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Music is an essential part of human life in our days. Despite a long history of
the phenomena people still explore it and expand the new horizons. For the last ten
years quality of computer-generated music significantly improved. State of the art
machine learning models like PerformanceRNN can perform music close to a hu-
man level. However, it is hard to deal with a generation of long-term music for the
systems. In work, we apply a TCN model to a generation music task and evaluate
the quality of the music. We show that the models have a significantly better per-
formance than a baseline model for a long-term music generation task. However, it
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Chapter 1

Introduction

Music is an important part of human life. It surrounds us everywhere: movies, ad-
vertisements, games, shops, we listen to it when we study or when we work. It has
been developing by people for thousands of years. And as one of the manifestations
of human creativity, music is an interesting subject for study.

From a scientific perspective, solving the task has to help us better understand
a human mind and intelligence. From an application side, a better music genera-
tion can be used in multiples aspects of human activities like writing movies/games
soundtracks, creating interactive tools for learning music theory, music psychother-
apy, etc.

The programs that generate music exists for a long time.Band-in-a-Box1 is a sys-
tem which generate jazz, blues and rock instrumental solos with almost no human
interaction. Another example is Impro-Visor, which uses a stochastic context-free
grammar to generate phrases and complete solos2.

However, for the last few centuries, a number of music genres dramatically in-
creased. “Musicmap” 3 project claims that today there are nearly 234 genres of mu-
sic, but some sources count even bigger numbers of genres. The number depends
on classification methodology and level of abstraction, but it does not give enough
generalization power. Often times a genre has its own set of rules and in many cases,
the set is neither strict or unique across all genres. It makes a uniforming of heuris-
tic rules-based approaches for music generation a pretty challengeable task. On the
other hand, the amount of data and computational power of our days’ computers al-
lows us to use modern machine learning tools. Inspired by PerformanceRNN (Oore
et al., 2018) and WaveNet (Oord et al., 2016) recent results we want to understand
how good is a convolutional neural network in a task where sequential neural net-
works have a dominant position.

WaveNet has already shown that it can deal with enormous long sequences, and
PerformanceRNN has demonstrated that neural networks can generate human kind
music. However, PerformanceRNN is an example of usage of a classical sequential
neural networks architecture.

The Machine Learning Department of Carnegie Mellon University has proposed
generic convolutional and recurrent architectures for sequence modeling named tem-
poral convolutional network (Bai, Kolter, and Koltun, 2018). The architecture is an
attempt to generalize to a single unit the best practices which are used in the best
convolutional architectures like WaveNet. Also, according to the article, it outper-
forms all classical sequential models in music generation task. On the other hand,
TCN generated music is not compared to another generated music by human what
is crucial because a human is the main consumer.

1https://www.pgmusic.com/.
2https://www.cs.hmc.edu/~keller/jazz/improvisor/.
3https://musicmap.info/
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The work is an exploration of TCN based models applying to a music perfor-
mance generation task with respect to the PerformanceRNN model. And it includes
the next chapters.

Chapter 1. This is an introduction with a broad overview of music field. We
briefly discuss music complexity, existed projects, datasets and motivation for the
project.

In Chapter 2 we review state of the art machine learning models applied to a
music generation task as it can give ideas for future researches and experiments. We
also point on solid surveys to give a view of what was done in the field.

In Chapter 3 we describe target models and motivation of chosen architectures.
Chapter 4 describes some technical aspects, experiments details and results. In

the section, we compare PerformanceRNN with different models based on TCN.
Chapter 5 is a conclusion. Here we summarize an achieved results and points

for improvement.
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1.1 Problem statement

Music is a multicultural phenomenon which independently appeared in different
place around the globe. One of the definitions of music is the next: “This is an
art form consisting of sound and silence, expressed through time”. People have
been developing music theory and did numerous experiments in discovering human
sounds perception. However, until recent years it was hard to analyze music at scale
or to get breakthrough results in music generation task. In our opinion there are a
few reasons for that:

• Music complexity (level of abstractions, number of variations, and nuances of
human music perception)

• Lack of software tools for music analyzing in the past (now we have MIDI data
representation, projects like LibROSA, Magenta, AcousticBrainz, etc.)

• Lack of well-structured data in the past (now we have many audio data sets
like Million Song Dataset, MAESTRO, Lakh etc; all of them are open sourced
and free to use)

In the chapter, we briefly consider all of them and describe a vector of the re-
search.

1.2 The complexity of music generation

A good example of music generation framework was proposed in the survey (Her-
remans, Chuan, and Chew, 2017). The block schema of the system is shown on a
Figure 1.1. The proposed structure has two key components (which can be decom-
posed on subcomponents):

• Composition

Melody

Harmony

Rhythm

Timbre

• Note

Pitch

Duration

Onset time

Instrumentation

Each of the element can be considered as a topic for research, so we briefly con-
sider only the key elements to get a better understanding of a variety of approaches
in music generation task.

A note and a composition are central concepts in music. The note is a physical
phenomenon when the composition is a high-level abstraction created by human.
A music creation relies on human feelings and has to call to emotions that the com-
poser experiences or want the other people experience. We build strong associations
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between emotions and audio compositions. It allows us to consider a music writ-
ing process as a emotions sequence building through the audio composition, and
it leads us to human sound perception topic. There is a hypothesis about how our
mind differentiates rhythm patterns (London, 2002) or which brain mechanisms are
responsible for music recognition (Large and Crawford, 2002). Nevertheless, there
is no universal map between sequences of sounds and human emotions, and there is
no guarantee that it is universal if it exists. Hence, it is hard to explain to a machine
which music we expect when it is relatively simple to explain to people what is a
romantic, scary or funny music.

Composition

HarmonyMelody TimbreRhythm

Note

pitch
duration
onset time
instrumentation

FIGURE 1.1: Music generation framework

One more variant is abandoning sound-emotion connection and try to mimic
real music, other words to make it sounds realistic to people. It is a quite popular
approach in our day due to the recent success of deep learning in an image genera-
tion task and related fields. Music generation in the scope still requires a lot of data,
but because we don’t need marks or labels we can use real audio tracks almost as it
is. However, the biggest problem here is model interpretability and control under
a model output. There are many discussion around machine learning “black box”
solutions (Ribeiro, Singh, and Guestrin, 2016; Lipton, 2016) and how to deal with
it. But the problem is rather common than specific, so despite on these cons, the
approach looks the most promising.

Magenta team provides a very colorful and simple example of music complexity
from a maths perspective. The task is to generate a monophonic piano melody. At
any given time, exactly one of the 88 keys can be pressed down or released, or the
player may rest. It can be represented as 90 types of events (88 key presses, 1 release,
1 rest). To simplify the modeling process, we ignore tempo, dynamic and quantize
time down to 16th notes. Next, two measures (bars) of music in 4/4 time will have
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9032 possible sequences. If we extend this to 16 bars, it will be 90256 possible se-
quences. Now we can go back and make the piece of music more close to a real
piece of music: polyphonic, with multiples instruments, .etc. Because of the high
data dimensionality, it is difficult to generate a piece of music using heuristic rules
and stochastic models. On the other hand, it can be helpful to tune a final result or
lead model training process. One of the Magenta project (Jaques et al., 2016) demon-
strated that the RL model based on music theory rules can significantly improve
model output.

1.3 The current state of tools for music analyzing

The last but not the least part of each experiment is an analysis of the results. For
music generation, the most naive but also the most efficient method is a human eval-
uation. We will later discuss it in the section 4.3, for now, we are going to consider
projects which were developed based on human knowledge about music.

One such project is LibROSA 4. It provides implementations of a variety of com-
mon functions used throughout the field of music information retrieval (MIR). It al-
lows automatic music feature extraction like spectral characteristics, mel-frequency
cepstral coefficients (MFCCs), rhythm components, .etc. It can be also used for pre-
and post- data processing but this requires some music and signal processing knowl-
edge what is out of the scope for the work.

The next project is AcousticBrainz 5, which aims to crowd source acoustic in-
formation for all music in the world and to make it available to the public. This
information describes the acoustic characteristics of music and includes low-level
spectral information and information for genres, moods, keys, scales, .etc. The goal
of AcousticBrainz is to provide music technology researchers and open source hack-
ers with a massive database of information about music. The project is interesting
as heuristic music quality metric and can be used to evaluate generated music meta-
data with respect to AcousticBrainz model.

Another research project is Magenta 6. It is Google Brain open source project ex-
ploring the role of machine learning as a tool in the creative process. Also, it is dis-
tributed as an open source Python library, which includes utilities for manipulating
source data (primarily music and images). The project has a perfect infrastructure
not only for art exploring but also for research goals. Existed data pipelines allow
you to transform your data to fit different model input formats and then compare
results across the models. That is the main reason why the platform was chosen in
the work.

1.4 Available music datasets

A variety of data in our days is exceptional. Nevertheless not each of existed datasets
has an appropriate quality and format for research.

One of the most familiar music datasets is a Million Song Dataset 7. It is a freely-
available collection of audio features and metadata for a million contemporary pop-
ular music tracks. The core of the dataset is the feature analysis and metadata for
one million songs, provided by The Echo Nest. The dataset does not include any

4https://librosa.github.io/librosa/
5https://acousticbrainz.org/
6https://acousticbrainz.org/
7https://labrosa.ee.columbia.edu/millionsong/
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audio, only the derived features. Hence, the dataset is good for descriptive analysis
or kind of supervised learning tasks. To make it suitable for music generation task
it is necessary to generate tracks itself using the metadata. It is possible to do using
such services “7digital” but it requires extra work with data post-processing.

Lakh MIDI dataset 8 is a collection of 176,581 unique MIDI files, 45,129 of which
have been matched and aligned to entries in the Million Song Dataset. The source is
used for many MIR tasks, included music generation. It contains many tracks of dif-
ferent styles and with different instruments. This is an advantage of the dataset and
a big challenge at the same time. But the difficulties are related more to MIDI side
than to dimensionality problem described earlier. MIDI is a technical standard that
describes a communications protocol, digital interface, and electrical connectors that
connect a wide variety of electronic musical instruments, computers, and related au-
dio devices. Hence, it relies on synthetic sounds libraries for many instruments and
has much less capability in sound representation. However, for some instruments
like the piano, it is good enough and can be compatible.

One of such source of high-quality piano music data is the MAESTRO dataset
(Hawthorne et al., 2018). This dataset contains over a week of paired audio and MIDI
recordings from nine years of International Piano-e-Competition. The MIDI data
includes key strike velocities and sustain pedal positions. What is also important
that each track was played by a human expert and allows us to track us the human
component in music performance.

1.5 Vector of the research

Inspiring PerformanceRNN results and regarding task complexity, it looks that it
is worth to try to improve the PerformanceRNN in a direction of better capturing
composition abstractions like long-term motive, melody, and harmony.

In the next section, we will consider related works and dig deeper on a technical
side of the state of the art algorithms.

8https://colinraffel.com/projects/lmd/
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Chapter 2

Related work

There are many works in the field. Many of them formed baselines and common
practices for future researches. This fact stimulated people to try numerous ap-
proaches for music generation starting from statistical methods and analysis of mu-
sic metadata, to applying stochastic modeling and cellular automata. The number of
works and their variety were perfectly described in Jose David Fernandez “AI Meth-
ods in Algorithmic Composition: A Comprehensive Survey” and Dorien Herremans
“A Functional Taxonomy of Music Generation Systems” surveys. However, nowa-
days deep learning models take more and more popularity due to the tremendous
success of the models in different complex tasks like image recognition or machine
translation.

2.1 Links to historical overviews

According to Fernandez’s survey (Fernández and Vico, 2013), one of the earliest
works related to computer generated music was published in the mid-1950. The
model uses rule systems and Markov chains. Except the method researchers also
explored approaches based on:

• Grammars

• Symbolic and knowledge-based systems

• Evolutionary and population-based theory

Also, a quite popular tool for composers was model which used cellular automata
and self-similarity ideas. They produce a raw piece of music with unusual patterns
that inspire musicians and help them create new music.

Despite on tremendous amount of work which was done in the last decades, it
is clear that rule-based and heuristic methods are difficult to use to achieve human-
like generated music. And deep learning is not hype but the only method which can
achieve a solid result in our days. Nevertheless, it does not mean we should aban-
don heuristics and rule-based approaches. Recent work (Jaques et al., 2016) shows
that applying human knowledge about music can significantly improve results a
generated music, but it still works in combination with deep learning models.

We highly encourage to read the survey for a more detailed review of described
methods.
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2.2 State of the art models

As it was said before, many significant results in machine learning field were achieved
using deep learning techniques. One of the most rapidly developing platform Ma-
genta is an art generation project. The project includes many states of the art models
for music generation like MusicVAE (Roberts et al., 2018), PerformaceRNN (Oore
et al., 2018), COCONET (Huang et al., 2017), Piano Genie (Donahue, Simon, and
Dieleman, 2018). We review some of them in details to get a better understanding of
why there are successful and which idea they bring.

Nevertheless, it is necessary to notice that there are different models which achieve
competitive results.

2.2.1 COCONET

One of the recent successful examples of applying CNN to a music generation task
is a model described in “Counterpoint by convolution” paper (Huang et al., 2017).
COCONET is a deep convolutional model trained to reconstruct partial scores. The
main idea of the work is to fill missed notes in scores, that is why there is a counter-
point - the process of placing notes against notes to construct a polyphonic musical
piece. The main reason to try such an approach is the fact that human composers
write music in a nonlinear fashion, scribbling motifs here and there, often revisiting
choices previously made in order to better approximate this process.

The neural network architecture of COCONET is shown on a Figure 2.1. It uses
L stacked convolutional layers and after every second convolution, it introduces
a skip connection from the hidden state two levels below to reap the benefits of
residual learning. In the paper, the number of layers L = 64 and number of channels
H = 128. After each convolution, there is a batch normalization with statistics tied
across time and pitch. Batch normalization rescales activations at each layer to have
concrete mean and standard deviation values.

h0

Skip Connection

h1 h64

Input Output
Layer 1
Conv
3x3

Layer 2
Conv
3x3

Layer 3
Conv
3x3

Layer 4
Conv
3x3

Layer 64
Conv
2x2

FIGURE 2.1: COCONET architecture

The music is represented as a stack of piano rolls encoded in a binary three-
dimensional tensor x ∈ {0, 1}I×T×P . Here I denotes the number of instruments for
four-part Bach chorales I = 4. T is the number of time steps, P is the number of
pitches, and xi,t,p = 1 if the i-th instrument plays pitch p at time t. In their work,
authors assume each instrument plays exactly one pitch at a time, that ∑p xi,t,p = 1
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for all i, t. However, there is no restriction to use more than a pitch at the time, hence
present a cord instead of a single pitch.

The most important part of the work is the way the model is training. To train
the model is needed to sample a training example x and context C and update neural
network weights based on the gradient of the loss. And the place where the sam-
pling quality is a matter. In their work authors compared blocked Gibbs sampling
to orderless NADE sampling and provided results where it is shown that blocked
Gibbs sampling significantly outperform orderless NADE sampling result.

2.2.2 PerformanceRNN

The idea behind PerformanceRNN model is very intuitive and clear. However, like
many deep learning models, there are details which highly affect the final result.

 413-dimensional one-hot vector     P(input | output event)

Input Output
LSTM

(512 sells)
LSTM

(512 sells)
LSTM

(512 sells)

FIGURE 2.2: PerformanceRNN architecture

The neural network architecture is rather simple, it is a stacked 3 LSTM layers
and each of them has 512 cells (Figure 2.2). The model operates on a one-hot encod-
ing over this event vocabulary. Thus, at each step, the input to the RNN is a single
one-hot 413-dimensional vector. The vector is a representation of the next events:

• 128 NOTE-ON events: one for each of the 128 MIDI pitches. Each one starts a
new note.

• 128 NOTE-OFF events: one for each of the 128 MIDI pitches. Each one releases
a note.

• 125 TIME-SHIFT events: each one moves the time step forward by increments
of 8 ms up to 1 second.

• 32 VELOCITY events: each one changes the velocity applied to all subsequent
notes (until the next velocity event).

Note, that a time quantization is done in absolute scale using milliseconds. It
makes harder to translate model output to score but at the same time, it makes the
output more dynamic and more similar to what people play.
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FIGURE 2.3: Events description example (Oore et al., 2018)

Usually, 15 seconds of piano performance contains around 600 of such one-hot-
encoded events. Also notice, that time-shift part of the vector restricts note duration
to one second. Nevertheless, time shifts can be applied consecutively to allow a
longer note duration.

Despite such simple architecture, a described data representation leads to fasci-
nating results which are shown in the paper.

2.2.3 Music Transformer

One of the weakest points for classic sequential neural network models is long-term
predictions. Also, music relies heavily on self-reference to build structure and mean-
ing. Frequently, it is self-repetitive and there are multiple recurring elements across
a melody line. It reflects in phrases and bigger parts of music compositions such
as verse-chorus. To get a coherent piece of music, a model needs to have a broader
view of music composition, highlight key elements, repeat and modify them in var-
ious ways, create a contrast, tension and release. Self-attention mechanisms are a
natural fit for this challenge, as they offer direct access to the generated history, al-
lowing the model to choose the level of detail. So the author of Music Transformer
(Huang et al., 2018) decides explore Transformer (Vaswani et al., 2017) architecture
and apply it to music generation.

A classic structure of Transformer model (Figure 2.4) has the next important com-
ponent:

• Positional encoding

• Encoder
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• Decoder

Positional encoding is a wave function which aims to resolve an issue of unseen
data. For example, the model was trained on sequences of 10 elements maximum it
will be difficult to predict 11th element if need. Hence, adding positional encoding
helps resolve the issue (what is especially important for music).

Input 
embedding

Encoder
(Multi-Head Attention + Feed Forwar layers)

Output
embedding

Linear Softmax

Decoder

Multi-Head 
Attention

layer

Multi-Head Attention + 
Feed Forwar layers

Postional 
encoding

Postional 
encoding

FIGURE 2.4: Transformer architecture

The Encoder is a stack of identical layers and each layer has two sublayers. The
first is a multi-head self-attention mechanism (Figure 2.5 right part), and the second
is a simple, position-wise fully connected feedforward network.

The Decoder has pretty much the same structure as the encoder. But in addition
to the two sub-layers in each encoder layer, the decoder inserts a third sub-layer,
which performs multi-head attention over the output of the encoder stack.

A classic attention layer transformation has the next pipeline (Figure 2.5 left
side). Given vector x = (x1, x2. . . xn), where xi ∈ Rdx . Then an element of atten-
tion layer output is:

zi =
n

∑
j=1

aij(xjWv) (2.1)

where softmax is:

aij =
exp(eij)

∑n
k=1 exp(eik)

(2.2)

and scaled dot-product is:

eij =
(xiWQ)(xjWK)T

√
dz

(2.3)
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Q

Scaled Dot-Product Attention

MatMul

Scale

Mask (opt.)

Softmax

MatMul

K V

Concat

Multi-Head Attention

  
    

Scaled Dot-Product Attention

Linear Linear Linear

Linear

V K Q

FIGURE 2.5: Transformer attention mechanism

or if to rewrite to a matrix format:

z = Attention(Q, K, V) =
1√
dz

so f tmax(QKT)V (2.4)

The model can be improved with adding relative attention (Shaw, Uszkoreit, and
Vaswani, 2018)

z = RelativeAttention(Q, K, V, R)

=
1√
dz

so f tmax(Q(KT + RT))V
(2.5)

Authors of Music Transformer took the model with relative attention and ex-
tended it to be more suitable for music generation task. They optimized memory
consumption for computing relative embeddings and added pitch and timing em-
beddings to capture more relation information:

z = RelativeMusicAttention(Q, K, V, Er, Rt, Rp)

=
1√
dz

so f tmax(QKT + Skew(QEr) + Q(RT
p + RT

t ))V
(2.6)

where:

Skew(QEr) - optimized relative attention component
Rp, Rt - relative pitch and time embeddings
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The improvements allowed outperforms COCONET and PerformanceRNN re-
sults and demonstrate a significance of attention mechanism.

2.2.4 Temporal Convolutional Network

Temporal Convolutional Network (Bai, Kolter, and Koltun, 2018) is an attempt to
combine all best practice convolutional architectures to a single unit and keep it as
simple as possible. The model was not tuned to solve music generation tasks itself.
However, the proposed architecture has a bunch of characteristics which allows it to
compete for classical sequential models like RNN, LSTM, and GRU in a sequential
modeling domain.

The distinguishing characteristics of TCNs are:

• the convolutions in the architecture are causal, meaning that there is no infor-
mation “leakage” from future to past;

• the architecture can take a sequence of any length and map it to an output
sequence of the same length, just as with an RNN but can do it better.

 Residual Block

Dilated Casual Conv

Dilated Casual Conv

ReLU

ReLU

1 x 1 Conv
(optional)

Temporal Convolutional Network

xtxt-1x1 xt-2x2

h1 ht-2 ht-1 ht

Residual Block. d = 1

Residual Block. d = 2

Residual Block. d = 4

Input

h2

FIGURE 2.6: TCN architecture

The authors of the paper claim that the TCN with virtually no tuning outper-
forms the recurrent models by a considerable margin. But other models such as the
Deep Belief Net LSTM perform better still. Nevertheless, we know that many fac-
tors can affect the final result in applying the model in the scope of different problem
definition or different training process can lead us to a better result.
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Chapter 3

TCN based models

3.1 Default TCN

By "default" we mean the first and the simpler TCN we tested. But in experiments
with kernel size it means that a model has three residual blocks.

We consider the next set of hyper-parameters in our research:

• kernel size (convolution layer parameter)

• TCN depth - a number of residual blocks (double dilated conv layers with
residual connection). Each block has a dilation coefficient = 2(depth−1)

• a number of stacks. One stack is a TCN, and 3 stacks is a 3 TCNs connected
one-by-one.

• input sequence length

Default TCN 

Residual Block 1. Dilation = 1

1 2 43 5 6 7 98 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

1 2 43 5 6 7 98 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

Residual Block 2. Dilation = 2

1 2 43 5 6 7 98 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

1 2 43 5 6 7 98 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

Residual Block 3. Dilation = 4

1 2 43 5 6 7 98 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

1 2 43 5 6 7 98 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
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FIGURE 3.1: Default TCN architecture

According to the list, the Default TCN has the next parameters:
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• kernel size = 3

• TCN depth = 3. Dilation coefficient = 4

• number of stacks = 1

• input sequence length = 512

The input sequence length and TCN depth is a reflection of PerformanceRNN
settings, when kernel size is a minimal value which gives a meaningful results ac-
cording to TCN authors (Bai, Kolter, and Koltun, 2018). A number of stacks is our
hyper-parameter an idea of the parameter will be discussed in Stacked TCN section.

3.2 Stacked TCN

The idea behind the model is to minimize the influence on a prediction of events
which are far away for each other. For instance, if we consider a schema on Fig-
ure 3.1, we can see that the 1st event in the input affects a prediction of 5th event in
the first residual block. If we continue to increase the TCN depth the distance be-
tween such event rises exponentially. To decrease the distance growth, we decided
to stack TCN with a small number of blocks, in the particular case it is equal to three.
In other words, this is a stack of three Default TCN models.

0
0
1
...
0
0 

1

0
0
0
...
1
0 

2

0
0
0
...
0
0 

3

0
0
0
...
0
0 

i

0
0
0
...
0
0 

512

Stacked TCN

TCN 2

TCN 3

TCN 1

Input one-hot-encoded vectors

FIGURE 3.2: Stacked TCN architecture
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Despite on counter-intuitiveness of the decision in the scope of long-term gen-
eration music we expect the model will show better musicality and more "smooth"
melody.

3.3 Deep TCN

The idea behind the model is the opposite to Stacked TCN model. Here we want
that a prediction on the last event was affected by the earliest event before with the
smallest number of the residual blocks.

0
0
1
...
0
0 

1

0
0
0
...
1
0 

2

0
0
0
...
0
0 

3

0
0
0
...
0
0 

n

0
0
0
...
0
0 

512

Deep TCN

Residual Block 1. Dilation = 1

Residual Block 2. Dilation = 2

Residual Block 3. Dilation = 4

Residual Block 8. Dilation = 128

Residual Block 7. Dilation = 64

Residual Block 6. Dilation = 32

Residual Block 5. Dilation = 16

Residual Block 4. Dilation = 8

Input one-hot-encoded vectors

FIGURE 3.3: Deep TCN architecture

In the model with eight blocks, the 1st event affects a prediction of 509th event,
which is close to 512 and is good enough in our opinion.
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Chapter 4

Experiments

4.1 Setup

4.1.1 Data

MAESTRO (MIDI and Audio Edited for Synchronous TRacks and Organization) is
a dataset composed of over 172 hours of piano performances captured on the Inter-
national Piano-e-Competition. During each installment of the competition, pianists
perform on Yamaha Disklaviers which, in addition to being concert-quality acous-
tic grand pianos, utilize an integrated high-precision MIDI capture and playback
system (Hawthorne et al., 2018).

In work, we use the dataset of v.1.0.0. The dataset contains over a week of paired
audio and MIDI recordings from nine years of International Piano-e-Competition.
The MIDI data includes key strike velocities and sustain pedal positions.

The repertoire is mostly classical, including composers from the 17th to early
20th century. A train/test split configuration is also proposed, so that the same com-
position, even if performed by multiple contestants, does not appear in multiple
subsets.

TABLE 4.1: MAESTRO dataset metadata

Split Performances Compositions Duration (hours) Note (millions)

Train 954 295 140.1 5.06
Validation 105 60 15.3 0.54
Test 125 75 16.9 0.57
Total 1184 430 172.3 6.18

Magenta data pipeline. It is a tool to transform some input data format like Mu-
sicXML 1, ABC 2, MIDI 3 to a required output format. Usually, it uses an intermediate
step in data transformation, which converts data to a protocol buffer, a flexible and
efficient data format.

Our output format is a 512x1 tensor, where each value is an integer between
0 and 387 ( 388 events). This is a compact format of events representation which
was described in PerformanceRNN section. However, during a training process,
we convert it back into a one-hot-encoded format. Also, notice that the number of
events is 388 and does not match to format which is described in (Oore et al., 2018)
(413 events). It is so because of time-shift event; there are 100 events instead of 125,

1https://www.musicxml.com/
2http://abcnotation.com/about#abc
3https://www.midi.org/about
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MIDI data Note Sequences protocol 
buffer frormat

One-hot-encoded vectors 
(compact config)

Raw data Intermediate step Train/Test data

FIGURE 4.1: Data processing pipeline

which means that a time step was changed from 8 ms to 10 ms. It is a recent Magenta
team configuration update, and it should not significantly affect experiments.

Data augmentation. It is a common practice in machine learning tasks because
it helps improve model quality. For music generation, we use default configurations
of Magenta PerformaceRNN data pipeline. It means that:

• Each sample has 5 stretch factors from 0.95 to 1.05 with step 0.25.

• Each sample is transposed up and down all intervals up to a major third.

In the final result, we have 5 samples after sequence stretching (original sample in-
cluded) and 8 samples after transposition, which gives us 40 samples in total where
39 are new.

4.1.2 Model training process

All models were trained on the same training dataset described in subsection 4.1.1.
The training dataset was divided on train and evaluation parts in proportion 90/10.
The evaluation part is used for tracking training progress and give a sense of model
performance before evaluation on a test dataset.

The models are learned by minimizing a log loss function:

logloss = − 1
N
·

N

∑
i=1

(yi · log(ŷi) + (1− yi) · log(1− ŷi)) (4.1)

where:

• N - a number of training examples

• yi - a probability of a true event

• ŷi - a probability of a predicted event

It shows the uncertainty of a prediction based on how much it varies from the
actual event.

Each convolution layer of TCN model a has 25% of a dropout probability. It is a
common practice in machine learning to optimize a training process (Hinton et al.,
2012).

All evaluation was done using Amazon EC2 P3 instance with a single Tesla V100
16GB GPU card.

For all model was used Tenserflow framework (version 1.12) on Python3.6.5.
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4.1.3 Music generation process

For a music generation, we use 29 performances from a validation split of MAESTRO
dataset. We take the first 2-4 seconds (depending on the musical phrase) of each
performance and ask models to generate the next N events. After each iteration,
we concatenate a generated result with a primal sequence and repeat the generation
procedure using the concatenated sequence as an input for the next iteration.

input sequence Model

0.12
0.01
0.00
0.00

.

.

.
0.43
0.21
0.00

Concat Generated event

List of probabilities

FIGURE 4.2: Music generation pipeline

Models chose an event with a predicted probability, so a generated event is not
necessarily a prediction with the highest probability.

4.2 Models comparison

In the section, we compare PerformanceRNN and TCN models training progress
using log-loss metric.

Figure 4.3 shows that Default TCN model achieves a similar to PerformanceRNN
result and needs less time for that (Table 4.3).

FIGURE 4.3: PerformanceRNN vs Default TCN training progress
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More complicated models like Deep TCN and Stacked TCN outperform perfor-
mance PerformanceRNN and still need less time for training.

FIGURE 4.4: PerforanceRNN vs Deep TCN vs Stacked TCN training
progress

However, all TCN models have a common characteristic, they reached a plateau
for very soon, when PerformanceRNN consistently decreases loss metric. It is diffi-
cult to predict if PerformanceRNN will outperform the TCN models, but on a short
distance, TCN models show a faster convergence.

On a test dataset the best result Stacked TCN. However, it is only slightly better
than Deep TCN. Also, log loss metric does not fully reflect generated music quality.
For the reason we prepared a human evaluation test.

TABLE 4.2: Models performance on a test data

Model Loss

PerformanceRNN 2.566
Default TCN 2.599
Deep TCN 2.378
Stacked TCN 2.322

TABLE 4.3: Models training time

Model Aprox. time per 1000 steps (mins)

PerformanceRNN 14.6
Default TCN 2.5
Stacked TCN 6.26
Deep TCN 5.8
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4.3 Human evaluation

Evaluation of a generated music is a non-trivial task which does not have strict set
of rules. It requires specific human knowledge which is difficult to describe using
mathematical tools.

For the reason, evaluation music by people is the best option in our days. In the
experiment, we use Amazon MTurk - an Internet platform for human intelligence
tasks (HIT). It allows us to create a listening test and compare samples with each
other and evaluate their quality. The study procedure is similar to that is described
in the article (Huang et al., 2018). Participants are presented with two musical sam-
ples that shared a common priming sequence. Each sample starts with 2 seconds
of silence, then a priming sequence was played and then a continuation of that se-
quence. The continuations were either sampled from one of the models or extracted
from a validation set. For each model in the test, we prepared 29 samples 4, 30 sec-
onds each, and create all possible pairs for common priming sequences except the
same one. For each task, we required to evaluate a pair of samples by three different
people. In result, we got 870 votes which give us the next picture.

FIGURE 4.5: Human evaluation test

Deep TCN and Stacked TCN show slightly better win rates than PerformanceRNN
model when less complicated TCN has a far bigger difference. However, due to
technical limitations, it was difficult to compare generated samples with a longer
duration. We believe that in such experiment results will have more noticeable dif-
ferences.

4https://clyp.it/user/14wtkg1w - all samples that were used in the experiment are on the. Names
for the samples where hashed to prevent a biased evaluation
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4.4 Kernel size

For the experiments, there were chosen four different kernel size values (3, 5, 7 and
10) and two different length of sequences (512 and 1024). The idea is to find a value
of kernel size when an improvement is not noticeable anymore.

FIGURE 4.6: Default TCN kernel size experiments (for sequence
length 512)

For both cases on Figure 4.6 and on Figure 4.7 we can see that there is no a sig-
nificant improvements for kernel size bigger than five.

FIGURE 4.7: Default TCN kernel size experiments (for sequence
length 1024)

Another observation is that for a longer sequences models show a better train-
ing performance (Figure 4.8, the dashed clearly separates results in the end on two
groups). And despite our expectations, a model with the biggest kernel size value
shows slightly worse performance. However, due to a relatively small number of
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training steps, it is hard to judge if it is a model a model overfitting or a random
deviation caused by dropout mechanism.

FIGURE 4.8: Kernel experiments comparison (512 vs 1024)
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Chapter 5

Conclusion

5.1 Results

In work, we achieved results that are competitive to state of the art models results.
Also, we showed that TCN models have a great long term structure perception of
music. However, there is still a gap in musicality and consistency of generated com-
positions. Also, there is a significant boost in decreasing training time in comparison
to PerformaceRNN. On the other hand, the models generate music far longer than
PerformanceRNN.

The other important thing is that for such creative tasks like music generation it is
highly essential to have a human evaluation of the results. It is crucial because such
mathematical metrics like accuracy, log loss or perplexity don’t reflect the quality of
gotten results and require a human expert validation.

5.2 Further work

Improve musicality. There are a few ways to improve musicality of the generated
music. For example:

• tune a neural network architecture

• add a rule-based system with a post-correction function

The first approach is about hyper-parameters tuning and exploring different
deep learning approaches like changing of an activation function or fine-tuning.

The second approach means that we slightly modify results somewhere in a
chain of transformation between model output and writing to a MIDI file.

Speed up a generation process. As it was discussed, a generation process for
TCN model is far longer than for a PerformanceRNN. We believe it is because of the
inefficiency of developed code and it can be improved. It is important because it will
help with models output analysis and speed up further experiments.

Neural network architectures exploring. It has been already shown that the effi-
ciency of TCN is comparable to classic sequential neural network models. However,
in work, we explored only basic architectures and didn’t try ensembles, concatena-
tion of the models or adding an attention mechanism.
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