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“Colors, like features, follow the changes of the emotions. ”
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Chapter 1

Introduction

What is an image?
Generally, a digital representation of the visual appearance of physical objects

could be considered as an image. From such a broad definition it follows that an
image could have an extremely complex structure and content. Looking at an im-
age, we could extract meaningful information and various structures. Illustrative
examples could be objects and interactions between them, edges and areas, colors
and their deepness

In the last decade, with the rapid advancement of automated image processing
algorithms and models, computers become more able to extract meaningful insights
from images. Notably, a lot of essential achievements were made in the area of ob-
jects detection and segmentation. Combining that with the latest outbreaks in the
area of augmented reality and current computational capabilities, we are entering a
stage, where we could extract, modify and replace parts of images in the real time.

With that in mind, this work addresses several research and industry oriented
goals.

1.1 Research Goals

First of all, to build an efficient image-to-image color and style transfer model, which
is capable of transferring complex patterns while preserving original semantic char-
acteristics in any domains. The model should demonstrate competitive quantitative
and qualitative results as well as minimum computational resources.

Secondly, we were not able to find a suitable dataset for such deep learning
model training. Therefore, in this work, we are addressing possible options to over-
come this limitation and generate such dataset.

Finally, we are aiming to provide an extensive comparison of possible approaches
to the image-to-image transfer and their applications.

1.2 Industry Related Goals

From the more applied point of view, this work aims to create and describe an effi-
cient pipeline for performing color and style transfer for images or their parts. We
are reviewing in details such aspects of the pipeline as objects detection and seg-
mentation, images and objects classification by style and color characteristics, and
generative models for style and color transfer.
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Chapter 2

Related Works

Color and style transfer has become a hot field in the recent decade. Such a rapid
expansion the area is caused mostly by increasing computational capabilities, an
introduction of general-purpose computing on graphical processing units as well as
photo and video technology advancement. Currently, there are dozens of research
challenges in various sub-areas, therefore, this chapter has two main objectives. First
of all, to give a decent overview of the field and secondly, find current researches’
place in it.

2.1 Colorization

Colorization is a well-studied sub-section of the color and style transfer problems
set, where an input image is mapped from grayscale to a multicolor domain. As
there is an infinite number of ways to colorize a single black-and-white image, cre-
ating a colorful image is just half of a process, there is always a need to be able
to choose the best colorization. Therefore, for solving mentioned above challenges,
were invented multiple techniques, which could be roughly divided into two main
groups: user-guided and collection-guided colorization. The first group of methods
relies on some hints from users about regions’ colors, while the second learns priors
from an extensive collection of images.

2.1.1 User-guided Colorization

Many first attempts to automate black-and-white images colorization were relying
on some user provided hints about the images color distribution. First class of meth-
ods rely on user input color strokes[ Levin, Lischinski, and Weiss, 2004, Qu, Wong,
and Heng, 2006] Those methods are mostly working with YUV color space and had
a constraint that two neighboring pixels should have similar colors if their intensi-
ties are similar Levin, Lischinski, and Weiss, 2004 Algorithms are solving an opti-
mization problem of minimization a color difference of two neighboring pixels with
similar intensities. Therefore, as they rely on low-level special difference metrics for
color propagation, to achieve realistic results, those algorithms require either broad
user input strokes or monotonous source image.

After the mentioned above optimization problem was formulated, most of the
researches were focusing on finding better pixel similarity metric to reduce the re-
quired number of user inputs. One of the last breaks through in the field was
achieved using neural networks for extracting deep features for edit propagation
Endo et al., 2016

As an advancement of deep learning approach for user-guided colorization, Zhang
et al., 2017 propose usage of Convolutional Neural Networks to transform a grayscale
source image and a set of user input hints into a colorful version of the source image.
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FIGURE 2.1: User-Guided Colorization example by Levin, Lischinski,
and Weiss, 2004. The first row: grayscale input images with color

strokes, the second one: results of the colorization

In the training process Zhang et al., 2017 generate a set of input hints along with a
black-and-white version of an image from a colorful ground truth picture and then
train a CNN to match that picture. Importantly, authors also introduce two ways to
provide hints to the network. The first one is Local Hints Network - a set of input
colors for some image’s pixels and the second one - Global Hints Network - when
the model learns a color distribution for a source image from another "style" image.

2.1.2 Automatic Colorization

In the automatic colorization algorithms, an input grayscale image is colorized us-
ing statistics from a single style image or a collection of style images. Very first
color transfer methods provided a semi-automatic process, when an algorithm, sup-
plied with similar domain reference image[Gupta et al., 2012, Irony, Cohen-Or, and
Lischinski, 2005] or images collection [Morimoto, Taguchi, and Naemura, 2009],
could extract and apply the reference color distribution to an input image. Although
those algorithms are suitable for colorizing images using with really content-similar
references, they are having troubles with complex structures. To perform a trans-
fer for non-trivial correspondences, those algorithms require a mapping between a
source and a reference images correspondent areas [Irony, Cohen-Or, and Lischin-
ski, 2005].

Most of the recent breaks through in the automatic colorization field were achieved
by utilizing deep learning capabilities and training on a large scale multidomain im-
age collections [Larsson, Maire, and Shakhnarovich, 2016, Iizuka, Simo-Serra, and
Ishikawa, 2016]. An essential advantage of those methods is producing multivariate
outputs by generating color probability histograms for pixels. When for some ob-
jects, we could predict a color with high certainties, like orange for orange, there are
objects, which could have multiple variants, like green and red apples. Depending
on the style image or image collection, we would get different histograms, and there-
fore after merging them, we could get more diverse results. As we can see on the
2.2 due to training on an extensive collection of images, the model could with high
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FIGURE 2.2: From left to right: input grayscale image, automati-
cally generated example, and ground truth. [Larsson, Maire, and

Shakhnarovich, 2016]

accuracy propagate lemons’ color, although it has difficulties with the background
and clothes’ colors.

Predominant majority of the colorization methods, we covered so far, were work-
ing with various similarity metrics to establish conformity between some source im-
age area and similar areas on a style image or images. Another family of models
tries to learn mappings between semantic characteristics of images(objects, mate-
rials, etc.) and colors Chia et al., 2011. Afterward, those semantic characteristics
are extracted from a source image and previously learned mappings are applied to
them.

2.2 Color and Style Transfer

Image Colorization is only a small part of the style, and color transfer problems
set, which includes but not limited to: cross-domain style transfer, photo enhance-
ment, image blending, image denoising, and inpainting. As the scope of this work
is mostly related to color transfer, we will make an accent on cross-domain style
transfer works and their applications.

2.2.1 Classic Methods

For a long time color transfer for individual objects is dominated by conventional
machine learning methods mostly based on Histogram Matching Algorithms like
Reinhard et al., 2001 or Beigpour and Weijer, 2011a. Those methods are working
effectively for recoloring purposes when we are dealing with monochrome colors.
Reinhard et al., 2001 achieved a few remarkable results, which made their model
a useful technique for a large set of transfer problems. First of all, for image rep-
resentation, instead of an RGB, was proposed a new color space lαβ As Ruderman,
Cronin, and Chiao, 1998 suggested in their studies, it minimizes correlation between
channels for many natural scenes, which corresponds to human visual perception.
Secondly, lαβ color distributions of an input image and a style image was merged. In
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FIGURE 2.3: A pair of source and target images as well as their re-
sulting output after using the colour transfer technique by Reinhard
et al., 2001 are shown in the top row. The corresponding histograms
are shown at the bottom for the three channels of the L colour space

[Reinhard and Pouli, 2011]

the simplest case, as can be observed on the 2.3, only mean and a standard deviation
of a source image a shifted towards the style one

The main disadvantage of the method is the dependency on the images simi-
larity. Although semantic segmentation could partially solve the problem, by per-
forming transfers between semantically similar areas separately, it is still failing sig-
nificantly different images. Furthermore, from the mathematical formulation, the
algorithm is limited in making radical changes or applying complex patterns from a
style image to the source one.

Many of the issues were addressed in the number of subsequent works, in par-
ticular, Tai, Jia, and Tang, 2007 proposed adding soft color segmentation, while Pitié
and Kokaram, 2007 introduced minimal displacement mapping. Those advance-
ment allowed to achieve an active single attribute transfers for photos, like famous
time of the day change problem Shih et al., 2013

One of the critical challenges, in the example-based style transfer, is selecting a
single "style" image, as result dramatticaly depends on it. The problem is to choose
a maximum semantically similar picture, which would be highly representative of
the style. This question is widely addressed in Lee et al., 2015, where novel tech-
niques of selecting a style image and performing a global style transfer. Many of the
current works pipeline steps were inspired by Lee et al., 2015 ideas — notably, the
idea of using semantic similarity metrics and clustering the input collection by style
characteristics to be able to perform unsupervised learning.

Although, when styles are significantly diverse, and we need to do a notable
transformation for composite objects, example-based techniques show insufficient
performance and tend to acquaint example specific style artifacts. The particular
challenge is illuminance and glares, which are typical for glossy surfaces. Those
issues were addressed in car recoloring example in Beigpour and Weijer, 2011b, but
the proposed classical solution requires precise carcass segmentation and is limited
to monochrome coloring. Our suggested method for a cross-domain transfer aims
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FIGURE 2.4: Example of a color transfer with manual instance seg-
mentation by Luan et al., 2017

to solve challenges in this particular area.

2.2.2 Deep Learning

While traditional methods could solve many challenging tasks, they are unable to
reflect high-level features effectively. An example of such an essential element could
be an artistic style. One of the first successful results of an artistic style transfer
was achieved in Gatys, Ecker, and Bethge, 2015 by constructing a loss function as a
sum of two separate terms. The first one for the image content (minimization of the
content difference between a source image and the generated one) while the second
one for the style(minimization of the style difference between a target image and the
generated one). Although even when style and content are successfully transferred,
the results are not photorealistic, what makes the model unsuitable for photo style
transfer. Later Luan et al., 2017 achieved more photorealistic results by designing a
loss function that constrains the transformation from the source to the target image
to be locally affine in a color space. Also Luan et al., 2017 use semantic segmentation
model by Chen et al., 2016 to establish correspondences between images. Various
semantic regions are detected on the source image, and then their analogs are de-
termined on the target image. For instance, the source image contains sky, car, and
grass; then the target one would be searched for those classes. Our work heavily
utilizes the idea of instance segmentation usage 2.4 addressed in Luan et al., 2017,
although we include automatic methods instead of manual segmentation.

The single-reference methods highly depend on the quality and choice of the
style image, therefore, with the advancement of neural networks, were created meth-
ods capable of aggregating and transferring the style from multiple photos to the
source one. Most of the methods are starting with an extensive collection of images,
which are later classified or clustered into style groups by color or semantic charac-
teristics Lee et al., 2015.

2.2.3 Generative Adversarial Networks

In the previous chapter we did an extencive overview of relevant challenges in
image-to-image translation area and their partial or full solutions. Summarizing
the main

Although Convolutional Neural Networks can learn complex style and color
mappings, they require designing specific loss functions for separate problems. This
reason makes them hard to use for cross-domain style transfer with arbitrary do-
mains nature. Luckily, Generative Adversarial Networks are capable of learning
those loss functions from data. We are reviewing GANs and cGANs in more details
in ??, as their understanding is crucial for this work. The idea of image-to-image
translation with Conditional Adversarial Networks and corresponding pix2pix frame-
work is addressed by Isola et al., 2016. Researchers achieved an outstanding result
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FIGURE 2.5: Horse to zebra from unpaired dataset by Zhu et al., 2017

by creating a useful framework for many image-to-image translation problems in-
cluding but not limited to day2night, edge2photo, and aerial2map. However, the
proposed structure requires paired inputs, which are rarely available. This problem
was partially solved in Zhu et al., 2017 by the introduction of Cycle-Consistency
Loss. If we have two domains A and B, the generator function G learns to generate
B-like images from A sources, but as it appears, the network tends to disregard the
source image and generate any B-like ones. To overcome this challenge, Zhu et al.,
2017 propose to train G, not only to create from A sources fake B images but also
to reverse those fake B images back to domain A. As the result; we should get the
original A image. This powerful idea helps to overcome unpaired data problem. As
a result, we could generate zebra images from horse images without paired input
dataset 2.5

Though, another problem of such a framework is the requirement to train a sep-
arate model for each color/style transfer case. There were two main approaches
to solve this issue. The first one, addressed in Chang et al., 2018 is to supply the
generator not only with source image but also, with a corresponding target image.
However, this approach also requires the introduction of an additional auxiliary dis-
criminator and due to increasing input dimensions, the memory requirement for
model training increase significantly. The second one was described by Choi et al.,
2017 proposes a multi-domain transfer method by changing the training strategy
and training a single network for multiple domains using multiple datasets. In our
work, we adopt proposed "star topology" for our model.
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Chapter 3

Dataset and preprocessing

In the previous chapter, we did an extensive overview of relevant challenges in the
image-to-image translation area and their partial or full solutions. Summing up,
the main challenges are building multi-domain transfer models, producing photo-
realistic results, processing images with visual artifacts like reflections or shadows.
Furthermore, recently high resonance got various image modification techniques,
especially face swap [Chang et al., 2018, Dale et al., 2011] or background change Ak-
soy et al., 2018. Those models include segmentation and modification of particular
image area, without changes to others.

Inspired by those ideas, we propose a framework for effective image-to-image in
particular object-to-object color and style transfer. Having an image of a red car in
some context, we would like to be able to change its color or paint it with an intricate
pattern, using a single model.

In the current and the following chapters, we are reviewing necessary for suc-
cessful color/style transferring steps. As we are starting with an unclassified database
of multiple objects with various colors styles and in many contexts, we cannot begin
style transfer right away. This chapter aims to guide through preprocessing steps,
that we are taking to transform random images set into a dataset suitable for training
a transfer model.

3.1 Dataset

To our knowledge, there is no open source data set suitable for deep learning model
training, which would include objects in various colors within the same context.
Therefore, we decided to start from scratch. We have chosen Carvana cars dataset
Carvana, 2017 as our base. It contains images of 318 cars from 16 angles and their
instance segmentation masks. Furthermore, it includes pictures of 6254 additional
vehicles photos from the same angles but without segmentation.

The base dataset choice was driven by various reasons. First of all, cars are or-
dinary objects, which appears in multiple contexts. Secondly, at the same time, cars
are complex objects with the composite structure. Thirdly, vehicles surface is glossy
and therefore, pictures would contain numerous blinds, reflections, and shadows.
Those reasons make vehicles hard challenge for most color and style transfer model,
so our motivation is to build a model, which would effectively work for them and
therefore for other cases as well. Moreover, Carvana train dataset contains precise
segmentation masks, which could be used to train a state of the art segmentation
model and extend the dataset with additional cars and colored patterns.
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FIGURE 3.1: Random Samples from Carvana Dataset

3.1.1 Detection and Segmentation

The final goal of our pipeline is to transform a particular image area, in our case, we
would like to change the only appearance of a car on a picture. Therefore, a vehicle
needs to be detected and sequentially segmented from the background.

There are two main approaches to segmentation. Semantic segmentation methods
aim to assign some class label to each pixel of an image (pixel-wise classification),
in contrast, instance segmentation requires, first of all detecting all the objects on the
image and precisely segmenting them. So basically, after semantic segmentation, we
would get a class assigned for each pixel, whether it’s a car, background or any other
type, however if there are multiple cars on the image, all the pixels would get the
car class, while with instance segmentation there would be classes car1, car2, etc.

As our dataset specifics suggests, for a single image, we have only one car, so it
does not matter, which segmentation approach we are using. In general, if images
could contain multiple objects of interest the instance segmentation would be required.

One of the state-of-art solutions in instance segmentation is Mask R-CNN He et
al., 2017 - an effective detection and segmentation framework build as an advance-
ment of Faster R-CNN Ren et al., 2015

Although, Carvana car segmentation task, could be considered as a binary seg-
mentation of a car and background, therefore in the actual Kaggle Carvana Seg-
mentation Competition U-Net Ronneberger, Fischer, and Brox, 2015 architecture for
semantic segmentation has shown impressive results.

Due to that reason for our pipeline, we trained the U-Net model for a binary seg-
mentation. The vanilla U-Net has a standard encoder-decoder architecture, which
could be reviewed in details on 3.2.

Originally U-Net was designed for biomedical images segmentation, but it ap-
pears to be useful for many other tasks, even for generative models so that we would
address it again in the next chapter. For the car segmentation task, we used the U-
Net architecture with pretrained on Imagenet VGG-11 Simonyan and Zisserman,
2014 as an encoder. For the learning rate, we used Adam optimizer, with cyclic
learning rate. Many of those ideas were inspired by the winning solution of the
competition Iglovikov, 2017
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FIGURE 3.2: Vanilla U-Net architecture Ronneberger, Fischer, and
Brox, 2015

FIGURE 3.3: Carvana segmentation results
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As a loss function for the network was used a combination of a Cross Entropy
Loss and a Dice coefficient, as it makes predictions closer to boundaries and therefore
we get more precise segmentation.

LOSS = BCE− ln(DICE)

DICE =
2 ∑i yi pi

∑i yi + ∑i pi

BCE = −∑
i
(yiln(pi) + (1− yi)ln(1− pi))

Segmentation results of the original Carvana dataset images could be found on
figure 3.3

As we would review in the next chapter, an effective segmentation would allow
us to use segmentation loss for the generative model and significantly improve the
transfer results.

3.2 Classification and Clusterization

After successful segmentation, we extracted from images our areas of interest, but it
is still an unclassified collection of images.

The problem of unsupervised models for images classification was addressed in
many papers, in particular, Lee et al., 2015 proposed an effective two-step approach
for images clusterization using neural networks. First of all, they are doing transfer
learning for pretrained on Imagenet CNN to match pictures with similar contents us-
ing high-level semantics features and afterward performs k-means clustering based
on those semantic similarity scores. Secondly, a sophisticated style metric based on
chrominance and luminance is used to rank images within clusters and chose the
best style representatives.

Although this approach is an ideal match for many image collections and could
be utilized for other tasks solved withing proposed framework, it is unsuitable for
the current dataset.

As our primary goal is to perform paint and color transfer, we need to cluster
images by colors and paint styles. Unfortunately, after semantics segmentation, all
the photos have close scores, and the only clusters are for car types: sedan, minivan,
pickup. It is possible to extract color features using another CNN and then reuse the
method, but we came up with a faster classical approach.

Having segmentation masks after the previous step, we just calculated three
channels RGB color distribution of car areas and performed their classification.
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Chapter 4

Proposed Generative Model

In the previous chapter, we did an extensive overview of the dataset and preprocess-
ing steps required for generative models effective applications. The current section
aims to guide through the various experiments we tried and give an in-depth expla-
nation of the final proposed generative model.

4.1 Prerequisites

4.1.1 Generative Adversarial Networks

The concept of GAN was proposed by Goodfellow et al., 2014 and it is crucial for
understanding this work and conducted experiments.

Having some training data distribution P and a sample from it A. The generator
model G is trained to create fake samples B as if they are from the original P distri-
bution. At the same time, the second discriminator model is trained to distinguish
fake samples B from real distribution ones.

As can be seen on 4.1 the core idea of GAN framework is training both the gen-
erator and the discriminator simultaneously, in a competitive mode. As the model
converges, the generated distribution PG is getting closer to the original distribution
P. In the vanilla implementation of the GAN framework, samples are generated from
the noise vector drawn from some known distribution Pz , as a rule, N (µ, σ2) From
the theoretical point of view, this problem could be discussed regarding min-max

FIGURE 4.1: GAN training pipeline example on MNIST dataset. In
the vanilla implementation samples are generated fromN (µ, σ2) dis-
tribution, but later we would examine models with different input

spaces
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FIGURE 4.2: Pix2Pix cGAN. Both the generator and the discriminator
observe the original image

optimization with a single function V(G, D)

min
G

max
D

V(G, D) = Ex∼P(x)[logD(x)] + Ez∼Pz(z)[log(1− D(G(z)))] (4.1)

In the 4.1 the discriminator maximize the probability of assigning the correct label
to both training examples and samples from G, while generator simultaneously tries
to minimize log(1− D(G(z))) Goodfellow et al., 2014

However, there is a convergence uncertainty problem with the vanilla implemen-
tation of the GAN framework. The convergence is not guaranteed from the theoreti-
cal point of view, and even from the practical aspect, we cannot predict, whether the
model would converge. Various research works addressed this issue. But mostly,
they are concentrated on better loss functions Arora and Zhang, 2017 or better dis-
tribution approximation Arjovsky, Chintala, and Bottou, 2017.

4.1.2 Conditional Generative Adversarial Networks and Pix2Pix

In the vanilla implementation of the GAN, as an input for G, was used only some
noise vector z ∈ P(z) from a known distribution. Goodfellow et al., 2014 in their
paper addresses another modification of the GAN framework, called Conditional
Generative Adversarial Networks (cGAN). In the cGAN framework, we use not only
z ∈ P(z) as an generator input but also some extra information y ∈ P(y). The
examples of extra information could be various; it could be any constraint, target
style or class variable, or even some embedding.

Isola et al., 2016 propose an implementation and extension to the cGAN frame-
work called Pix2Pix. In the Pix2Pix framework, an image is used as a conditional
variable 4.2.

Also, the loss objective is transformed to account for an original image 4.2

min
G

max
D

V(G, D) = Ex,y[logD(x, y)] + Ex,z[log(1− D(G(x, z)))] (4.2)

Those conditions and other important advancement reviewed in details by Isola
et al., 2016 allowed Pix2Pix to become one of the most useful frameworks for super-
resolution, photo enhancement, image restoration, and style transfer. Also, that is
the reason, why we have chosen Pix2Pix as a starting point for our generative mod-
els.
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4.2 Experiments

4.2.1 Binary Collection-Based Transfer Models

Starting with an unsupervised problem of a color style transfer and inspired by
the CycleGAN Zhu et al., 2017 results for horse2zebra transfer displayed on 2.5,
we decided to start with a class to class transfer problem. The main advantage of
CycleGAN-like approach, in this case, is lack of the requirement for paired input
images.

Problem Formulation and Loss Functions Definition

Having two domains X and Y, we introduce two mapping functions Gy : X → Y and
Gx : Y → X and correspondingly, two adversarial discriminator functions Dx and
Dy. The generator functions Gx(y) and Gy(xi) are trained to generate fake images
indistinguishable from those from X and Y domains respectively. At the same time
discriminators Dx and Dy are trained to distinguish Gx(y) from x and Gy(x) from y.

LGx(Gx, Dx, X, Y) = Ex∼Pdata(x)[log(Dx(x))] + Ey∼Pdata(y)[log(1− Dx(Gx(y)))] (4.3)

In the CycleGAN problem setup Zhu et al., 2017 propose negative log-likelihood
function 4.3 as an adversarial loss, although, as authors themselves suggest, and our
experiments have shown that applying Least-Squares Loss Mao et al., 2016 leads to
more stable training and better quality results. Therefore, for the final model, we
are training the discriminator to maximize 4.4 and the generator to minimize 4.5.
Please note, the functions are formulated only for a single generator, but as they are
symmetric, formulation for the other one is trivial.

LDx(Gx, Dx, X, Y) = Ex∼Pdata(x)[(Dx(x)− 1)2] + Ey∼Pdata(y)[(Dx(Gx(y)))2] (4.4)

LGx(Gx, Dx, X, Y) = Ey∼Pdata(y)[(Dx(Gx(y))− 1)2] (4.5)

Such problem setup provides an effective learning technique to generate images
similar to those from domains, on the other hand, a generator quickly learns to ig-
nore the input and creates merely identical to the correspondent domain images. The
issue lays in the loss function definition, as it does not account for image content and
therefore, uses only discriminator feedback. As the result, generated images, could
have nothing in common with the originals, and simply be representations of the
contrary domain features, which is unacceptable for the style and color transfer ap-
plications.

To avoid this disadvantage Cycle Consistency Loss is introduced 4.7. First gener-
ator outputs are used as inputs to the second one and vise verse 4.6. For the training
steps overview, please address 4.3

x ∈ X → Gy(x) = y′ ∈ Y′ → Gx(y′) = Gx(Gy(x)) = x′ ∈ X′ (4.6)

Where, Y′ and X′ are domains of Gy and Gx generated results.
Afterwards, L1 norm is used as an identity loss to ensure that the cycle result x′

is as close as possible of the input x
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FIGURE 4.3: Binary model training step schema

Lccl(Gx, Gy) = Ex∼Pdata(x)[||Gx(Gy(x))− x||1] + Ey∼Pdata(y)[||Gy(Gx(y))− y||1] (4.7)

With introduction of those three loss functions, the total loss of the model, could
be defined as a combination of them 4.8

Ltotal(Gx, Gy, Dx, Dy) = LGx(Gx, Dx, X, Y) + LGy(Gy, Dy, X, Y) + λLccl(Gx, Gy)
(4.8)

Where λ is a hyperparameter to the model, allowing to tune loss objectives im-
portance for the case. In practice, λ value could tune the importance of the original
content and the target domain style for the final result.

It is crucial to mention, although the objective is to transform only the segmented
part of an image, the generator networks are taking the rectangular area as an input.
Therefore, we are feeding the net with a scaled bounding area of the segmented
object and reducing the the noise of background and other objects there; we calculate
loss by segmentation mask.

Network Architecture and Training

The generator architecture as well as in the CycleGAN was adopted from Johnson,
Alahi, and Fei-Fei, 2016 and consists of three sequential parts: encoder, transformer,
and decoder 4.4.

The encoder uses stride-two convolutional layers to extract features, which later
processed by nine ResNet blocks and finally restored by deconvolutions.
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FIGURE 4.4: Generator architecture: encoding, transformation, de-
coding

FIGURE 4.5: Binary Collection Based-Model Results. On the left the
original image, on the right - the generated one

For the discriminator, we tried both full-image and patch-level architectures. As
it appears patch level architecture addressed in PatchGAN Isola et al., 2016, is much
lighter and faster and still produce decent results, therefore we adopted it.

We performed training for multiple class pairs. All the images were scaled to
256 × 256. As a rule, we used a batch size of 4 and trained for 200 epochs. We
are keeping learning rate constant for the first one hundred epochs and gradually
decaying it to zero during the second hundred. As the discriminator learns much
faster that generator, we were slowing it’s learning by dividing an objective by a
hyperparameter.

Advantages and disadvantages of binary transfer models

As could be evaluated from the results, the model quickly learned to transfer color
and style, but then training slows down.
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The model tends to overfit for the training data and have low generalization
capabilities. Nevertheless, the main disadvantage of the binary model is a require-
ment to train the new model for each color pair. We made attempts for the transfer
learning and fine tuning, though they speed up the process, this approach is still not
scalable.

Another issue is that such problem formulations shrink the size of the training set
to just two classes and therefore this approach is working only for highly represented
classes but unsuitable for the less represented ones.

Based on those pros and cons of the first model, we did two more experiments
by each trying to eliminate them.

4.2.2 Single-reference transfer models

The first model we reviewed here was collection based transfer, but as we mentioned
the Related Works chapter, there is a whole class of single-reference based transfer
models. Researching for the possible solutions, we have found that Chang et al.,
2018 faced similar issues for the makeup transfer problem. Their answer was to
combine both collections-based and image-based transfer techniques. We decided
to adopt some of their ideas for our second model.

Problem Formulation and Loss Functions Definition

In the previous section, we used Cycle Consistency Loss to preserve the content of
the original image but to apply various styles. Although the style was defined by the
collection of pictures and was a generalization of their style features. In their work
Chang et al., 2018 addresses an issue when there is only one or just a few images
representing a style.

Therefore, X would be a space of various style images and Y is a space of no-style
images. For example, in the Carvana case, Y could be defined as a class of white
cars(or any other color), while x1, x2, ...xn ∈ X are cars of all the different colors. The
objective is to learn mapping functions that could apply any style x1, x2, ...xn to the
y car and at the same time, transform any of the style cars x1, x2, ...xn to the no-style
domain Y. Please note, we are using subscripts for X domain members and not for Y
to emphasize that x1, x2, ...xn ∈ X are different style pictures, while y ∈ Y represent
different images of the same style.

Similarly to the previous section, we have two generator functions Gx and Gy,
although this time, they are asymmetric. Gy(xi) still takes an xi ∈ X as an input
while Gx(y, xi) takes two images at the input layer, y ∈ Y as a source image and
xi ∈ X as a specific style that would be applied to y. Both discriminators are playing
the same role as in the previous model.

Adversarial Loss set up is the same as for the previously, where generators and
discriminators are playing min-max game 4.3, as well as the Cycle Consistency Loss
is still present 4.7. The only important change is that for the Gx input, we are pro-
viding both xi and y 4.9

LGx(Gx, Dx, X, Y) = Exi∼X[log(Dx(xi))] + Ey∼Y,xi∼X[log(1− Dx(Gx(y, xi)))] (4.9)

However, in-depth review of such problem formulation, reveals that loss func-
tions set up for the previous model are not enough for the effective training. As the
generator is now having both the style and the source images as an input, it could
quickly minimize the loss by just returning the style image all the time. To ensure
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FIGURE 4.6: Image-to-image model training step. Please note that the
generator and the discriminator are switched during the second step.

better style transfer results, Chang et al., 2018 propose to introduce a few more loss
objectives.

First of all, the Style Loss Lstyle, first of all, we are removing style from xi and
getting some fake no-style image y′, at the same time, we are applying style xi to
some real no style image y and getting some fake styled image x′i . Finally, we are
applying fake style x′i to the fake no-style image y′ and minimizing the L1 norm of
the difference with the real xi style picture 4.10. For the detailed training procedure
overview, please address 4.6

Lstyle(Gx, Gy) = Exi∈X,y∈y[||Gx(Gy(xi), Gx(y, xi))− xi||1] (4.10)

Nevertheless, even with the application of a Style Loss, it tends to be impossi-
ble to train an effective Gx generator to produce non-blurry results. Chang et al.,
2018 in their PairedCycleGAN propose additional axillary discriminator to distin-
guish whether two images have the same style. Although, such a discriminator
requires paired training data for an input, which was one of the main challenges for
the makeup transfer problem. Luckily for the Carvana case, we had more than a
single picture for each color and therefore, were able to use the classifier results to
pre-train the discriminator Ds 4.7 Unfortunately, such approach would not work for
style classes with the tiny number of training examples.

LDs(Gx, Ds) = Ex1
i ,x2

i ∈X[logDs(x1
i , x2

i )] + Exi∈X,y∈y[log(1− DS(y, xi))] (4.11)
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FIGURE 4.7: Image-to-image auxiliary discriminator. a. Ds raining
pipeline; b. using Ds for Gx training

The total loss function 4.12, is a combination of all the objectives weight by addi-
tional hyperparameters λGx , λGy , λDs , which are used to control the training pipeline
and tune the degree of the transfer.

Ltotal = λGxLGx + λGyLGy + λDsLDs + Lccl + Lstyle (4.12)

Network Architecture and Training

Regarding the generator, we are still using the same Encoder-Decoder architecture
as for the first model 4.4, although now the Gx is taking two images for an input.

Chang et al., 2018 in their PairedCycleGAN propose, training generator to return
not the final image in some style but only a style delta, that could be added to the
no-makeup image to obtain styled one. However, such an approach is limiting the
scope of the problems, where the model, could be applied and is not suitable for
the Carvana case. Therefore, we are preserving the previous model logic and still
generating the whole final image.

Taking into account that our dataset contains photos taken from various angles,
we did two types of experiments. For the first one, we introduce the requirement
that the source and the target photos should be taken from the same angle, while for
the second one they could be arbitrary chosen.

For the hyperparameters λ, we have chosen addressed by Chang et al., 2018 idea
of starting with the low values and increasing them step by step, as the discriminator
learn and produce more trustworthy results.

Results and Challenges

As was addressed previously, by passing both the source and the target image to
the input of a generator, we are adding more data for the model, but it’s harder to
control generator overfitting for the target image now. We partially solved this issue
with additional loss objectives, but it becomes harder to control convergence of the
model. Furthermore, updated generator architecture and another discriminator, has
increased already significant computation requirements and limited the number of
experiments, that we could run.

After some experiments, we were not able to achieve model convergence for the
unaligned source-target image experiment. Regarding the alleged inputs model, the
results were worse than for the binary model addressed in the previous chapter.
Furthermore, the computational requirements increased significantly.
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FIGURE 4.8: Single-Reference model results. From left right: source
image, target style image, resulting image. One fail case is included

in the second row.

The main advantage of the image to the image transfer model is a possibility to
train a single model that could do one-to-many and many-to-one transfers at the
same time. Although to achieve the final goal and be able to do many-to-many
transfers, we still need to train multiple models.

4.2.3 Multi-domain transfer models

For the binary model, we had two classes and two generators that were learning to
do the class-to-class transfer. While for the single-reference model, we had a sin-
gle default style class and the domain of various style classes, so we learned how
to transfer any style image to the default class and apply any style to the no-style
image.

For both models, we had two generators for each one-to-one or many-to-one
transfer, and the only way of scaling the model for new classes is introducing new
generators or training new models, which is not a scalable approach.

There were a lot of research works aiming to eliminate those limitations. In this
section, we are addressing our approach, which is based on the previous experi-
ments and brilliant training approach discovered by Choi et al., 2017 in their Star-
GAN work.

Problem Formulation and Loss Functions Definition

Similarly to the single-reference transfer model, let X = Xc1 ∪ Xc2 ∪ ... ∪ Xcn be a
space of n various style classes C = c1, c2, ...cn. Our goal is to train a single condi-
tional generator function G(x, c) : Xc → Yc that is taking an arbitrary x ∈ X and



Chapter 4. Proposed Generative Model 21

FIGURE 4.9: Multi-domain transfer architecture. The single generator
G is used to transfer an image from an arbitrary source class to any

target one. Cycle Consistency is preserved using L1 norm.

any class label c ∈ C and producing fake image yc ∈ Yc indistingusible by style
characteristics from the images from the Xc class. Please refer to 4.13

∀x ∈ X, ∀c ∈ C : G(x, c) = yc ∈ Yc ≈ Xc (4.13)

In the binary transfer problem, a discriminator was responsible for classifying
fake and real images, while in the single-reference problem, we introduced addi-
tional discriminator, to classify whether two images are from the same class. For the
current model, we are using two discriminator objectives. D : x → Dsrc(x), Dcls(x)
Choi et al., 2017 distinguishing real from fake images Dsrc and at the same time clas-
sifying real images to their domains Dcls(x). For the detailed schema of the training
procedure, please refer to 4.9

On the each training step, we are feeding the generator with a source image
x ∈ X and the target domain c ∈ C.

The Adversarial Loss 4.14, is used to train the generator and the discriminator to
produce realistic results and be able to distinguish real from fake images with high
precision.

Ladv(G, D) = Ex∈X[log(D(x))] + Ex∈X,c∈C[log(1− D(G(x, c)))] (4.14)

However, only distinguishing real from fake images, does not guarantee that
generated images would be similar to the images from the domain Xc. That is why
the Domain Classification Loss is introduced.

As the discriminator is having two goals, this loss consists of two separate objec-
tives
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The first one 4.15 is responsible for the fake images classification and is used to
optimize the generator. We are aiming to generate images yc = G(x, c) that would
be correctly classified as a c domain members.

L f ake
cls (G, D) = Ex∈X,c∈C[−log(Dcls(G(x, c)|c))] (4.15)

Nevertheless, to classify images correctly, we need to train the discriminator be-
fore and we could use real images to do so. Therefore, we have the second objective
4.16, which is used to optimize the discriminator itself.

Lreal
cls (D) = Ec∈C,x∈Xc [−log(Dcls(x|c))] (4.16)

As we are still limited in paired input data, the only way to preserve the content
of a source image is Cycle Consistency Loss 4.17. Having x ∈ X′c - a source image in
the c′ ∈ C domain, we would like to transfer it to c ∈ C domain and then be able to
revert the transfer by applying the generator for the second time, with the original
source domain as a target.

Lccl(G, D) = Ex∈X,c,c′∈C[||G(G(x, c), c′)− x||1] (4.17)

The final objective for the generator 4.18 and the discriminator 4.19 is a combina-
tion of mentioned above objectives wigth by hyperparameters λcls and λccl

LG = Ladv + λclsLreal
cls + λcclLccl (4.18)

LD = λclsLreal
cls −Ladv (4.19)

Network Architecture and Training

The generator network architecture was adopted from the first model 4.4 and con-
sists of two stride-2 convolutions, nine ResNet blocks and two transposed stride-2
convolution for upsampling. In the generator, instance normalization is was used
for all layers, except the output one.

For the discriminator, we are using PatchGAN Isola et al., 2016 architecture 4.10.
Using auxiliary classifier allows the discriminator to produce a probability distribu-
tion over sources and domains of images.

As well as in the previous models we are using Adam optimizer and staring with
learning rate α = 0.0001 for the first 100 epochs and decaying it to zero during the
next 100 epochs. For the initial results evaluation, we were using classification error
for the generated images and separately trained generator results.

Results and Challenges

The objective function dynamics, as well as the results of the generative model, could
be found below. Visually, it is easy to spot the superiority of the current model in
the comparison of the previous ones, regarding visual quality. Quantitative results
could be found in the next chapter.

After reviewing the model and the results in details, we could highlight its main
advantages.

First of all, we are building a single capable of transferring images to multiple
domains and training a single model to allow using the whole dataset at once and
therefore achieving better results with fewer data.
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FIGURE 4.10: Multi-domain model discriminator architecture. h and
w denotes images height and weight, while n stands for number of

domains.

FIGURE 4.11: Multi-domain transfer model results. From left to right:
original image, generated (black, blue, gray, red, white)
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Secondly, the learning curve for less represented classes had improved in com-
parison with other models at the expense of more represented domains and gener-
alization capabilities of a model.

The last but not least, using a single generator and discriminator, for all the
classes allowed to reduce computational requirements for the model training and
evaluation. Furthermore, it increased the maximum resolution of images, that could
be possibly used in the model.

On the other hand, it’s important to remember that it’s still a collection based
model, incapable of transferring style from a single image. However, results achieved
by this solution could be applied to improve the second single-reference model.
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Chapter 5

Results Evaluation

This chapter aims to compare qualitative and quantitative results of the reviewed
in the thesis models, within the proposed pipeline, as well as compare them with
baselines. As an external baseline model, we are using Deep Photo Style Transfer
model by Luan et al., 2017, as it has shown impressive results for single-reference
transfer and proven to be applicable for the color transfer. We are using the same
pipeline for the baseline as for our models.

The task of model comparison and result evaluation for the color and style trans-
fer models is not a trivial one as it requires image quality assessment.

For our purposes, we reviewed several approaches to solving that challenge. The
initial idea was to train a separate discriminator, which would then discriminate
generated images against real members of a domain. However, this approach is
tricky, as for training the discriminator we were using other classes and in the end, it
appears to be biased towards some of them. Another problem was that the discrim-
inator was only able to solve the classification challenge but not the photo quality.
Therefore we decided to split the problem into two parts.

As the initial benchmarking, we were using classification error for the generated
images of various algorithms and baselines. For this are using the same Classifier,
which we addressed in Dataset and Preprocessing chapter. For the study, we have
chosen 1000 test images and classified them into six classes, manually checked the
classifier result and replaced wrongly classified images. Afterward, we applied the
generative models for those images and used the same classifier to the generated
images. The results are indicated in 5.1

On the other hand, it is not so trivial to evaluate image quality. In many of the
research works, we are referencing Choi et al., 2017, the evaluation was done by
launching large scale user survey and counting Mean Opinion Score. Although this
approach is one of the best, as it encapsulates real users opinion, it is not scalable
for the intermediate model’s evaluation due to high costs and significant time it
requires.

Model Classification Error
Binary Collection Based* 7.3%
Single Reference 11.2%
Deep Photo Style Transfer 8.9%
Multi-domain Model 5.1%
Real Images 0.7%

TABLE 5.1: Results Evaluation using Classifier. *Please note that re-
sult for binary collection based model is a composite of results for

multiple paired models
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FIGURE 5.1: Results comparison between baseline and proposed
single-reference transfer model. Original(L), Proposed Method(C),

Baseline(R) Luan et al., 2017

Model NIMA Score
Binary Collection Based* 2.65
Single Reference 1.54
Deep Photo Style Transfer 3.76
Multi-domain Model 4.12

TABLE 5.2: Results Evaluation using NIMA. *Please note that result
for binary collection based model is a composite of results for multi-

ple paired models

Therefore, we have chosen an automated pretrained NIMA model for the image
assessment Esfandarani and Milanfar, 2017. The model was pretrained on human
scored dataset and taking an image as an input it produces a score in [0..10] range.
We have chosen a random subsample of 50 generated images for each model and
run the NIMA scoring. As could be seen at 5.2 the Multidomain transfer model is a
clear winner regarding classification and quality assessment errors.
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Chapter 6

Conclusions

In this work, did an extensive overview of existing color and style transfer models
and challenges, as well as present an effective unsupervised generative model which
outperforms other reviewed models, as well as existing competitors in qualitative
and quantitative results.

Furthermore, we provide an applied pipeline for the object-level color trans-
fer, which solves classification, segmentation, and transfer problems. The proposed
pipeline could be used to create a paired dataset of images, where the same objects
have different color and style characteristics. Further, such dataset could be used for
pretraining supervised model and enhancing current results.
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