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Abstract
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Master of Science

Convolutional Graph Embeddings for article recommendation in Wikipedia

by Oleksii MOSKALENKO

In this master thesis, we were solving the task of a recommendation system to
recommend articles to edit to Wikipedia contributors. Our system is built on top
of articles’ embeddings constructed by applying Graph Convolutional Network to
the graph of Wikipedia articles. We outperformed embeddings generated from the
text (via Doc2Vec model) by 47% in Recall and 32% in Mean Reciprocal Rank (MRR)
score for English Wikipedia and by 62% in Recall and 41% in MRR for Ukrainian
in the offline evaluation conducted on the history of previous users’ editions. With
the additional ranking model we were able to achieve total improvement on 68% in
Recall and 41% in MRR on English edition of Wikipedia.

Graph Neural Networks are deep learning based methods aimed to solve typ-
ical Machine Learning tasks such as classification, clusterization or link prediction
for structured data - Graphs - via message passing architecture. Due to the explo-
sive success of Convolution Neural Networks (CNN) in the construction of highly
expressive representations - similar ideas were recently projected onto GNN. Graph
Convolutional Networks are GNNs that likewise CNNs allow sharing weights for
convolutional filters across nodes in the graph. They demonstrated especially good
performance on the task of Representation Learning via semi-supervised tasks as
mentioned above classification or link-prediction.
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Chapter 1

Introduction

Recommendation systems (RS) have been a very popular topic in Machine Learning
for a long time. It is also one of the most practically applied areas since the benefits
of recommending a product to a customer, or a new movie to a viewer are obvious.

The explosive growth of the amount of information and services provided through
the internet raised even bigger demand for RS. Variety of choice does not always
mean good offering. Users now need assistance in making such choice and RS be-
came such assistant. A large number of RS is built on the assumption that user will
more likely choose items similar to his preferences (previous items he interacted
with) [Ricci, Rokach, and Shapira, 2015]. The quality of similarity measurement
is a very important factor affecting RS performance [Bobadilla et al., 2013]. Rec-
ommender system algorithms are utilizing the concept of similarity (or distance)
between objects (item-based recommendations) and/or between users (user-based
recommendations). For example, to recommend some product, we can find the most
similar item to what user bought before, or to recommend some movie we can find
a user profile with similar preferences (history of views) and pick something for his
history.

For some cases, this task of similarity is relatively easy when our object possesses
quantitative features (ex. a movie rating) since the notion of distance is easer to ap-
ply in such setup. But in most cases, when we compare images or texts, it is neces-
sary to have a separate layer responsible for mapping those objects (ex. images) to
a low-dimensional numerical space. This topic has been actively researching lately
especially with the growing popularity of Deep Learning approaches and their ap-
plications to RS [Zhang, Yao, and Sun, 2017].

With rising popularity of Neural Networks and particularly Convolutional Neu-
ral Networks (CNNs) it became much easier to compare some of high-dimensional
objects (like images or text) by producing Embeddings - low-dimensional vectors that
represent the original object with preservation of as many as possible of its prop-
erties (ex. semantic properties: embeddings of words with similar meanings must
be located close in the vectorial space). However, images have a unique property -
some natural order - pixels are ordered in rows and columns - that made the task
for embedding producing simpler. If we will decide to represent a more complex-
structured object, like Graphs, the problem became more complicated and, in fact, it
is not completely solved yet [Hamilton, Ying, and Leskovec, 2017b]. However, some
impressive results were already achieved by applying ideas from CNNs to Graphs.
Graph Convolutional Networks [Duvenaud et al., 2015; Kipf and Welling, 2016] is
a family of Neural Network models that have a common idea to collect knowledge
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about the neighborhood for each node by passing the data (state) from one node to
another through some filters (convolutions) that are shared across the full Graph. It
allows to generate unique Embeddings for each node in the Graph that will combine
structural knowledge with original node features. Further studies proposed to ob-
serve in a moment of time not a full graph but only some sample of it, which made it
possible to work with Graphs of massive scale without losing Embedding’s quality
[Hamilton, Ying, and Leskovec, 2017a; Chen and Zhu, 2018].

In the present master’s thesis we want to explore the task of Representation
Learning by applying Graph Convolutional Networks to the Graph of Wikipedia
Articles. Our goal is to create a RS to suggest articles to editors of Wikipedia based
on constructed articles’ embeddings. Analogous with product recommendation, in
this setup articles act as products and editors as users.

The Wikipedia projects receive more than 1 million editions per day. From writ-
ing full articles to focus on grammatical fixes in multiple articles, editors contribute
in diverse ways. Therefore, recommending a new task for an active editor is not
trivial. In this project, we want to create a Recommender System, that understands
editors behavior, and recommend them new tasks.

One of our challenges is to address scalability issues caused by the size of the
given dataset (e.g. English Wikipedia has more than 6M of articles and over 500M
of links connecting them). We will show that this issue could be transformed into
a benefit with carefully selected architecture for the system. We will conduct exper-
iments and compare our solution of embeddings generation with representations
received from the text.

The main contributions of the present work can be categorized in the following
groups:

• We propose and implement a GCN-based solution to represent articles and
users in Wikipedia. Our approach uses link-prediction model, that improves
article-embedding quality, compared with pure-text based models such as
Doc2Vec. To the best of our knowledge, this is the first work applying that
technique in the Wikipedia context.

• The implementation of an scalable Recommender System for Wikipedia con-
tributors, using the state-of-art techniques on this field. Our model is able to
efficiently deal with huge data, in a real-world scenario, such as the full English
Wikipedia eco-system. Our model is able to work on-line, without requiring
full re-training when new users or articles are added. And it also implements
an efficient Nearest Neighbors approach, to produce fast and reliable recom-
mendations in real-time scenarios.

• We publicly release all the code developed in this work. Two main pack-
ages are shared: one, for efficiently processing Wikipedia Dumps using Spark,
and another, with an scalable implementation of one of the state-of-art Graph
embeddings algorithms [Hamilton, Ying, and Leskovec, 2017a]. While origi-
nal implementation failed with relative medium-size graphs (100M of edges),
our implementation is able to manage the full English Wikipedia Graph, with
more than 450M edges.
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The reminder of this work is organized as follows: In Chapter 2, a brief overview
of modern Recommender System architecture is given. We provide a theoretical
background overview for our Representation Learning Model and give some real-
world examples of built RS with billions of items and millions of users; In Chap-
ter 3 we describe our solution for the task of recommending articles to editors of
Wikipedia based on latest researches in the area; In Chapter 4 our experimentation
setup, input data and our preprocessing pipelines are described. Pre-processing is
another big challenge due to dataset size, so we describe our contribution aimed to
tackle that problem. Results of the offline evaluation of the built system based on the
history of previous user contributions from Wikipedia are provided. We show that
graph-based representations give significant improvement in comparison with our
baseline Doc2Vec representations even in unsupervised setup; Finally, in Chapter 5
we present our conclusions and summarize the main outputs of this work.



4

Chapter 2

Background

2.1 Overview of Recommender Systems

It is hard to imagine a modern high-tech user service: website or mobile applica-
tion, that does not leverage from applying Recommender System (RS). We can recall
the obvious cases like recommending a movie or book but it’s much more than that -
RSs are everywhere: suggesting product to buy (e-commerce), news to read (media),
people to add friend/follow (social), most of the search systems are personalized
and results are ranked by an RS. It brings to an endless ocean of information some
personification and relevance for every specific user. This is a well-known way to
improve user’s experience. But despite the fact that RS has to work with completely
different kind of data: images, texts, videos, website pages - we can formulate com-
mon features that will be applicable for most of the mentioned cases:

• Candidate Generation: The filtering algorithm is being used to pick only some
subset of an items from the available database that are relevant for the specific
user.

• Ranking: The algorithm that is applied to sort recommendations from the
most relevant items to the least.

Recently, there has been a lot of new researches regarding new filtering and rank-
ing algorithms especially with the growing popularity of Deep Learning approaches
[Zhang, Yao, and Sun, 2017]. This is also very intensively developing area due to an
exponentially growing amount of data on the internet. In the next parts, we will
explore those algorithms in details.

2.1.1 Candidate Generation for RS (Filtering algorithms)

This task consists in looking up in the database of known items and return only
the relevant ones to the given query. In the recommendation setup query may be
replaced with user representation, which is in most cases built based on his history
of interactions (purchases/likes/article editions) along with personal features (age,
sex, etc.).

We can group most of the known filtering algorithms for candidate generation
into the next categories: collaborative; demographics; social; content-based and hy-
brid.
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Collaborative filtering (CF) is based on assumptions that we will most probably
like things that recommended by people with similar preferences to ours. The sim-
plest collaborative algorithm can be formulated as: find other users that previously
gave a score (or bought/read) to the same items that we did and pick the items from
their history that we do not know about (user-user collaboration). However, many
other similarity measures between users could be used. Several approaches like to
group users by personal attributes (like address, age) or by social connections are
distinguished to separated categories like Demographic and Social filtering respec-
tively. That could be explained by the fact that classic Collaborative filtering has
a weakness named Cold-Start. In order to get proper recommendation user has to
have filled history of interactions (bought/read) with products for RS to be able to
compare it with other users. It is especially tangible limitation of RS since it has to
interact with new users all the time. Similarly, new products that do not have scores
or purchases are less likely to be recommended. Demographic and Social filtering
are aimed to solve the first part of the problem. Whereas Content-based filtering
can help with the second and partly the first - user does not have to have a long
history of interactions, we can start to recommend something after the first contact.
Content-based filtering is utilizing similarity between objects (products) to pick new
items similar to ones that user already bought/read/scored positively. Hybrid fil-
tering implies a combination between already mentioned approaches like CF plus
Demographic filtering or CF plus Content-based with the aim to address different
solutions for Cold-Start problem.

K Nearest Neighbors (kNN)

In all of the cases described above, when the similarity between items or users is
implied k Nearest Neighbors (kNN) algorithm could be applied as a core of filtering
model. There are many different implementations such as: exact kNN which im-
plies calculating distance from query (q) to all items in database and then sort from
the closest to furthest ones and pick first k; approximate kNN like Locality-Sensitive
Hashing [Liu et al., 2004] which balance between accuracy and speed; index-based
solutions like Inverted multi-indexes [Babenko and Lempitsky, 2012] aimed to solve
scalability issues of classic kNN. Approximate kNN solutions combine high recom-
mendation performance with computation efficiency and are created to be used in
real-world tasks when latency is critical and size of database is significantly exceed
the amount of RAM.

For kNN algorithm to work, it has to have a measure of distance between items.
Among the most commonly used metrics we have: Pearson Correlation, Cosine, Eu-
clidean, Jaccard distances. Selection of the metric fully depends on the characteristics
of the target object. In most of the cases when representations were learned with
Deep Learning approach resulted vectors could be compared via cosine similarity.

similarity =
A · B

‖ A ‖‖ B ‖ (2.1)

distance = 1− A · B
‖ A ‖‖ B ‖ (2.2)
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Performance issues of kNN and possible solutions

Described kNN search could be reformulated as Maximum Inner-Product Search
(MIPS) problem, which due to the involvement of matrix multiplication in straight-
forward solution does not guarantee a good speed and computational efficiency
with growing amount of search area. Optimizing MIPS problem - is currently an
active research area. Local Sensitive Hashing - is a popular approximate solution to
this problem. This method reformulates the problem into querying objects with dis-
tance no more than (1+ ε) times bigger than the distance of true kth nearest-neighbor
and considerably improve the query time in return [Liu et al., 2004].

LSH is providing a projection of input vectors into small alphabet with a set of
trainable hash functions. It is based on the idea that if two points are close they will
be mapped to the same value in at least some dimensions (fall to the same bucket)
with high probability. And the opposite, if the distance is too big - they will not
share common buckets. However, initially, algorithm was developed for applying
on Euclidean space with respectively Euclidean distance, which is not compatible
with Cosine distance [Gionis, Indyk, and Motwani, 1999]. The solution for that in-
volves a transformation from Cosine into Euclidean space. One of such method is
described in Bachrach et al., 2014 and is implemented in well-known C++ library
Annoy by Spotify1.

FIGURE 2.1: Illustration of the Hierarchical
NSW idea. The search starts from an element
from the top layer (shown red). Red arrows
show direction of the greedy algorithm from
the entry point to the query (shown green)

[Malkov and Yashunin, 2016]

Another approximate solution is
Hierarchical Navigable Small World
[Malkov and Yashunin, 2016]. It in-
volves building a graph where vectors
are represented by vertices and edges
denote neighborhood relations between
vectors: short edges denote small dis-
tance between vectors, long - create
"Small World". It is based on the idea
that in the "Small World" average path
between two disconnected vertices will
take logN steps, where N - is amount of
vertices. All vectors are being sampled
into nested subsets (layers). From the
smallest subset (with just few vector)
layer size increases following geomet-
rical progression. On each layer graph
with edges based on distances between
vectors is built. All vectors that were
present on smallest layer are always ex-
ist on the next one. The search starts on
the smallest layer, the shortest edge is always chosen to the next vertice, and then
moves to next layer, where detected neighbor serves as transition point from one
layer to another. Procedure repeats until we reach the biggest layer, where breadth
first search is producing resulting nearest neighbors set.

1https://github.com/spotify/annoy
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2.1.2 Ranking recommendation candidates

After we selected a subset of relevant objects from the database we can look at them
more carefully to sort them in best possible ordering. The best possible ordering here
implies that items that user will more likely to buy/watch/edit should be placed at
the beginning of the recommendation list.

First, since we already have a measure of distance and we calculated it on the
first step of exact kNN search - we can use those distances as inverted rank. But
this approach has a huge weakness of so-called hubness. Hubness is the limitation
of vector space data when some objects (hubs) are much more likely to occur in
different kNN searches despite the fact that they are not always relevant to the query
but just positioned close to many other vectors (centrality) due to skewness in data
distribution. This especially affects word2vec and doc2vec models [Dinu and Baroni,
2014].

As an alternative, a separate model could be trained to predict the rank of the
object in the result list. Ranking algorithms could be categorized in next groups ac-
cording to [Liu, 2009]: pointwise models, when final score is being predicted only
from the query and one (at a time) recommended item features; pairwise models,
when items in the recommended list are compared to each other, which could be
simplified to binary classification problem: rank(a) ≤ rank(b) = {0; 1}; listwise
models are trying to predict all ranks simultaneously by maximizing objective met-
ric that we will discuss below.

As the example of pointwise approach let us consider the model in a form of bi-
nary classification task. We can label with class 1 all items i for query q that were rel-
evant (was actually selected by user) recommendations. Similarly, all non-relevant
recommendations will have class 0. At serving time items with higher probability to
have class 1 will be moved to the start positions in the list. The model thus became
a Logistic Regression task [Gey, 1994].

Pr(Relevance|item) =
1

1 + e−c−W[xi ,q]
(2.3)

where W and c are learnable parameters trained on verified relevant recommenda-
tions and [xi, q] - concatenation of feature vectors of item and query. In the case
when simple linear regression is not enough non-linear Neural Network proved to
be efficient [Covington, Adams, and Sargin, 2016]. The ranking part in recommenda-
tion system for YouTube videos uses this approach but with several fully-connected
layers with ReLU to handle wide features from embeddings.

2.1.3 Metrics for results evaluation of Filtering and Ranking models

Filtering

It is important to verify that selected items are aligned with actual users’ preferences.
Among others metrics we are finding worth to mentioned: precision, which shows
the fraction of relevant recommendations among all recommended items; and recall,
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which indicates how many items were recommended among all relevant ones.

precision =
1
|U| ∑

u∈U

|{i ∈ Zu|ru,i > θ}|
K

(2.4)

recall =
1
|U| ∑

u∈U

|{i ∈ Zu|ru,i > θ}|
|{i ∈ Zu|ru,i > θ}|+ |{i ∈ Zc

u|ru,i > θ}| (2.5)

where U - set of all users u, Zu - set of recommended items, Zc
u - converse set to Zu,

ru,i - recommendation score for user u and item i, θ - recommendation threshold.

Ranking

Quality of ranking model could be measured with: discounted cumulative gain (2.6),
which adds to correct recommendation logarithmic gain if it is located far from the
beginning of the recommendation list; mean reciprocal rank (2.7), which indicates the
average position of relevant recommendation in the list.

DCG =
1
|U| ∑

u∈U
(ru,p1 +

K

∑
i=2

ru,pi

log2i
) (2.6)

MRR =
1
|U|

1
|Zu| ∑

u∈U
∑

pi∈Z′u

1
i

(2.7)

where p1, ..., pK is list of recommendations, ru,pi - is ground truth rating given by user
u to item pi, Z′u - set of correctly recommended items.

Other important metrics

We should mention no less important measurers of recommendation quality as Nov-
elty (4.8) and Diversity (4.9) [Bobadilla, Serradilla, and Bernal, 2010] . It is sometimes
a false assumption that user seeks for only high ratable or the most similar recom-
mendations [McNee, Riedl, and Konstan, 2006]. Recommendation must not only
bring to users completely identical or very close items but in the same time try to
introduce something unexpected that will potentially satisfy them.

noveltyi =
1

Zu − 1 ∑
j∈Zu

1− similarity(i, j) (2.8)

diversityZu =
1

|Zu|(|Zu| − 1) ∑
i∈Zu

∑
j∈Zu,i 6=j

1− similarity(i, j) (2.9)

We also think, that those metrics can be applied to measure the user itself. We can
say a lot about his preferences by measuring diversity of his history of interactions.
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(A) Deep Candidate Generation (B) Deep Ranking Network

FIGURE 2.2: Architecture of retrieval: (A) and ranking (B) parts of
YouTube recommender system with applying Deep Learning models

[Covington, Adams, and Sargin, 2016]

2.1.4 Examples of production implementation of RS

YouTube

One of the main features of YouTube - the world largest platform for creating and
discovering video content - is to deliver highly personalized recommendations. This
system was built according to the classic two-stage information retrieval design: 1.
candidate generation (search in the database of existing items); 2. ranking model,
which sorts candidates by the probability of user to spend on item expected watch
time and returns only K most probably watched. Both models share similar Deep
Learning architecture (Figure 2.2) [Covington, Adams, and Sargin, 2016].

Candidate Generation model takes as input history of video watches, search to-
kens and some additional features. Video watches encoded as video ids (from the
database) are being converted into dense low-dimensional embeddings. Those em-
beddings are learned jointly with the model itself. After passing through several
fully-connected layers with ReLU activation model produces embeddings of the
user. It is being learned on the task of multiclass classification when the model tries
to predict which exactly video (class) the user will watch at a time t based on user
and context features. Produced user and video embeddings are then used to gener-
ate candidates by Nearest Neighbors search.

Then the ranking model is trained to predict watch time for each video impres-
sion. It is done via training Deep Network on weighted logistic regression task when
watch times from history are being attached as weights to positive examples (im-
pression was clicked), negative - receive unit weight. Cross-entropy loss is being
applied on training step.
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eBay

FIGURE 2.3: Architecture of Merchandise
Backend (MBE) system for recommendation

items on eBay [Brovman et al., 2016]

A similar approach is used for recom-
mending items on eBay (Figure 2.3):
candidates are being generated on the
first stage (Recall) according with given
query (Seed) and then being ranked by
the pointwise model with items hav-
ing the highest probability to purchase
go first to return. Recall system is uti-
lizing simple and reliable TF-IDF sim-
ilarity (implemented in ElasticSearch)
and users coviews (pair of items which
have been frequently viewed together
in the same browsing session by multi-
ple users). Ranking model is optimized
on similar to YouTube binary classifica-
tion task when positive class is click-
ing/purchasing and negative - lack of
action [Brovman et al., 2016].

2.2 Overview of Representation Learning

2.2.1 Extracting features from text

word2vec

One of the fundamental problems in Machine Learning and in particular crucial
for similarity task - is to find a good representation of real-world object in machine
accessible format. Since machines are operating exclusive with numbers only - the
natural choice for the format would be representation in vector space. And to control
computational complexity this vector space must be of reasonably low dimension.
The definition of good representation is various from task to task but what is com-
mon - that we would like to preserve as many properties of the original object as
possible. In Natural Language Processing problems top priority task is to teach ma-
chine to understand the meaning of texts, sentences and words to be able to operate
with those meanings - for tasks like paraphrasing or question answering. It is called
Semantic Embeddings.

There are several distinct approaches to this problem but all of them are based
on the same assumption that the meaning of the word is highly related to its context
- the other words that surround it. That leads to a very good property: if two words
are close by meaning and, in the most extreme cases, interchangeable in the sentence
- they will be very close in vector space and thus their cosine similarity will be close
to 1. Such word context can be expressed in a form of cooccurrence matrix. This
matrix will be highly sparse and it is a natural solution to apply matrix factorization
methods (like SVD) to it, which will result in the matrix of much lower dimension-
ality and it could be used as the representation. However, with rising popularity of
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neural network and their outstanding ability to generate embeddings, more compu-
tationally efficient models were found.

The model that has expanded understanding of similarity to the relationship be-
tween words, by introducing multiple degrees of similarity with a became-classical
example:

Vec(King)−Vec(Woman) + Vec(Man) = Vec(Queen)
Vec(Paris)−Vec(France) + Vec(Italy) = Vec(Rome)

was word2vec by Mikolov et al., 2013. It was achieved due to its outstanding com-
putation performance and ability to process input corpus with over 1B words. Two
fully-connected neural network architectures were proposed. The first is Contini-
uos Bag-of-Words (CBOW) model. It accepts as input one-hot encoded vectors of
surrounding words, pass them trough fully-connected projection (hidden) layer and
tries to predict the middle word (classification task) on output fully-connected layer
with softmax. The second, in opposite, having middle word as input tries to maxi-
mize the classification of surrounding words. In both cases, projection layer can be
used as embedding lookup matrix after training. Weight matrix for this layer will
have dimension NxD where N - is the amount of words in vocabulary and D - is the
dimension of embedding.

(A) PV-DM model (B) PV-DBOW model

FIGURE 2.4: Architecture of doc2vec models: (A) Paragraph Vec-
tor Distributed Memory (successor of CBOW) (B) Paragraph Vector
Distributed Bag-of-Words (successor of skip-gram) [Le and Mikolov,

2014]

doc2vec

The successor of ideas proposed in word2vec became model doc2vec by Le and
Mikolov, 2014. In the paper "Distributed Representations of Sentences and Docu-
ments" they proposed to use the same CBOW and skip-gram models but with ad-
ditional paragraph vector as input. That vector is supposed to bring missing con-
text of the full document to the process of word classification. This vector is shared
across all word inputs from the same document (or Wikipedia article in our case).
Thus, set of this paragraph vectors for all documents in dataset creates the document
embedding matrix that can be trained along with word embeddings matrix on the
same classification task. In the case of the skip-gram model it is even proposed to
omit word vector and leave classification task of context words based on paragraph



Chapter 2. Background 12

vector only. This is called Paragraph Vector Distributed Bag-of-Words model (PV-
DBOW). It was reported that the combination of both models showed the best result
across a big variety of tasks.

2.2.2 Structural representations

Having the approach to construct base (textual) representations we can now move
further to the more complex datasets. Graphs - are powerful structures with great
expressive power and ability to model complex relationship structures between en-
tities. Graphs can be used as denotation of a large number of systems across various
areas including social science (social networks), natural science (physical systems,
and protein-protein interaction networks), knowledge graphs and many other re-
search areas [Zhou et al., 2018]. The task of finding embeddings for graph nodes re-
ceived significant attention in the latest years due to ability to reformulate many Ma-
chine Learning problems like classification, clusterization, link-prediction or visual-
ization via simpler models operated with low-dimensional representations [Goyal
and Ferrara, 2018].

Matrix factorization

Until recent years the most prevalent approach for task of finding representations
for graph nodes was matrix factorization. Graph must be expressed in a form of
adjacency matrix S which consists of weights: sij = edge weight between vi and vj
if vertices vi and vj are connected. All other positions in matrix are filled with 0. For
unweighted graph, matrix is just being filled with 1 in position i, j (and j, i if graph
is undirected) when there is connection between corresponding vertices.

By factorization (dimensionality reduction) of such matrix we can obtain the em-
beddings. However, complexity and required computational resources of this meth-
ods is enormous. Time complexity for most algorithms is O(|E|d2) according to
Goyal and Ferrara, 2018 where E - is set of all edges of the graph, |E| - total amount
of edges and d - number of dimensions of resulting embedding. That is unaccept-
able for real-world graphs like Wikipedia where amount of edges increase quadrat-
ically in relation to increasing amount of vertices. On this moment graph of English
Wikipedia consists of more than 1B edges.

Random walk family

One of approaches to tackle the complexity of Matrix Factorization is to use Random
walk algorithms. This approximation algorithms were especially successful in simi-
lar tasks, where factorization used to be the leading solution, for example, PageRank
[Bahmani, Chowdhury, and Goel, 2010]. In this approach representations are being
learned from random walks - paths through graph that consist of randomly chosen
steps. That helps to incorporate knowledge about communities among neighbor-
hoods and in the same time requires to observe only some sample of the graph (for
one walker), which enables possibilities for parallelization. Time Complexity of the
most popular random walk algorithms DeepWalk and Node2vec is O(|V|d) accord-
ing to [Goyal and Ferrara, 2018] where |V| is amount of vertices.
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Node2Vec is expanding ideas behind skip-gram model - to predict missing word
based on its context (or vice versa), but using nodes instead of words and getting
context by series of Random Walks. Its objective is to maximizes the log-probability
of observing a network neighborhood NS(u) for a node u conditioned on its feature
representation, given by f [Grover and Leskovec, 2016]:

max
f

∑
u∈V

logPr(NS(u)| f (u))

This objective is being optimized with Stochastic Gradient Descent. Original imple-
mentation, hovewer is poorly scalable and demands huge memory resources [Zhou,
Niu, and Chen, 2018].

2.2.3 Deep Representation Learning

We discovered embedding producing techniques that preserve semantic properties
or structure properties. But to get the best representation we must utilize both of
them in the same model. This idea has found its application in Neural Network-
based models.

Wang, Cui, and Zhu, 2016 proposed to use deep autoencoder which takes each
node’s neighborhood as input and tries to reconstruct its features after encoding and
decoding. But this model has two limitations that make it impossible to use it with
massive real-world graph. First, it requires all neighbors to be passed as input -
full adjacency matrix, which in case of highly sparse graph leads to high memory
consumption (O(|V|2)). Second, which is derived from the first, it learns weights
for encoder and decoder with static predefined shape, based on |V| - which means,
those weights cannot be used if we add just one more node to the graph. In addition
such big amount of neurons can be a reason to very long training and possibly not
converging at all. Overall, this model showed good performance on cleaned small-
sized datasets but is not a very good fit on practice [Grover and Leskovec, 2016].

More scalable approach was introduced by Kipf and Welling, 2016 - Graph Con-
volution Network (GCN). Convolution Neural Networks showed state-of-the art
performance in many Computer Vision tasks and especially representation learning
for high-dimensional data like images, videos, sound. Thus, it is not a surprising
that there have been a lot of research recently with aim to generalize NN to arbitrar-
ily structured objects like graphs.

GCN is a multi-layer network, where each layer can be formulated as:

H(l+1) = σ(D̃−
1
2 ÃD̃−

1
2 H(l)W(l+1)) (2.10)

where Ã = A + I - is adjacency matrix with self-connections (I), D̃ = ∑j Ãij, W
- trainable weights and H is output of previous layer or H(0) = X is input, X - is
node features. If we will put that in simple words: each node collects features of its
neighbors that were propagated through trainable filters (convolutions) - so called,
message passing. On each step (layer) node collects knowledge of its neighborhood
and propagates its state further on the next step. Thus, properties of 1st, 2nd, ..., nth
proximity are being incrorporated into node’s state along with preserving original
features of node’s community. But, this model has similar limitations as described
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autoencoder - it works with full adjacency matrix, which makes it harder to work
with big graphs due to memory boundaries and, in addition, restricts adding new
nodes into the graph without full retrainingn of the model.

GraphSAGE

To tackle this limitations GraphSAGE model was introduced by [Hamilton, Ying,
and Leskovec, 2017a]. On one hand it is based on well-grounded GCN [Kipf and
Welling, 2016] which is - currently - state-of-the-art for Deep Learning Graph em-
beddings approaches. On the other hand, it arises from poorly practical tasks and
solves GCN inability to scale. This model improves GCN in a way that only some
fixed-sized sample of neighbors is utilized on the Convolutional Layer. All states
(initialized with node features) from sampled neighbors are being aggregated and
assigned as node’s current state. This process repeats and state is being propagated
further. There are several proposed aggregators - from simple mean of vectors,
element-wise maxpool or meanpool or LSTM cell. Because of fixed-size samples
we also have fixed-sized weights that are generalized and could be applied to new
unknown part of the graph or even completely different graph. Thus, with induc-
tive learning, we can train the model on a sub-graph, which means less computation
resources are required, and evaluate generalization on the full graph.

Let us rewrite (2.10) with GraphSAGE changes:

h(l+1)
NS(v) = AGGREGATEk({h

(l)
u , ∀u ∈ NS(v)}) (2.11)

h(l+1)
v = σ(W(l+1)

a CONCAT(h(l)v , h(l+1)
NS(v))) (2.12)

where NS(v) - is neighborhood sample of node v, which, as we mentioned before,
has constant size. Equations (2.11-12) are approximation of layer function in GCN -
non-linearities were kept in place, but due to sampling we replaced linear projection
of the whole neighborhood W(l+1) with aggregation step and simpler linear map-
ping W(l+1)

a along with preserving previous state of the node h(l)v . Time complexity
of the model is fully dependent on chosen sample sizes O(∏K

l=1 Sl), where Sl - is size
of sample on l layer.

There are two distinctive ways to learn weights W(l)
a : supervised and semi-

supervised.

In semi-supervised setup model is trained only from self-sufficient knowledge
about graph structure and can utilize given node features or generate "identity" fea-
tures if there is none (which will disable prediction for unknown nodes). With xent-
like loss function (2.13) we encourage connected or close in the graph nodes to have
similar representations and in contrast punish the model for placing all nodes too
close in space with help of negative sampling (the same approach as in doc2vec).

J(zu) = −log(σ(zT
u zv))−QEvn∼Pn(v)log(σ(zT

u zvn)) (2.13)

where u and v are close-lying nodes with shortest_distance(u, v) < N where N -
is random walk max length; Pn - is negative sampling distribution; Q defines the
number of negative sample.
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However, it was shown by Ying et al., 2018 and confirmed by our experiments
that this loss function is not always effective. They proposed to replace it with max-
margin loss for every pair of nodes in learning context:

J(zuzi) = Evn∼Pn(u)max{0, zu · zvu − zu · zi + ∆} (2.14)

where ∆ denotes the margin hyper-parameter.

Alternatively, any supervised task that can produce useful representation, for
example, node classification can be used. In case of classification task softmax mul-
ticlass log-loss can be applied.

Aggregator functions for GraphSAGE

Aggregator function operates over an unordered set of vectors sampled from node
neighborhood, thus this function must be invariant to possible permutations of input
data [Hamilton, Ying, and Leskovec, 2017a].

Mean aggregator is the simplest possible solution which guarantees fast forward
and backward propagations with preserving decent level of neighborhood represen-
tation. We take elementwise-mean across sampled vectors NS(v):

AGGREGATEmean = mean({h(l)u , ∀u ∈ NS(v)}) (2.15)

Meanpooling aggregator. In this approach additional fully-connected layer with
activation is being applied to each input vector before aggregation. We can consider
this as projection Ru → R f , when R f is usually of significantly higher dimension
than Ru. Another words, this layer captures different aspects of the neighborhood
set [Hamilton, Ying, and Leskovec, 2017a] by extracting additional features:

AGGREGATEmeanpool = mean({σ(Wpoolh
(l)
u + b), ∀u ∈ NS(v)}) (2.16)

Maxpool aggregator. Similar to previous approach but with different reducing
function - element-wise max - is also worth to test in our experiments:

AGGREGATEmaxpool = max({σ(Wpoolh
(l)
u + b), ∀u ∈ NS(v)}) (2.17)
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Chapter 3

Recommending Articles to
Wikipedia Editors

FIGURE 3.1: General flow of article recommending system

We propose a solution for the task of recommending the next article to edit to
Wikipedia contributors combined from different parts described in previous Chap-
ter 2. General design of our solution (Figure 3.1) is inspired by classic Information
Retrieval architecture. First we represent users by the articles that they have edited,
then we generate a list of candidates from the article pool, based on a given user by
comparing that user and the article representations. Next, we sort our article candi-
dates accordingly to the user preferences and generate a list of top-n best candidates
recommendation.

The primary challenge for our system is producing good user and article repre-
sentations. This is a crucial part for candidate generation (Figure 3.2). It is an espe-
cially big problem for user representation since most of Wikipedia contributors do
not fill any additional information about themselves except their login, and around
28% of all revisions in our English Wikipedia dataset, are being done by anonymous
users. The only useful information that could uniquely characterize the user is the
history of his editions. Hence, most of our efforts were dedicated to learning articles’
representations.

One of the effective approaches to construct good representations is to learn
them with recommendation supervision as it was done for YouTube and Pinterest
recommendation systems [Covington, Adams, and Sargin, 2016; Ying et al., 2018].
However, it is not possible to follow this approach due to the lack of the required
comprehensive-enough dataset of previous interactions. History of users editions
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FIGURE 3.2: Flow of Candidate Generation for Wikipedia articles rec-
ommendation: Doc2Vec embeddings are trained on Wiki Text Corpus
and then passed as input into GraphSAGE model which is being sep-
arately trained in two different setups with graph of internal links
between articles. Received articles’ representations are then used in

Nearest Neighbors Search to produce candidates

in Wikipedia is far from exhaustive (88% of users of English Wikipedia done less
than 5 major editions and 94% - less than 10) and too sparse in a way that it is hard
to model user’s area of interest (see section 4.1.3). Therefore, the additional chal-
lenge is to train Representation Learning in semi-supervised (or even unsupervised
in relation to our final task) way. One of the main contributions of our work is the
examination of alignment of unsupervised constructed representations to the task
of finding best recommendations.

For generating candidates we first calculate representation vectors for all articles
in our dataset. Then for the given user we define his representation as element-wise
average of vectors of corresponding articles that were edited by this user. Next, we
conduct Nearest Neighbors search with user representation as query in the articles’
representation database.

For learning best article representation text features are needed to be extracted
first. We train Doc2Vec model on Text Corpus of all Wikipedia articles in a given lan-
guage. Output vectors of Doc2Vec are being passed as input features to the Graph
Convolutional Network. GraphSAGE is being used as GCN due to ability learn
with an inductive approach and construct embeddings for unseen nodes. During
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preprocessing of input dataset - snapshot of Wikipedia Database - we create a graph
G(V, E) where V denotes set of articles, and E - set of links between them. Graph-
SAGE is utilizing structure knowledge from graph G and produces new vectors that
preserve both text and structural representations.

We train GraphSAGE model with two different setups. In the first case model’s
goal is to predict classes of a given article (multi-class multi-label problem) with
cross-entropy loss function. The other setup does not utilize any manually created
label, and is purely based on the graph structure. Model is being learned to predict
links between given articles (denoted as E) with max-margin loss function (Eq. 2.14).
We will separately evaluate resulting representations received from both of these
setups.

Due to the inductive nature of GraphSAGE architecture, we do not need to re-
train the model every time after adding a new article into the database. After pro-
ducing document vector (which requires some minor retrain of Doc2Vec) and updat-
ing Graph G structure - we can run GraphSAGE model as is, with already trained
weights.

In serving time, recommendation candidates will be produced by applying k-
Nearest-Neighbors search algorithm to find the most similar articles to user repre-
sentation vector in the pre-computed database of all articles’ representations.

FIGURE 3.3: Candidate Ranking: user previ-
ous history of edited articles along with can-
didate are being passed through articles’ rep-
resentation database (Embedding Layer) and
then through several fully-connected layers to

train in the log-regression setup

In the second part of our system,
candidate ranking, we are trying to
model user preferences based on previ-
ous edit history of Wikipedia contribu-
tors. With given previous editions and
articles, we produce a relevant a list of
candidates, ranked by its relevance for
a given user. Our model is trained on
binary labels - relevant / not relevant (lo-
gistic regression) but on serving time it
will produce probabilities of user inter-
est, which could be used as a sorting
key.

This approach is inspired by Point-
wise ranking (described in Chapter 2)
and is implemented in many similar
RS: YouTube, Google Play, eBay. The
model is shown on Figure 3.3 and con-
sists of several fully-connected layers
with ReLU activation except for the last
layer, where sigmoid activation is used.
As input model accept a concatenated
vector of user and candidate represen-
tations.

Pretrained Deep-Ranking model in
serving time will sort received on the
first stage candidates by relevance probability and first K articles in sorted list (with
highest probability) could be returned to user as recommendations.
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Chapter 4

Experiments and Evaluation

4.1 Introducing Wikipedia dataset

FIGURE 4.1: Structure of tables from Wikipedia Database imported
from SQL dump to build the Article Graph 1

Let us now introduce the dataset that we used for training representation and
ranking models and also for offline evaluation of our Recommender System. Our
system was built and evaluated on data collected from Wikipedia - a multilingual,
web-based, free encyclopedia2. There are many independent editions of Wikipedia
- usually one per each language (English Wikipedia, German Wikipedia, Spanish
Wikipedia, etc). We tested different parts of our system against different editions,
but for the final end-to-end evaluation Ukrainian and English editions were selected.

All data used in our project has been downloaded from official Wikimedia Dump
Storage3. There is separate database, and hence, separate list of dumps for each
Wikipedia edition. Wikipedia dump - is a snapshot of its database, that is being
generated once or twice a month and consists of full Wikipedia state on the moment
of generation: text from all articles, links to media, article categories, links between
articles, article revisions and comments for them, etc. Some of objects (like pages or
categories) are being stored in SQL format, others, that implies more deep structure
(like articles with revisions, information about users that created new revision and
their comments) are stored as XML dumps.

1Source: https://www.mediawiki.org/wiki/Manual:Database_layout
2https://en.wikipedia.org/wiki/Wikipedia
3https://dumps.wikimedia.org/
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TABLE 4.1: Specifications of built Wikipedia Graphs

Source
Specification English Wikipedia Ukrainian Wikipedia
Amount of vertices (|V|) 5251875 770650
Amount of Edges (|E|) 458867626 62245214
Average Degree (dall) 174 160
Median Degree (d̃all) 60 60
Approx. Diameter (D) 23 119
Amount of labeled nodes 4652604 294825

First of all, for representation learning we built a graph G(V, E), where set of
nodes V is the set of all Wikipedia pages belonging to article namespace4 and E is
set of directed links between them. SQL dumps of ‘page‘, ‘pagelinks‘, ‘redirects‘
tables (Figure 4.1) were parsed to organize this data.

During pre-processing stage, all links to redirect pages5 were replaced by their
actual destinations. "Category pages", that consists only of links to other pages and
do not have their own content, were detected and filtered out. They can be detected
by very high rate outgoing links/incoming links.

We used Apache Spark6 for parallel parsing of SQL dumps and Spark GraphX7

for discovering and cleaning Article Graph. Received Graph was converted into bi-
nary format with graph-tool8 to achieve fast loading and processing in model train-
ing. Some useful characteristics of resulting graphs (built for editions used in evalu-
ation) can be found in Table 4.1.

4.1.1 Labels for Supervised learning

FIGURE 4.2: Structure of Catego-
rylinks Table used for building labels

in supervised training

For training GraphSAGE in supervised fashion
with classification cross-entropy loss function
labels were required. Several semi-supervised
approaches were tested to collect labels. In
particular we applied two community detec-
tion algorithms to our graphs: Weighted Clus-
ter Coefficient (WCC) (non-overlapping) [Prat-
Pérez, Dominguez-Sal, and Larriba-Pey, 2014]
and BigClam (overlapping) [Yang and Leskovec,
2013]. In our experiments with labeling English
Wikipedia WCC detected 70K cluster, which
were not stable for each different run - results simply did not converge. In tests with
BigClaim (we used implementation provided by SNAP9) on machine with 4 CPU
and 26Gb of memory it took on average 52 hours to run one iteration for each count-
of-communities guess since we ran it with autodetection of amount of communities.

4https://en.wikipedia.org/wiki/Wikipedia:Namespace
5https://en.wikipedia.org/wiki/Wikipedia:Redirect
6https://spark.apache.org/
7https://spark.apache.org/graphx/
8https://graph-tool.skewed.de/
9http://snap.stanford.edu/
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We found more appropriate to utilize hand-crafted labels from Wikipedia crowd-
sourced initiative on categorizing all articles10. Those categories were imported from
dump of ‘categorylinks‘ table (Figure 4.2) and, hence, we ended up with multi-class
multi-label learning task with 1100 overlapping classes.

4.1.2 Text for document representation

FIGURE 4.3: Structure of Article’s
Revision table imported from XML

dump for Doc2Vec training

For extracting articles’ texts we took latest revi-
sion per each article from XML dump of all re-
visions (structure given on Figure 4.3). Article’s
revision - is a specific version of article’s con-
tent that is created after each new modifications
done by user. Wikipedia article’s content con-
sists of a lot of system information: from links to
other pages, links to media files, fact references
to math content, tables and markups. We uti-
lized Gensim library11 to extract only useful in-
formation, tokenize and lemmatize text and pre-
pare for model (doc2vec) training. We tagged
each document with article id (page id) to be
able to look up the vector of each specific arti-
cle in output matrix produced by the model.

4.1.3 Revision history for evaluation

For evaluation of our recommendation system in end-to-end fashion we utilized
data about articles’ revisions (Figure 4.3) and reorganized it into revisions-per-user
dataset. Only revisions that were created after January 1, 2015 were kept in this
dataset, so our recommendations that are based on the latest snapshot of article
graph (October 2018) will not recommend too many articles that did not exists on
the moment of modification. Some interesting statistics about this dataset is shown
on Figure 4.4. It is easy to notice that huge part (88% for Enlgish edition) of contribu-
tors are not regular users - they edited less than 5 different articles for selected dates.
Thus, it is very hard to model their behaviour and their data is unsuitable for our
evaluation. The part of contributors that fits to our needs has mostly edited from 5
to 40 different articles, though diversity (calculated accordingly to Eq. 2.9) of those
articles is rather high (Figure 4.4 C, D). That is the main cause our representations
cannot be trained against this data like it was done in YouTube recommendation sys-
tem [Covington, Adams, and Sargin, 2016] - training dataset is small (around 60K of
users from English Wikipedia and less than 7K users from Ukrainian) and users’
area of interest is too sparse.

10https://en.wikipedia.org/wiki/Wikipedia:WikiProject_Categories
11https://radimrehurek.com/gensim/
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(A) Amount (logarithmic) of contributors by
count of edited articles (English)

(B) Amount (logarithmic) of con-
tributors by count of edited articles

(Ukrainian)

(C) Distribution of contributors’ diversity
(with amount of articles > 5) from (English)

(D) Distribution of contributors’ di-
versity (with amount of articles > 5)

from (Ukrainian)

FIGURE 4.4: Researching Wikipedia’s contributors: distribution by
amount of edited articles (A) and editions’ diversities (B)

4.2 Efficient (Big) Data Processing

4.2.1 Parallel Wikipedia Dumps pre-processing

Our main challenge in building the system was the amount of data that has to be
processed before starting to train our models: to clean up and extract only useful
part from the Wikipedia Database. We consider it as typical Big-Data problem. As
already was mentioned we worked with SQL (MySQL format) and XML dumps.
Some of this dumps were especially huge. For example, full XML dump of revi-
sions for the English Wikipedia, with included exact text of every change, in un-
compressed state has size more than 600Gb. We wanted to process this data in par-
allel. On the other hand all experiments must have been conducted with different
Wikipedia editions, so we needed to introduce automatization into this preprocess-
ing as well.

Another example is SQL dumps. Toolset provided by MySQL Database includes
mysqlimport util. However, it only works in sequential order to follow all transac-
tion restrictions. That became an issue when we were importing pagelinks. There
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are more than 1B rows in original pagelinks table in English edition. We experi-
mented first with smaller datasets. The import process of pagelinks from Ukrainian
Wikipedia took around 26 hours due to bottleneck in disk operations (on machine
with regular HDD) since mysqlimport wraps each query into separate transaction.
English Wikipedia is approximately 8 times bigger and since importing is sequential
we assume it would take 8 times more time. There are some solutions trying to solve
transaction issue, but there are no solutions to our knowledge enabling parallel load.
We wanted to set up different Wikipedia editions and try our models in different en-
vironments - so there was a need for parallel read solution for MySQL format as well
as for XML.

To tackle this issues we developed our own preprocessing toolkit that can be
also useful in future researches that would involve Wikipedia dataset12. It is based
on Apache Spark and includes parallel import of SQL-dumps, fast data-mining and
some Graph cleaning routines. With this toolkit we were able to decrease time spent
on preparation - for all next editions it took less than 8 hours using cluster of 8
machines (4 CPU, 26 Gb Memory) to get all data cleaned and ready for training
(tested on Enlgish, Spanish, Russian, Ukrainian editions).

4.2.2 GraphSAGE Scalable Implementation

The second part of our implementations contribution is related to the code-base of
the GraphSAGE model. At first we started our experiments with original code-
base13 provided by authors of the paper [Hamilton, Ying, and Leskovec, 2017a].
However, despite the fact that model is designed to work with massive graphs with
over 1B edges, in our experimental setup the code crashed with 100M of edges.
First of all, their graph processing is built on library networkx14 written completely
in Python. This library has good API and reach functionality but was created for
research-only purposes to work with educational lab graphs. It expects input graph
to be stored in json (text) format and stores all nodes and edges as separate python
objects which leads to very high memory consumption - according to our tests it
could take up to 1kB per edge, so it would require just over 400GB of memory just
to load graph of English articles. We reworked all data consumption model, rewrote
batch feeding processing, variables initialization and propagation in the model. Re-
sulted code was published on github 15 .

4.3 Experiments

4.3.1 Document Representations

We trained both Doc2Vec-DM and Doc2Vec-DBOW models on Wikipedia Corpus
with vector size = 100 and window size = 6. All words that occurred less than 20
times in all texts were filtered out. Results have been visualized on Figure 4.5 as dis-
tribution of distances between vectors of random articles. That represents how good

12https://github.com/pyalex/wiki2graph
13https://github.com/williamleif/GraphSAGE
14https://networkx.github.io/
15https://github.com/pyalex/GraphSAGE
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(A) English (B) Ukrainian

FIGURE 4.5: Comparison of received representation by training
Doc2Vec with different settings: Distributed Bag-of-Words (DBOW)
and Distributed Memory (DM). Figure shows distribution of similar-

ities between two articles randomly selected from Database

vectors are distributed in the space. Vectors generated by Doc2Vec-DBOW were cho-
sen as input to the GraphSAGE model since this model showed better performance
on the offline evaluation (Tables 4.3, 4.4)

(A) English (B) Ukrainian

FIGURE 4.6: Comparison of received representation from Doc2Vec,
GraphSAGE-classification, GraphSAGE-link-prediction. For Graph-
SAGE model with meanpool aggregator has been used. Figure shows
distribution of similarities between two articles randomly selected

from Database

4.3.2 GraphSAGE

As was mentioned above GraphSAGE became our major option for representation
construction based on both structural and semantic data.

Training details. For all training experiments with GraphSAGE we generated
sampled adjacency matrix based on Articles’ graph G. This matrix was constructed
once and used across all trainings for one Wikipedia edition. That allowed us to
speed-up our experiments and guarantee comparability of different setups. Width of
adjacency matrix was determined by our experiments, available memory resources
and graph statistics (Table 4.1). We selected 128 as maximum amount of neighbors in
this matrix. If node had more than that - random subsample was selected. On each
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convolutional step we picked random sample of 25 neighbors from this adjacency
matrix. This 25-neighbors sample is being resampled on each new batch. For better
generalization we used batch size 512, since experiments with Dropout [Srivastava
et al., 2014] between convolutional layers led to no improvement in generalization.
We focused on three aggregators: mean, meanpool, maxpool (Eq. 2.15-17) and se-
tuped size for all output vectors to 256 as balance between better resolution and
available memory.

Link Prediction. At first, experiments with self-sufficient training were con-
ducted. Document representations (from doc2vec) were passed as initial node states
and graph edges played the role of labels when the model was trying to predict those
edges - links between nodes. Xent-like loss (Eq. 2.13) were applied to the learning
task. However, in this setting model did not converge with any of aggregator func-
tion. We manually tested generated representations by searching neighbors with
cosine similarity and our results were no better than random. We conduct manual
review for 100 randomly chosen articles from database.

After we switched to max-margin loss (Eq. 2.14) that was recommended by Pin-
terest paper [Ying et al., 2018], we observed improvement. This results are refer-
enced as GraphSAGE-link-prediction in our evaluation.

Training with Classification and labels’ issues. Alternatively, we trained Graph
Convolutions on supervised classification task. For this purpose hand-crafted cate-
gories from WikiProject16 were utilized. This approach has a limitation. Despite the
fact, that almost 90% of articles in English edtition have category WikiProject cov-
ers only articles in English17. As solution for this problem - we utilized WikiData18

database which connects articles across different editions to propagate categories to
other languages. However, Wikidata is not 100% reliable: first, it is not always one-
to-one relation between pages in different editions, and wikidata is not designed
to handle such situations; and second, there could be many articles in, let us say,
Ukrainian Wikipedia that are absent in English, thus, again, there is no category to
propagate. As the result, there are only about 38% of articles that have categories
in Ukrainian Wikipedia after we mapped english-ukrainian articles with WikiData
and propagated labels (Table 4.1).

The loss function for this setup can be formulated as:

J = −
C

∑
c=1

targetclog(sigmoid(predictionc)) (4.1)

where C - is total number of classes.

Comparison of received representations from Doc2Vec, GraphSAGE with link
prediction and GraphSAGE with classification task is shown on Figure 4.6. Model
trained with link-prediction preserves higher sparsity in the vector space especially
in English edition, where embeddings generated by GraphSAGE-classification are
positioned much closer and, as we will see in final results (Tables 4.3, 4.4), that is

16We use Wikiprojects as user-generated tags, such as "History", "Sport" or other more
specific such as History of France", for more details on Wikiprojects please reffer to:
https://en.wikipedia.org/wiki/Wikipedia:WikiProject_Categories

17There are WikiProjects in other languages, however currently their coverage is limited
18Wikidata is manually generated knowledge base. For details please go to:

https://www.wikidata.org/wiki/Wikidata:Main_Page
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correlating with lower performance (similar to Doc2Vec-DM results).

4.3.3 Deep Ranking

For training Ranking model dataset from users’ history of modifications was con-
structed. As input this model takes 5 articles previously edited by user (as rep-
resentation of user preferences) and 1 candidate that might interest the user. The
model tries to predict the probability of relevance of this candidate to the current
user. Those 6 input articles are being passed through Embedding Layer populated
from representations received from GraphSAGE (Figure 3.3) and then concatenated
into one vector. We took positive candidates from actual user history and generated
negative candidates with kNN search on constructed articles’ representations. Lo-
gistic regression with class-weights (due to high class imbalance in real data) was
used as loss function on this model’s training.

The final architecture of Deep Ranking model consists of 4 fully-connected lay-
ers with Batch Normalization [Ioffe and Szegedy, 2015] before each ReLU activation
(except for last layer) and Dropout [Srivastava et al., 2014] after each activation (ex-
cept for last layer). The last layer has sigmoid activation. The level of dropout and
amount of neurons on each layer were optimized for each Wikipedia edition sepa-
rately.

4.3.4 Time optimization for kNN search

As it was discussed in section 2.1.1 kNN search is main part of candidate generation
and its performance and time and resource consumption is very critical for online
recommendation in high-load system. We conduct experiments with different opti-
mizations for kNN: Locality-Sensitive Hashing (LSH), Inverted file with exact post-
verification (IVF), Hierarchical Navigable Small World graph exploration (HNSW).
Our tests showed that HNSW gives the best speed along with exactly the same recall
and MRR as exact search, so with no trade-off in performance we achieved 20x times
improvement in speed.

Algorithm Setup time (s) Time/request (s) Recall MRR
Exact search (inner dot product) 3.91 0.81 0.224 0.0220
IVF 207.02 0.07 0.206 0.0212
HNSW 232.68 0.04 0.224 0.0220
LSH 472.31 0.15 0.215 0.0219

TABLE 4.2: Time Performance of different algorithms for kNN
search. All tests were conducted with English articles representation
database (|V| = 5251875). All implementations were provided by

FAISS19. Hyperparameters used: IVF (nlist=100),
HNSW(size=32 bytes), LSH(bits=256)

19https://github.com/facebookresearch/faiss/wiki/Faiss-indexes
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4.4 Evaluation

We evaluated our Recommendation System in end-to-end fashion, when system was
built accordingly to Figure 3.1.

To prepare evaluation dataset, we subsampled windows with size 10 from user’s
history of modifications (from users that was not previously used for training or
testing Deep Ranking model). First 5 articles denoted user area of interest. To receive
user vector we took element-wise average of representations from first 5 articles
(GraphSAGE representations). We were trying to predict the rest 5. Algorithm can
be expressed as follows:

1. Take first 5 articles. Calculate average of their embeddings vectors, receive
user representation as vector

2. Generate candidates by nearest neighbors search of user representation

3. Sort candidates according to ranking algorithm and select first K. In our eval-
uation we compare two ranking techniques: sort by cosine similarity; sort by
probability from Deep Ranking model

4. Compare Top-K recommendations with the rest 5 articles (from second half of
window)

To evaluate the outcome we used two metrics: Recall (Eq. 2.5), that indicates pro-
portion of correctly predicted recommendations from actual history and MRR (Eq.
2.7), that indicates on which positions those correct predictions were in recommen-
dation list. Those metrics are being averaged across all true values.

Results of evaluation are presented in Tables 4.3 and 4.4 for English and Ukrainian
Wikipedia editions respectively.

4.4.1 Result Interpretation

Let us now consider recommendation example in details to better understand how
results shown in Tables 4.3 and 4.4 were received and can be interpreted. Visualiza-
tion for this example is shown on Figure 4.7, where all representations were decom-
posed to 2 dimensions using Principal Component Analysis (PCA).
From user’s history we selected 5 sequential contributions, obtaining a list of arti-
cles per user. For example: [Petticoat Junction; The Lucy Show; Pistols’n’Petticoats; The
Jackie Gleason Show; The Tonight Show Starring Johnny Carson] and her next 5 contri-
butions: [Bewitched; Your Show of Shows; Here’s Lucy, Karen (1975 TV series); Upstairs,
Downstairs (1971 TV series)]

Based on first 5 revisions we calculated user representation and then Top-K rec-
ommendations. We can imagine result of RS as sorted list with each element’s posi-
tion attached to its value:

The Red Skelton
Show

... Here’s Lucy ... Bewitched Jack Benny ...

1 .. 6 ... 30 31 ...


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FIGURE 4.7: Vector Representations of user (received by element-wise
average from representations of his previously edited articles) and
received recommendations on the task of predicting next 5 articles

edited by user (PCA decomposed)

From this recommendation list two elements are matched to our true values (as
it shown on Figure 4.7). Their positions are 6 and 30. Now we can calculate our
evaluation metrics Recall and MRR for this recommendation:

recall =
tp

|T| =
2
5
= 0.4

MRR =
1
|T|∑T

1
ranktp

=

1
5
(

1
6
+

1
30

) =
1
5

6
30

=
1
25

= 0.04

where tp - true positives, denotes amount of relevant recommendations (match
our labels), T - set of true labels and |T| - amount of true labels, ranktp - position of
relevant item in recommendation results.
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TABLE 4.3: Offline Evaluation of generated recommendations
(English Wikipedia) on the task of predicting next 5 articles edited by

user with Doc2Vec-DBOW as baseline

K=50 K=100 K=200
Model Recall MRR Recall MRR Recall MRR
Doc2Vec-DBOW 0.084 0.0162 0.1100 0.0161 0.1456 0.0162
Doc2Vec-DM 0.0702 0.0123 0.0993 0.0127 0.1350 0.0130
GraphSAGE-classification-mean 0.1021 (+21%) 0.0174 0.1408 0.0179 0.1878 0.0182
GraphSAGE-classification-meanpool 0.0885 0.0147 0.1232 0.015 0.1659 0.0151
GraphSAGE-classification-maxpool 0.0693 0.0104 0.0998 0.0105 0.1382 0.0106
GraphSAGE-link-prediction-mean 0.1236 (+47%) 0.0214 0.1702 0.0218 0.2248 0.0220
GraphSAGE-link-prediction-meanpool 0.1239 (+47%) 0.0210 0.1692 0.0214 0.2253 0.0219
GraphSAGE-link-prediction-maxpool 0.1149 0.0193 0.1594 0.0196 0.2135 0.0200
GraphSAGE-link-prediction-mean +
Deep-Ranking

0.1363 (+62%) 0.0222 0.1870 0.0239 0.2455 0.0232

GraphSAGE-link-prediction-meanpool +
Deep-Ranking

0.1410 (+67%) 0.0230 0.1905 0.0230 0.2505 0.0226

4.5 Results

We consider as our baseline Doc2Vec models, since we did not change them and
trained all representations with default settings - we only selected vector size based
on memory limits. As it was expected GraphSAGE models can perform much better
in representation training (through adding structural knowledge into representa-
tion) than best result from Doc2Vec (Doc2Vec-DBOW): 47% improvement in Recall,
32% in MRR (K=50, English); 62% in Recall and 41% in MRR (K=50, Ukrainian).
However, it is not always true for representation trained with classification task. In-
tuitively in this setup model preserves not enough variance and keep only minimum
knowledge required for classification.

We also compared different aggregators and our results did not quite align with
other researches which achieved best results with max or mean pool aggregators
[Ying et al., 2018; Hamilton, Ying, and Leskovec, 2017a]. In our case mean and mean-
pool aggregators performed very similar with most of the cases mean showed better
result. Whereas max-pool performed significantly worse in all experiments. Intu-
itively, good performance of mean could be explained by reach semantic properties
of our input features - Doc2Vec representations, which mean benefits the most. In ad-
dition, models with mean aggregator have significantly less parameters which could
lead to better generalization. This is especially likely if we recall that our model was
trained in unsupervised way with respect to final task - recommendation.

Overall, our best results was achieved by combining models: GraphSAGE-link-
prediction model with mean-pool aggregator for representation generation and Deep
Ranking model for candidates sorting. We got +68% improvement in Recall and
+41% in MRR on Enlgish edition (K=50) in comparison to Doc2Vec-DBOW baseline.

We tested our architecture against two very different editions: English and Ukrainian.
We received very similar results, which indicates that our approach is stable and re-
liable. However, we were not able to receive much improvement with Deep Ranking
trained on Ukrainian contributors due to the lack of the data - there are simply not
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TABLE 4.4: Offline Evaluation of generated recommendations
(Ukrainian Wikipedia) on the task of predicting next 5 articles edited

by user with baseline Doc2Vec-DBOW

K=50 K=100 K=200
Model Recall MRR Recall MRR Recall MRR
Doc2Vec-DBOW 0.0832 0.0204 0.1140 0.0208 0.1390 0.0208
Doc2Vec-DM 0.0563 0.0131 0.0563 0.0125 0.0870 0.0124
GraphSAGE-classification-mean 0.0722 0.0128 0.1005 0.0128 0.1375 0.0129
GraphSAGE-classification-meanpool 0.0716 0.0121 0.0948 0.0121 0.1235 0.0123
GraphSAGE-classification-maxpool 0.0684 0.0108 0.0888 0.0110 0.1210 0.0110
GraphSAGE-link-prediction-mean 0.1352 (+62%) 0.0288 0.1688 0.0295 0.2087 0.0291
GraphSAGE-link-prediction-meanpool 0.1230 (+48%) 0.0280 0.1585 0.0284 0.1971 0.0287
GraphSAGE-link-prediction-maxpool 0.1162 (+40%) 0.0246 0.1458 0.0246 0.1811 0.0248
GraphSAGE-link-prediction-
mean + Deep-Ranking

0.1435 (+72%) 0.0269 0.1847 0.0261 0.2254 0.0252

GraphSAGE-link-prediction-
meanpool + Deep-Ranking

0.1388 (+67%) 0.0267 0.1763 0.0270 0.2245 0.0270

enough users to get good generalization, so by tuning the model we were able to im-
prove either MRR or recall, not both. In contrary, from English contributors’ history
we were able to train the model that improve recall and MRR on 10% in comparison
with cosine-similarity ranking.
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Chapter 5

Conclusion

In this thesis, we developed a technical solution for Recommendation System to
recommend articles to Wikipedia editors with addressing all challenges caused by
production-scale datasets (so-called Big-Data). We applied the latest research achieve-
ments in the field of Graph Representation Learning and have taken into account
experience from building similar products like Recommendations on YouTube, Pin-
terest, eBay. Our main difference with those systems is that we cannot train our
models with the supervision of previous recommendations like it was done in all of
those RS due to lack of interaction history with user - 94% of Wikipedia contributors
edited less than 10 articles.

We started with an overview of recommender systems and one of the most cru-
cial parts of generating recommendation - the problem of finding good represen-
tations for recommendation items. We assumed that Graph Representation Learn-
ing that preserves both text (from articles) and structural (from links between ar-
ticles) features would guarantee better performance than just text representations
(word2vec, doc2vec). We introduced GraphSAGE model that is the latest state-of-
the-art in Graph Convolutions for Representation Learning. We explained why this
model is might be the best option for our task, especially considering that most of
the other researches (considered by us) have been tested only on small lab datasets
in far-from-production conditions whereas GraphSAGE was designed with produc-
tion scale in mind and allowed inductive training (Chapter 2).

In our proposed solution for task of Recommending Articles to Wikipedia Edi-
tors we combined both candidate generation based on representations learned with
GraphSAGE and Deep Ranking Model which aims to select only the most relevant
items from generated pool of candidates and return Top-K best recommendations.
The latest is the only model that was trained with supervision of previous user edi-
tions. In general, article representation were received in fully unsupervised (with
respect to user interactions) fashion (Chapter 3).

On the evaluation of our system we encountered with many issues caused by big
amount of data we needed to pre-process and mine in order to build our models.
We developed our own toolkit to convert Wikipedia Database Dump into ready-
to-training datasets. We also had to significantly rewrite the code of GraphSAGE
training to enable faster data load and, hence, experimentation.

We received 47% improvement in Recall and 32% in MRR (English Wikipedia)
and 62% improvement in recall and 41% in MRR (Ukrainian Wikipedia) by replacing
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representations from our baseline (Doc2Vec-DBOW) with our best model (GraphSAGE-
link-prediction-mean). Overall by applying our full system (GraphSAGE + Ranking)
we were able to receive 68% improvement in recall and 41% in MRR (English). These
results confirm our assumption about importance of structural features in Represen-
tation Learning. We were able to achieve significant improvement over just-text
features even with unsupervised learning (Chapter 4).

Further research could be focused on improving current results by replacing
learning task for representations. YouTube and Pinterest experience showed that the
best representations for recommendations could be received when model trained
with supervision from previous recommendation experience. However, it implies
that there already exists some Recommender System which produces reach history
of interactions - user gives feedback, by following recommended items or ignoring
them. We would be able then to train on this history. Representation Learning with
Graph Convolutions could show even better results in this scenario.
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