned to them by
the metric in question. The method names in our examples were selected to demon-
strate differences between those metrics:

Chapter 5. Evaluation 23

testIsInteger
— exactly matches the reference name

isIntegerTest
— has all the same words as the reference name but in different order

testInteger
— has 2 out of 3 words of the reference name

testIntegerNumber
— has 2 out of 3 words of the reference name and one additional word

testIsIntegerNumber
— has all words of the reference name and one additional word

Exact match — percentage of generated method names that match reference names
exactly (including the order of words). This metric was inspired by Allamanis, Peng,
and Sutton, 2016.

Name Exact match score (%)

testIsInteger 100
isIntegerTest 0
testInteger 0
testIsNumber 0
testIsIntegerNumber 0

TABLE 5.1: Exact match scores of names generated for a method with
real name testIsInteger

Precision — percentage of words in the generated name that appear in a reference
name. It is calculated as a fraction of true positives (TP1) - number of words that
appear both in reference and the generated name, by the total number of words in a
generated name (TP + FP).

precision =
TP

TP + FP

Name Precision score (%)

testIsInteger 100
isIntegerTest 100
testInteger 100
testIsNumber 67
testIsIntegerNumber 75

TABLE 5.2: Precision scores of names generated for a method with
real name testIsInteger

1We use the following notation: TP - number of true positives, FP - number of false positives, TN -
number of true negatives, FN - number of false negatives

Chapter 5. Evaluation 24

Recall — percentage of words in the reference name that appear in a generated
name. It is calculated as a fraction of true positives (TP) - the number of words that
appear both in reference and the generated name, by the total number of words in a
reference name (TP + FN).

recall =
TP

TP + FN

Name Recall score (%)

testIsInteger 100
isIntegerTest 100
testInteger 67
testIsNumber 67
testIsIntegerNumber 100

TABLE 5.3: Recall scores of names generated for a method with real
name testIsInteger

F1 — harmonic mean2 of precision and recall (Sasaki, 2007).

F1 = 2 · precision · recall
precision + recall

Name F1 score (%)

testIsInteger 100
isIntegerTest 100
testInteger 80
testIsNumber 67
testIsIntegerNumber 86

TABLE 5.4: F1 scores of names generated for a method with real name
testIsInteger

5.2.3 Baseline models for comparison

To evaluate the performance of our model using automatic metrics described in Sec-
tion 5.2.2 we compare them to several simple baseline models applied to the same
dataset.

Random model

When evaluating machine learning models, it is always important to understand
what would the values of all selected metrics be if the model did not learn anything
but only made random choices. For example, in the problem of handwritten digit
recognition on a well-balanced dataset3 10% accuracy can be achieved by randomly
selecting one of the 10 digits. If the trained model has significantly more than 10%

2Harmonic mean is more intuitive than the arithmetic mean when computing a mean of ratios
3Take MNIST dataset for example: http://yann.lecun.com/exdb/mnist/

http://yann.lecun.com/exdb/mnist/

Chapter 5. Evaluation 25

accuracy, we can say that it has recognized some patterns in the data and learned to
use them.

Our random model makes assumption that all words in vocabulary are uni-
formly distributed (equally likely to appear at any position in a name of any method)
and generates names for test set methods by selecting K random words from the
training set vocabulary (vocabulary from which the words are selected is the output
vocabulary described in Section 4.3.3 that was constructed from method names in
the training set). In our case, K = 3 is the average number of tokens in the method
names from our dataset. We do not use the test set vocabulary because it can have
words that are not present in the training set. This simulates the real-world situation
as we can not know in advance the complete vocabulary that people will use for
naming new methods to which our model will be applied.

TF-IDF model

Term Frequency - Inverse Document Frequency (TF-IDF) is a measure of word impor-
tance. It works by determining the relative frequency of a word in a specific method
compared to the inverse proportion of that word over the entire corpus of source
code. Intuitively, this calculation determines how relevant a given word is in a par-
ticular method (Ramos, 2003). Words that are rare in the entire source code corpus
but appear a lot in the code of a particular method must be strongly related to the
concepts that describe the purpose of that method. Words that are common in all
methods such as self, if, true receive low TF-IDF scores and are not selected into
the method name.

Despite its simplicity and the fact that it generates method names using the
source code vocabulary, TF-IDF algorithm achieves surprisingly good results in terms
of automatic metrics described in Section 5.2.2. This is a simple and effective statis-
tical technique that can be used as a good baseline to compare our model to.

TF-IDF score of a word w in method m that is part of a source code corpus C is
computed as a product of its term frequency (TF) and inverse document frequency (IDF).

TF-IDF(w, m, C) = TF(w, m) · IDF(w, C)

Where term frequency is defined as fw,m - number of times word w appears in
the source code of method m.

TF(w, m) = fw,m

And inverse document frequency is the logarithm of |C| - total number of words
in source code corpus C divided by fw,C - the number of methods in C in which the
word w appears.

IDF(w, C) = log
|C|
fw,C

Multiplying term frequency of a word by its inverse document frequency we
penalize words that frequently occur in the language (see Section 3.4) and select
only those that are frequent in a given context4. The algorithm computes TF-IDF
scores for every token in the source code of a method and selects K = 3 words with
the highest score into the name.

4In Section 6.2.2 where we describe a potential direction of future work you can find an interesting
example of how TF-IDF can be used to group packages by their conceptual similarity.

Chapter 5. Evaluation 26

5.2.4 Results of automatic evaluation

In this section, we present the numeric results of the automatic evaluation and use it
to compare the performance of our model to the selected baseline models described
in Section 5.2.3.

In Section 4.3.4 we have talked about splitting our dataset into three subsets for
training, validation, and testing. The small size of the validation set and the fact that
automatic metrics described in Section 5.2.2 can be computed very quickly allowed
us to perform an evaluation of our model every 1000 iterations of its training. On
Figure 5.1 you can see how the performance of the model measured by different
metrics improves during training and how it surpasses the TF-IDF baseline applied
to the same methods from the validation subset. The random model baseline cannot
be seen on this graph because all its scores are very close to 0.

FIGURE 5.1: Evaluation of our model during training. Every 1000
iterations we applied the model to the validation set and measured
all scores. Every score is compared to the corresponding value of the

TF-IDF baseline (dashed lines)

Finally, we report the scores of our model together with baseline models mea-
sured on an independent test set which was never seen neither by model during
training nor by us during model selection.

Exact match (%) Precision (%) Recall (%) F1 (%)

Our model 13.82 51.09 38.92 42.47
TF-IDF 0.32 28.61 38.54 30.95
Random model 0 0.07 0.08 0.07

TABLE 5.5: Results of automatic evaluation of method names gener-
ated by the selected models for methods from the test set

In Table 5.5 you can see the numeric scores of our model compared to selected
baselines on the test set. First of all, notice that the random model has all scores
close to 0. Both our model and TF-IDF perform significantly better, which proves
that they indeed extract a lot of information from source code and successfully learn
to generate method names. Our attention-based sequence to sequence deep neural
network outperforms TF-IDF in terms of all metrics. By choosing parameters that

Chapter 5. Evaluation 27

maximize the likelihood of method names from our training set (see Section 4.2 and
A.2.4) our model guesses over 50% of tokens from the previously unseen test set
names.

Exact match is an interesting score because it demonstrates the ability of the
model to not only to select frequent and relevant words but also put them in the
correct order. Despite the fact that method name can be any combination of words
from the vocabulary, which gives us really big space of possible names (and explains
0% of exact match achieved by random model), our model guesses almost 14% of
names exactly. One can suspect that those are single word names. However, as you
can see in Table 5.6, most of the exactly matched names have more than one word
and some of them are novel names that have never appeared in the training set.

Words Unique names % of test set Appear in train set Novel names

1 249 6.63 245 4
2 351 5.80 301 50
3 108 1.09 75 33
4 16 0.19 11 5
5 10 0.09 10 0
6 1 0.01 1 0
8 1 0.01 1 0

TABLE 5.6: Distribution of names generated by our model that match
real method names exactly over the length of the name (number of
sub-token words). Columns of this table show the number of unique
names in each group, what percent of all names from training set are
in the group, how many of those names appeared in training set (but
were paired with different source code), and how many names were

never seen by the model before

It is worth noting that despite its simplicity, TF-IDF performs reasonably well.
Deep models are expensive both in terms of training and the complexity of deploy-
ment: big memory consumption by a trained model, high overhead when producing
a single result. So in those cases when deep learning may be inapplicable, a simpler
statistical model such as TF-IDF can be combined with other algorithms (for exam-
ple, n-gram model for ordering words or hand-written heuristics) to produce very
good results.

28

Chapter 6

Conclusion

6.1 What we discovered . 28
6.2 Directions of future work . 29

6.2.1 Additional features . 29
6.2.2 Grouping packages by conceptual similarity 29

We conclude this work by summarizing our discoveries, discussing their impor-
tance and talking about the potential directions of future work.

6.1 What we discovered

In this work we have answered the two most important questions that were stated
in Section 1.2:

RQ1: Is source code of Pharo natural enough to allow us to use its regularities in
machine learning models? By measuring statistical properties of our dataset
in Chapter 3 and comparing the source code of two programming languages,
Pharo and Java, and different corpora of English language we have shown
that programming languages have a much smaller vocabulary and introduce
more domain-specific words than English texts. The source code is also highly
repetitive. This suggests that applying predictive models to it can be even
more effective than to natural text, and after proper preprocessing of code such
applications on Pharo should not be less effective then successful experiments
that were reported on Java.

RQ2: Does source code of a method contain enough semantic information to gen-
erate a name that would express the purpose of that method? Although,
as we have mentioned in Section 1.2 programmers do not choose names for
methods base on their implementation details, our model was able to gener-
ate method names with precision over 50% when compared to real names and
14% of generated names matching true names exactly. We also report F1 score
of almost 32% using TF-IDF model which generates names by selecting im-
portant words from source code. The high performance of both models that
deduce method names exclusively from source code can be explained by high
repetitiveness of code, mentioned in section 3.5 and the semantic information
carried by identifier names (local variable names, method calls, class names).

Chapter 6. Conclusion 29

6.2 Directions of future work

6.2.1 Additional features

As we have mentioned in Section 1.2, good method names describe how they should
be used (for example, sorting algorithms may have different implementation, but
they are all used for sorting and called sort) and what actions they model (for ex-
ample, the same method which moves an object from point A to point B can be called
drive if the receiver is a Car or fly if its an Airplane). This suggests that in practi-
cal applications the information about class hierarchy of the receiver and the usage
context such as slices of code surrounding method calls can be used as additional
features for modelling method names.

6.2.2 Grouping packages by conceptual similarity

The effective application of TF-IDF to extracting keywords from source code demon-
strated in Chapter 5 suggests that this simple statistical technique can be used for
concept mining in software packages and classes. A list of N most relevant key-
words in the source code of a package will be semantically related to the concepts
modelled by that package.

Package Top 5 keywords

Roassal2 shape, view, color, es, elements
Athens-Text color, font, nn, current, fnt
Athens-Examples canvas, paint, path, @, draw
Athens-Morphic canvas, transform, zoom, rect, rectangle
Morphic-Core menu, morph, bounds, event, world
Morphic-Widgets-Basic style, color, state, button, morph
Morphic-Widgets-FastTable row, indexes, index, scroll, rows
Math-Matrix rows, n, matrix, row, matrices
Math-Core n, radix, product, precision, vector
Math-Polynomials coefficients, degree, n, remainder, quotient
Calypso-Browser browser, navigation, items, query, tool

TABLE 6.1: Keywords extracted from Pharo packages using TF-IDf
scores

Given that V is the vocabulary of tokens used in source code, for every package
TF-IDF will provide a numeric vector of relevance scores for every word in V. We
can assume that packages that model similar concepts will be assigned with similar
TF-IDF vectors. And by measuring the distance between those vectors (for example,
cosine similarity), we can cluster software packages into groups by their conceptual
similarity.

Chapter 6. Conclusion 30

Package Top 5 similar packages

Roassal2 Trachel, DataFrame-Tools, Roassal2GT, Geometry,
Morphic-Base

Geometry Graphics-Tests, SortFunctions-Tests, Balloon-Tests,
Roassal2, Trachel

DataFrame-Core DataFrame-Core-Tests, DataFrame-Tools-Tests, GT-
Spotter-EventRecorder, Tabular, Math-Tests-Matrix

TABLE 6.2: Keywords extracted from Pharo packages using TF-IDf
scores

This would allow us to build tools for improving the consistency and conciseness
of source code not on package level or entire corpus level, but on the level of groups
of conceptually similar packages.

31

Appendix A

Theoretical background

A.1 Language models . 31
A.2 Entropy and cross-entropy . 31

A.2.1 Entropy . 32
A.2.2 Kullback-Leibler divergence 32
A.2.3 Cross-entropy . 32
A.2.4 Why do we minimize the cross-entropy? 32

A.3 Recurrent neural networks . 34
A.3.1 Sequence to sequence networks 35
A.3.2 LSTM and GRU cells . 36

In this chapter, we provide a brief overview of the main concepts of natural lan-
guage processing required to understand the rest of this work.

A.1 Language models

Language models are probabilistic models that predict the next word in a sequence.
They also assign probabilities all possible sentences and sequences of words con-
structed from the words of a given language (Jurafsky and Martin, 2009).

We train language models on large corpora of text written in a given language.
For example, by counting occurrences and co-occurrences of words. A language
model trained on a big enough English corpora should assign a higher probability
to the first sentence and consider the second one very unlikely.

1. Today is a rainy day here in Paris.

2. Nice not such but inside in after.

Finding the probability distribution of words is an important part of many NLP
problems, such as spellchecking, error correction, or machine translation. As we
will see in Section A.3.1, state of the art recurrent neural network used for machine
translation are also very advanced language models.

A.2 Entropy and cross-entropy

The amount of information produced when one message is chosen from the set of
possible messages can be measured as

I(x) = −log2P(x)

Appendix A. Theoretical background 32

It was Shannon, 1948 who proposed to use the logarithm with base 2 and call the
units of information bits (or binary digits). We can also use natural logarithm but
then the units of measurement will be called nats.

A.2.1 Entropy

In information theory, a random variable is treated as a source of information. The
entropy of variable X is the expectation of the amount of information in the outcome
(MacKay and Mac Kay, 2003).

H(X) = E
[
I(x)

]
= −E

[
logP(x)

]
In the context of languages, we only consider discrete random variables over the

finite alphabet.

H(X) = −
N

∑
i=1

P(xi)logP(xi)

Entropy is considered the measure of uncertainty of variable X.

A.2.2 Kullback-Leibler divergence

The difference between two probability distributions is measured with a Kullback-
Leibler (KL) divergence:

DKL(P||Q) = E

[
log

P(xi)

Q(xi)

]
= E

[
log P(xi)− log Q(xi)

]
For the case of discrete variables

DKL(P||Q) =
N

∑
i=1

P(xi) log
P(xi)

Q(xi)

A.2.3 Cross-entropy

Cross-entropy is the average number of bits needed to encode data from the source
with distribution P when we use model Q to define our codebook (Murphy, 2013).

H(P, Q) = −
N

∑
i=1

P(xi)logQ(xi)

It can be expressed as a sum of entropy and KL divergence

H(P, Q) = H(P) + DKL(P||Q) (A.1)

The lower bound of cross-entropy means that even if we find the perfect model
which matches the true distribution of data, cross-entropy will not be lower than the
entropy of this dataset.

A.2.4 Why do we minimize the cross-entropy?

Many problems in machine learning can be viewed as function estimation: we are
trying to predict a variable y given an input vector x (Goodfellow, Bengio, and

Appendix A. Theoretical background 33

Courville, 2016). We assume that there is a true function f (x) that describes rela-
tionship between x and y. All other factors that influence y are considered to be
noise ε (in real world nothing is really influenced by a single factor; be it a coin toss
or a roll of dice, outcome of any process is affected by more factors than we could
possibly measure, however, the effect of most factors is so insignificant that they can
be ignored).

y = f (x) + ε

We want to find function f̂ (model, estimate) which is as close as possible to the
"true" function f . When we say that we are training a machine learning model, we
mean that we choose a model, which is a parametrised function f̂ (x; θ) and itera-
tively move it closer to the "true" function f by changing the parameter θ.

In probabilistic interpretation the process that we are trying to model, or function
f , is the "true" probability distribution Pdata(x, y) that generates a set of (x, y) points.
We observe this process by collecting the training data D = {(x(i), y(i))|i = 1, 2, . . . }
and try to model it with a parametric family of distribution Pmodel(x, y; θ) (function
f̂) by finding such parameter θ∗ which minimizes the difference between those two
distributions. As we mentioned in Section A.2.2, the difference between two distri-
butions is measured with a Kullback-Leibler divergence.

θ∗ = arg min
θ

DKL(Pdata||Pmodel)

And based on Equation A.1, this is the same as minimizing the difference be-
tween the cross-entropy of our model applied to the dataset H(Pdata, Pmodel) and the
entropy of this dataset H(Pdata)

θ∗ = arg min
θ

[
H(Pdata, Pmodel)− H(Pdata)

]
Since Pdata does not depend on θ and can not be controlled by us, this boils down

to minimizing the cross-entropy:

θ∗ = arg min
θ

H(Pdata, Pmodel)

Now we will show that this is the same as maximizing the likelihood of the
dataset D assigned to it by our model Pmodel . The likelihood is the measure of how
likely is our model to produce this dataset. We assume that by choosing the model
which has highest likelihood of generating dataset D we will get a model that be-
haves like the true process in other situations (this really depends on how represen-
tative is D of the entire distribution Pmodel and whether we are able to generalize and
not overfit - simply memorize - the training data D). The likelihood is expressed as
the probability that our model Pmodel assigns to the dataset D. So we want to find
parameter θ∗ which maximizes this probability:

θ∗ = arg max
θ

Pmodel(D; θ)

We make an assumption that all points in D are independent of each other, which
allows us to express the probability of generating dataset D into the product of prob-
abilities of generating each one of its points. If m = |D| is the size of our dataset,

Appendix A. Theoretical background 34

Pmodel(D; θ) =
m

∏
i=1

Pmodel(x(i), y(i); θ)

Which means that

θ∗ = arg max
θ

m

∏
i=1

Pmodel(x(i), y(i); θ)

To simplify this task, we can use the property of logarithms which turns product
into a sum, and maximize the logarithm of expression on the right. Indeed the same
parameter θ∗ which maximizes the logarithm of an expession, will also maximize
that expression. Therefore,

θ∗ = arg max
θ

log
m

∏
i=1

Pmodel(x(i), y(i); θ)

=
m

∑
i=1

log Pmodel(x(i), y(i); θ)

The logarithm of a likelihood (right-hand side expression) is called log-likelihood.
In the same way, we can multiply this expression by any constant without changing
the maximization parameter. Let’s normalize it over the size of our dataset

θ∗ = arg max
θ

1
m

m

∑
i=1

log Pmodel(x(i), y(i); θ)

This, in fact is the expectation of log-pobability of random point with respect to
the probability distribution Pdata:

θ∗ = arg max
θ

E(x,y)∼Pdata

[
log Pmodel(x, y; θ)

]
Which is the same as minimizing the negative expectation, or cross-entropy:

θ∗ = arg min
θ

−E(x,y)∼Pdata

[
log Pmodel(x, y; θ)

]
= arg min

θ

H(Pdata, Pmodel)

This explains why we train machine learning models by minimizing cross-entropy
and why it is the same as maximizing the likelihood. Every cost function is, in fact,
the cross-entropy of empirical distribution Pdata and some the distribution that we
choose for our model. For example, mean squared error (MSE) is cross-entropy of
Pdata and the normal distribution.

A.3 Recurrent neural networks

A big limitation of feedforward neural networks is the fact that they require a fixed-
size input and always produce a fixed-size output. For example, a network that has
2 neurons in the input layer and 1 neuron in the output layer can only accept vectors
of size 2 and return vectors of size 1.

Appendix A. Theoretical background 35

Some problems, however, require processing of sequential data. This includes
time series forecasting, music composition, and many tasks of natural language pro-
cessing, such as machine translation, text summarization, question answering, senti-
ment analysis, speech recognition, text-to-speech and speech-to-text translation etc.
The input of these problems is a sequence of variable length.

Recurrent neural networks (RNN) are a special kind of neural networks that
have cyclical connections. At every step, such networks receive a fixed-size input
(for example, one word) and the information from the previous step, transmitted
through the cyclical connection. This creates memory inside a network which allows
it to operate on sequences of input values.

A.3.1 Sequence to sequence networks

On each step, recurrent neural network receives an input value, produces the output
value, and passes its internal state onto the next step. From this follows:

1. Sequence of N inputs will produce a sequence of N outputs.

2. Every output yk is only affected by the current input xk and all the previous
inputs x1, . . . xk−1 but not the next inputs xk+1, . . . , xN

This is useful for problems like predicting next element in a sequence, but other
tasks may require input and output sequences to be of different sizes and the output
to be equally affected by all elements of input.

Consider a question answering system. A neural network receives a sequence of
words in a question: "At what temperature does water boil?" and produces the answer:
"Water boils at 100 degrees.". Such answer cannot be produced by a classical RNN
because the length of a question exceeds the length of the answer and it is impossible
to produce the beginning of the answer "Water boils ..." until we have seen the end
of the question "... does water boil".

This can be done by a special combination of two recurrent neural network called
sequence to sequence or encoder-decoder neural network neural networks intro-
duced by Sutskever, Vinyals, and Le, 2014.

Encoder is a recurrent neural network which accepts the sequence of input val-
ues. The output of encoder is ignored and the state vector received on the last step
encodes the input sequence (sometimes called "thought vector").

Decoder is another recurrent neural network which receives its own output from
the previous step as input on the current step and generates the output sequence.
On the first step, a decoder receives the encoded sequence provided by the encoder
as its internal state.

Appendix A. Theoretical background 36

Putting encoder and decoder together we receive a neural network which first
reads the whole input sequence of size N and only then produces the output se-
quence of size M, making it possible that N 6= M.

Sequence to sequence networks are in fact language models that learn the proba-
bility distribution of the output sequences conditioned by the input sequences. They
are widely used in machine translation, question answering, text summarization,
and many other similar applications.

A.3.2 LSTM and GRU cells

The major problem with recurrent neural networks is vanishing or exploding gradi-
ent. As the network is trained on a sequence of input, we use the algorithm called
"backpropagation through time" which propagates an error back through the cyclical
connection reversing the path made by the input sequence. This process is similar
to backpropagating an error through the deep feedforward network with as many
layers as the length of the input sequence. The only difference is that the weight ma-
trix on each layer is now the same matrix corresponding to the cyclical connection.
This leads to the problem described by Hochreiter et al., 2001: backpropagated er-
ror signals exponentially depend on the magnitude of weights. They tend to either
explode if weights are above 1 or vanish if they are below.

As a solution to this problem Hochreiter and Schmidhuber, 1997 introduced a
novel method called Long short-term memory (LSTM) - memory cells with inter-
nal architecture that allows bridging very long time lags and does not suffer from
exploding or vanishing gradient.

Cho et al., 2014 proposed a simplified version of memory cells called Gated re-
current unit (GRU) which achieve similar performance to LSTM cells but have fewer
parameters.

37

Bibliography

Allamanis, Miltiadis, Hao Peng, and Charles Sutton (2016). “A convolutional atten-
tion network for extreme summarization of source code”. In: International Confer-
ence on Machine Learning, pp. 2091–2100.

Allamanis, Miltiadis et al. (2015). “Suggesting accurate method and class names”.
In: Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering.
ACM, pp. 38–49.

Alon, Uri et al. (2018). “code2vec: Learning Distributed Representations of Code”.
In: arXiv preprint arXiv:1803.09473.

Bavishi, Rohan, Michael Pradel, and Koushik Sen (2018). “Context2Name: A deep
learning-based approach to infer natural variable names from usage contexts”.
In: arXiv preprint arXiv:1809.05193.

Bird, Steven, Ewan Klein, and Edward Loper (2009). Natural language processing with
Python: analyzing text with the natural language toolkit. " O’Reilly Media, Inc."

Black, Andrew P. et al. (2009). Pharo by Example. Kehrsatz, Switzerland: Square Bracket
Associates, p. 333. ISBN: 978-3-9523341-4-0. URL: http://rmod.inria.fr/archives/
books/Blac09a-PBE1-2013-07-29.pdf.

Cho, Kyunghyun et al. (2014). “On the properties of neural machine translation:
Encoder-decoder approaches”. In: arXiv preprint arXiv:1409.1259.

Deissenboeck, Florian and Markus Pizka (2006). “Concise and consistent naming”.
In: Software Quality Journal 14.3, pp. 261–282.

Devanbu, Premkumar (2015). “New initiative: the naturalness of software”. In: Pro-
ceedings of the 37th International Conference on Software Engineering-Volume 2. IEEE
Press, pp. 543–546.

Friedman, Jerome, Trevor Hastie, and Robert Tibshirani (2001). The elements of statis-
tical learning. Vol. 1. 10. Springer series in statistics New York, NY, USA:

Gabel, Mark and Zhendong Su (2010). “A study of the uniqueness of source code”.
In: Proceedings of the eighteenth ACM SIGSOFT international symposium on Founda-
tions of software engineering. ACM, pp. 147–156.

Goodfellow, Ian, Yoshua Bengio, and Aaron Courville (2016). Deep Learning. http:
//www.deeplearningbook.org. MIT Press.

Hindle, Abram et al. (2012). “On the naturalness of software”. In: Software Engineer-
ing (ICSE), 2012 34th International Conference on. IEEE, pp. 837–847.

Hochreiter, Sepp and Jürgen Schmidhuber (1997). “Long short-term memory”. In:
Neural computation 9.8, pp. 1735–1780.

Hochreiter, Sepp et al. (2001). Gradient flow in recurrent nets: the difficulty of learning
long-term dependencies.

Iyer, Srinivasan et al. (2016). “Summarizing source code using a neural attention
model”. In: Proceedings of the 54th Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers). Vol. 1, pp. 2073–2083.

Jurafsky, Daniel and James H. Martin (2009). Speech and Language Processing (2Nd
Edition). Upper Saddle River, NJ, USA: Prentice-Hall, Inc. ISBN: 0131873210.

Knuth, Donald Ervin (1984). “Literate programming”. In: The Computer Journal 27.2,
pp. 97–111.

http://rmod.inria.fr/archives/books/Blac09a-PBE1-2013-07-29.pdf
http://rmod.inria.fr/archives/books/Blac09a-PBE1-2013-07-29.pdf
http://www.deeplearningbook.org
http://www.deeplearningbook.org

BIBLIOGRAPHY 38

Kucera, H and W Francis (1979). A standard corpus of present-day edited american en-
glish, for use with digital computers (revised and amplified from 1967 version).

Lahiri, Shibamouli (2014). “Complexity of Word Collocation Networks: A Prelimi-
nary Structural Analysis”. In: Proceedings of the Student Research Workshop at the
14th Conference of the European Chapter of the Association for Computational Linguis-
tics. Gothenburg, Sweden: Association for Computational Linguistics, pp. 96–
105. URL: http://www.aclweb.org/anthology/E14-3011.

MacKay, David JC and David JC Mac Kay (2003). Information theory, inference and
learning algorithms. Cambridge university press.

Martin, Robert C (2009). Clean code: a handbook of agile software craftsmanship. Pearson
Education.

Murphy, Kevin P. (2013). Machine learning : a probabilistic perspective. Cambridge,
Mass. [u.a.]: MIT Press. ISBN: 9780262018029 0262018020. URL: https://www.
amazon.com/Machine-Learning-Probabilistic-Perspective-Computation/
dp/0262018020/ref=sr_1_2?ie=UTF8&qid=1336857747&sr=8-2.

Ramos, Juan (2003). “Using TF-IDF to determine word relevance in document queries”.
In: Proceedings of the first instructional conference on machine learning. Vol. 242, pp. 133–
142.

Raychev, Veselin, Martin Vechev, and Andreas Krause (2015). “Predicting program
properties from big code”. In: ACM SIGPLAN Notices. Vol. 50. 1. ACM, pp. 111–
124.

Raychev, Veselin, Martin Vechev, and Eran Yahav (2014). “Code completion with
statistical language models”. In: Acm Sigplan Notices. Vol. 49. 6. ACM, pp. 419–
428.

Sasaki, Yutaka et al. (2007). “The truth of the F-measure”. In: Teach Tutor mater 1.5,
pp. 1–5.

Shannon, Claude Elwood (1948). “A mathematical theory of communication”. In:
Bell system technical journal 27.3, pp. 379–423.

Sutskever, Ilya, Oriol Vinyals, and Quoc V Le (2014). “Sequence to sequence learn-
ing with neural networks”. In: Advances in neural information processing systems,
pp. 3104–3112.

White, Martin et al. (2015). “Toward deep learning software repositories”. In: Pro-
ceedings of the 12th Working Conference on Mining Software Repositories. IEEE Press,
pp. 334–345.

http://www.aclweb.org/anthology/E14-3011
https://www.amazon.com/Machine-Learning-Probabilistic-Perspective-Computation/dp/0262018020/ref=sr_1_2?ie=UTF8&qid=1336857747&sr=8-2
https://www.amazon.com/Machine-Learning-Probabilistic-Perspective-Computation/dp/0262018020/ref=sr_1_2?ie=UTF8&qid=1336857747&sr=8-2
https://www.amazon.com/Machine-Learning-Probabilistic-Perspective-Computation/dp/0262018020/ref=sr_1_2?ie=UTF8&qid=1336857747&sr=8-2

	Declaration of Authorship
	Abstract
	Acknowledgements
	Introduction
	Context
	Problem
	Our approach in a nutshell
	Contributions
	Structure of the thesis

	Related work
	Next token in a sequence
	Variable names
	Class and method names
	Comments and documentation

	Naturalness of Pharo
	Software naturalness
	Collecting and filtering methods
	Dataset of Pharo methods
	Dataset of Java methods
	English corpora

	Limited vocabulary
	Specialized vocabulary
	Repetitive code

	Translating source code
	Reasoning behind translating code
	Formal problem statement
	Data preparation
	Duplicated methods
	Non-informative methods
	Overriden methods

	Tokenizing source code
	Removing comments and literals

	Tokenizing identifier names
	Encoding tokens with numbers
	Splitting dataset into training, validation, and test subsets

	Training the model
	First look at the results

	Evaluation
	Why is it hard to evaluate names?
	Human evaluation
	Automatic evaluation

	Automatic evaluation
	Hypothesis for automatic evaluation
	Selecting metrics
	Baseline models for comparison
	Random model
	TF-IDF model

	Results of automatic evaluation

	Conclusion
	What we discovered
	Directions of future work
	Additional features
	Grouping packages by conceptual similarity

	Theoretical background
	Language models
	Entropy and cross-entropy
	Entropy
	Kullback-Leibler divergence
	Cross-entropy
	Why do we minimize the cross-entropy?

	Recurrent neural networks
	Sequence to sequence networks
	LSTM and GRU cells

	Bibliography

