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Stable and efficient video segmentation via GAN predicting adjacent frame

by Ivan ILNYTSKYI

Analyzing video streams represents a huge problem not only in terms of accuracy
and speed, but also consistency of analysis between adjacent frames as videos are
consistent due to real-world nature. Jittering effect of predictions is easily noticed
by human vision in video semantic segmentation tasks. But it is not usually taken
into account by design of algorithms as being suited for single image recognition
and lack of easy solution via classical filters. This jittering leads to quite negative
human assessment of algorithms while being good at accuracy. In addition it may
lead to unstable or conflicting behavior of control systems that use computer vision.
We propose the methods of efficient video semantic segmentation that take into ac-
count video consistency and can be implemented without annotated video dataset.
Some methods require annotated photo only dataset, other methods additionally
use generative adversarial network trained on relevant video dataset with no super-
vision. The solution is relevant for cases when the domain does not contain large
annotated video datasets, but there are available annotated photo datasets and sig-
nificantly large unlabeled videos.
We show that using semantic segmentation mask of previous frame as a feature for
current frame segmentation improves accuracy and consistency. We achieve best
results using the network trained with features obtained from GAN and baseline
segmentation network.
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Chapter 1

Introduction

1.1 Motivation

In recent days there is more and more need for video analysis for different real-world
applications like self-driving cars, augmented reality consumer products try-on on
mobile phones, sports game analysis applications and etc. Semantic segmentation
task is often encountered in this applications. Current state-of-the-art approaches
consider using deep convolutional neural networks for segmentation. One of goals
while solving this task is not only providing fast and accurate algorithm, but pro-
viding ‘no jittering’ effect for human perception, i.e. outputs for adjacent frames
must be consistent. This contrasts to unstable results of neural networks trained in
traditional way. Inconsistent in time results may irritate users or even lead to un-
expected and unsafe behaviour when applied in control systems like self-driving
cars. When solving computer vision tasks like object detection and keypoints esti-
mation some easy solutions like classical signal processing filters may be applied to
solve jittering problem. But this approach becomes inapplicable for semantic seg-
mentation as it is output is spatial semantic mask with input image size, not set of
point-like objects. Some previous methods tackling described problem for semantic
segmentation may require frame-by-frame annotations of datasets, but this can not
be achieved for some real-world applications. So there is another question arising
on using unlabeled data for this task.

1.2 Goals of the master thesis

• To explore existing methods of video segmentation.

• To develop the training pipeline that produces video segmentation models
with accurate and consistent predictions.

• To provide metric for video stability measurement.

1.3 Thesis structure

This work is structured the following way: Chapter 2 contains review of related pub-
lications and general overview of relevant fields; Chapter 3 provides the description
of proposed methods and network architectures, datasets overview, training details
and pipelines. Metrics for evaluation and results are presented in Chapter 4, conclu-
sions - in Chapter 5 respectively.
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Chapter 2

Related work and background

2.1 Artificial neural networks

Artificial neural networks is a family of computational models based on the func-
tions and structure inspired by human brain. Main application of the NN technology
is focused on understanding and solving high-dimensional and nonlinear patterns
or dependencies. There are numerous examples of commercial application, for ex-
ample, speech to text, face recognition and crop yield prediction.

Neural networks are usually organized in layers. Layers consist of nodes which
have an activation function. The nodes between the layers are connected via links
that are weighted by influence that one unit has on another. Each layer receives the
output from the previous level. During the process of training NN, the weights are
modified according to the patterns of input data.

Usually, the neural network includes a large number of variables and requires a big
amount of training data respectively. Typically, the data consists of pairs of input
and ground truth output. During training the output of model is compared to pro-
vided ground truth values. The machine uses backpropagation to update the values
of the NN weights.

2.2 Convolutional neural networks

Convolutional neural networks were firstly offered by Lecun et al., 1998 as a way to
modify existing fully-connected neural networks for solving the problem of image
recognition. Locality and pattern repetition are important properties of images and
image recognition tasks. As a reason it was taken as a base.

Locality means that distance between pixels is important information. Closer pix-
els usually give more information and bring more context to fragment of image.
Pattern repetition is a principle based on which some concrete patterns are being
found during the image recognition (lines, circles, curves, rectangles).

Pattern repetition does not depend on location on image. For example, to solve face
recognition problem, it might be beneficial to search circles (eyes), ellipsis, and some
other curves which correspond to nose and mouth. Previously described curves
should be searched in any subsection of image, as position of face and its features
might differ.
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Main types of layers of CNN are Convolutional Layer, Pooling Layer and Fully-
Connected Layer. Convolutional layers apply convolution operation on input tensor
(multi-channel image) with kernels of fixed size. The coefficients of given kernels are
free parameters in such neural network (similarly to weights in ANN). The output
of the convolutional layer is a new tensor which contains the results of convolu-
tions. They represent the similarity between the concrete part of the image and the
template (kernel). This feature implements locality and pattern repetition: the same
template is applied for every part of the image, locality is taken into account at the
same time.

2.3 Semantic segmentation problem

Semantic segmentation divides an image into several semantically logical parts
and classifies into one of given classes. Nowadays semantic segmentation is one
of the main problems in computer vision. It is a high-level task which is key to
scene understanding. Importance of scene understanding can be explained by the
increasing number of applications. Some of those applications include virtual re-
ality, self-driving cars (identifying lane markings, traffic signs, cars, pedestrians),
facial segmentation and medical image diagnostics. Also SS problem can be consid-
ered as one of the most general problems because solution may be applied for more
narrow tasks - classification or localization.

There are two main types of semantic segmentation: standard semantic segmen-
tation (or full pixel semantic segmentation) and instance-aware semantic segmenta-
tion. Standard semantic segmentation classifies each pixel to an object class. Instance-
aware semantic segmentation is an extension to the first one by identifying different
objects of the same class and assigning them different entity IDs. In the next chap-
ters we are going to mention full pixel semantic segmentation (figure 2.1) as it is the
main topic.

FIGURE 2.1: Example of semantic segmentation (Silva, 2018)

Generally semantic segmentation consists of three main steps: object detection,
object recognition and classification. Each of them has a big impact on efficiency and
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is being researched separately. But in semantic segmentation problem they cannot be
separated. For example, if a system has a low performance in terms of object detec-
tion efficiency, it probably will have an error in shape recognition and classification
subsequently. Thus we need a procedure that can solve all three steps together.

A lot of parameters have an impact on performance such as extracted features, qual-
ity of dataset etc. The problem of complete datasets always existed in machine
learning, but datasets with pixel-level labeling are more time-consuming compar-
ing to other types of datasets. Also, there is still a probability of human error during
labeling. As the field was growing and getting more attention from the research
community, there were produced bigger and more accurate datasets.

Before deep neural networks were proposed, the most important topics were fea-
tures and classification methods. The feature is considered to be additional infor-
mation which is helpful to solve a specific task. Many different features were used
for semantic segmentation, e.g. Scale-invariant feature transform (Lowe, 2004), His-
togram of oriented gradients (Dalal and Triggs, 2005), Bag-of-visual-words (Csurka
and Perronnin, 2011), SURF (Bay and Van Gool, 2006), AGAST (Mair et al., 2010),
Textons (Zhu et al., 2002), FAST-ER detector (Rosten, Porter, and Drummond, 2008)
and others.

The main types of methods for image segmentation were clustering (based on color,
texture, intensity, and location of the pixel), histogram-based (require only one time
to pass through the pixels of the image), split-and-merge methods (tree methods,
which recursively split the image into sub-images and then merges the neighbors by
homogeneous criterion) and others.

2.4 Convolutional neural networks for semantic segmenta-
tion

Convolutional neural networks have seen enormous improvement in performance
in such fields as object detection, image classification, action recognition, etc. Ac-
cording to researchers and their results, efficiency of the networks was improving
by increasing the network depth.

Conventionally in classification problem an input image is downsized when it goes
through convolution layers and fully connected layers. The result is predicted label
for input image. If fully connected layers are substituted with convolutional layers
and the output is upsampled, calculation of pixel-wise output is possible. A fully
convolutional network (Long, Shelhamer, and Darrell, 2014) is based on a previ-
ously described method. Classification networks such as AlexNet and VGG are re-
designed into fully convolutional networks fashion by transforming fully connected
layers into convolutional layers to be able to output heatmap and upsampling layers
(or transposed convolution instead) to achieve heatmap size correspondent to initial
segmentation image size. As FCN does not contain any fully connected layers the
model is suitable for images of different sizes. Such kind of models could achieve
state-of-the-art results in semantic segmentation on multiple datasets. Schematically
FCN architecture is shown in the figure 2.2.

As a solution for upsampling Dumoulin and Visin, 2016 proposed to use trans-
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FIGURE 2.2: Dense backpropagation for fully convolutional networks
(Long, Shelhamer, and Darrell, 2014)

posed convolution which works by swapping forward and backward passes of con-
volution (figure 2.3).

FIGURE 2.3: The transpose of convolving a 3× 3 kernel over a 5× 5
input using half padding and unit strides. It is equivalent to con-
volving a 3× 3 kernel over a 5× 5 input using half padding and unit

strides (example provided by Dumoulin and Visin, 2016)

2.5 Generative adversarial networks

2.5.1 General overview

Generative adversarial networks are deep NN architectures offered by Goodfellow
et al., 2014 which consist of two networks - generator and discriminator competing
one against another. Generator network G receives latent vector (noise) from Gaus-
sian distribution and generates an image which must be hard to distinguish from
given set of real images. Discriminator D receives generated or real image and tries
to distinguish the type of image. If the quality of generated images is higher then
task is harder for the discriminator. It is important to mention that the generator has
no access to real images data. As of that the only way to learn is to interact with the
discriminator. GAN generator usually is an encoder-decoder network, where en-
coder maps input into low-dimensional latent space and decoder does the opposite.
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FIGURE 2.4: Pipeline of GAN training (Silva, 2017)

Game between generator G and discriminator D can be described by minimax ob-
jective:

min
G

max
D

E
xvPr

[log(D(x))] + E
x̃vPg

[log(1− D(x̃))] (2.1)

where Pr is the data distribution and Pg is the model distribution, defined by x̃ =
G(z), z v P(z), the input z is a sample from simple noise distribution.

Generator and discriminator are trained simultaneously, the parameters of gener-
ator minimize log(1 − D(G(z)), discriminator maximizes log(D(X)) respectively.
Also in practice given the objective above gradients for generator training can be
relatively flat because first samples are likely classified as fake during early stage
of training. The solution was to change the minimization of log(1− D(G(z)) to the
maximization of log(D(G(z)). This objective function results in the same fixed point
of the dynamics of G and D, but provides much stronger gradients early in learning.

In addition, if discriminator is predicting successfully generator is not learning and
making progress in samples producing. Based on this discovery least squares loss
was chosen to replace cross entropy loss, which penalizes fake samples by distance
to real images. Comparing to traditional loss, least-square GAN (Mao et al., 2016)
not only classifies samples, but also moves generated images closer to the real ones.

If training is successful then generator understands true distribution of the data and
the discriminator can no longer classify images correctly. The main problems that
might appear during training are non-convergence, mode collapse (generator pro-
duces limited types of samples), diminished gradient (generator gradient vanishes
because of too successful discriminator), and etc.

2.5.2 Conditional generative adversarial nets

When using GAN described above there is no control over modes of data. It means
GAN produces very similar images to real ones, but very versatile at the same time.
Conditional generative adversarial net (Mirza and Osindero, 2014) is an extension
over GAN by conditioning generator and discriminator on some extra information
y which can be any kind of data. For example, it can be discrete labels, text or im-
ages. The conditioning is performed by feeding y into discriminator and generator



Chapter 2. Related work and background 7

simultaneously. The objective function of the game between the generator and dis-
criminator would be as following equation:

min
G

max
D

E
xvPr

[log(D(x, y))] + E
x̃vPg

[log(1− D(x̃, y))] (2.2)

where Pr is the data distribution and Pg is the model distribution, defined by x̃ =
G(z, y), z v P(z), the input z is a sample from simple noise distribution.

2.5.3 Overview of pix2pix framework

Pix2pix is implementation of an image-to-image translation using conditional ad-
versarial networks. The idea was introduced by Isola et al., 2016. The discriminator
D tries to classify between pairs of the real and generated images. It is mentioned
that not only generator but discriminator should be conditioned. Previously it was
found beneficial to combine traditional GAN objective and traditional losses. L1 and
L2 losses are effective, but L1 encourages less blurring.

In this case the final objective is:

L = LGAN + λ · LL1 (2.3)

where LGAN is traditional GAN loss and LL1 is L1 loss. The proposed mix of losses
does not affect discriminator, but generator has additional task to be close with
ground truth in L1 or L2 sense.

Additional option to increase the quality of generated image was proposed by
Johnson, Alahi, and Li, 2016. The authors combine benefits from per-pixels and per-
ceptual loss functions based on the features of pretrained networks.

Given set of pairs of related images, the model understands how to convert one
image into another. For example, it can be a pair of image and grey-scaled image
and it is needed to represent the colors given only grey-scaled images or vice-versa.

2.6 Video segmentation

Video segmentation is a widely used technique and an extension over photo seg-
mentation. Additional problems which appear in VS are big amount of data and
inconsistency. As of this there are two main areas of improvement for procedures of
video segmentation: speed and stability.

Nowadays the quality of images and videos has seen tremendous increase. The
better quality media we have - the higher memory requirements become. Because
of this it is needed to keep in mind amount of data that is processed. At the mod-
ern mobile phones size of photo is in range from two to five megabytes. 24-30 FPS
is normal level for good video quality. It follows that the size of high-quality video
with duration of one second is roughly at least 50 megabytes. Thus, real-time models
should process high amount of data each second without significant loss of accuracy.
Usually deep neural networks are slow during inference because of big amount of
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parameters and large architecture. Paszke et al., 2016 proposed efficient neural net-
work (ENet) which has nearly 80 times less parameters and has nearly similar or
even better performance comparing to existing models.

On the other hand, video is a sequence of images which have a lot of similar infor-
mation, so, it is possible to select and extract features from videos to achieve better
performance. There are two main types of features to use. The first category contains
features being extracted from the whole set of images, e.g. histogram features, color
or features from pre-trained deep neural nets (AlexNet by Krizhevsky, Sutskever,
and Hinton, 2012, VGG by Simonyan and Zisserman, 2014, etc). The second one is
generally about region-based feature extraction in which features of image regions
are placed into feature vector.

Previously, the main approach to solve sequence modeling was usage of recurrent
neural networks. It was shown by Bai, Kolter, and Koltun, 2018 that modern convo-
lutional neural nets outperform recurrent ones.

Frame-to-frame consistency is very important human visual perception character-
istic. At the same time, there are temporal discontinuities, for example, appearance
of new object in the camera view and vice versa. As we know, good quality video
has at least 24-30 frames per second, which means that adjacent frames are relatively
similar. Once previous frame is processed, we assume that it is beneficial to pass
some features from previous frames to model. Some classical methods for video
segmentation rely on frame difference to understand and identify moving objects
(Leng and Dai, 2007). Thus, the main aim is to use adjacent frames features for more
efficient video segmentation.

There is a lack of wide-scale annotated data for video segmentation. However there
are many large-scale image datasets. Khoreva et al., 2016 suggest to use large image
datasets for training to perform accurate video segmentation. They used roughly
estimated previous mask by deforming ground truth masks using affine transforma-
tions as well as removing the object contour to mimic object motion in the previous
frame (figure 2.5).
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FIGURE 2.5: Training pipeline using mask estimate of previous frame
as a feature (Khoreva et al., 2016)
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Chapter 3

Proposed methods

3.1 Segmentation network architecture

For experiments we chose to use U-net architecture proposed by Ronneberger, Fis-
cher, and Brox, 2015. It is very similar to encoder-decoder architecture and based on
FCNs (Long, Shelhamer, and Darrell, 2014). The network is illustrated in figure 3.1.
The architecture is separated in two main parts:

1. Contracting or downsampling path (left side).

2. Expansive or upsampling path (right side).

The downsampling path is similar to classical convolutional neural networks. It is
composed of four blocks, each of them consists of two 3× 3 convolutions followed
by ReLU activation (Nair and Hinton, 2010), batch normalization (Ioffe and Szegedy,
2015) and 2× 2 max pooling with stride 2.

The expansive path has four blocks in accordance to the contracting one. Each block
is composed of transposed convolution layer with stride 2, concatenation with re-
spective feature map from downsampling path (skip-connection) and two subblocks
with 3× 3 convolution layer, ReLU and batch normalization. And finally 1× 1 con-
volution layer is used to map feature vector to the required number of classes.

The main advantages of U-net are:

• Computational efficiency.

• Combines location information from downsampling (encoder) and contextual
information from upsampling path (decoder).

Baseline receives single input image and predicts segmentation mask.

3.2 Datasets

As we mentioned previously, visual scene understanding is main aim of seman-
tic segmentation problem. We chose Cityscapes dataset introduced by Cordts et
al., 2016) as a benchmark suite for pixel-level semantic labeling. The dataset is a
large and diverse collection of video sequences recorded from cars in fifty different
cities during different seasons of year. The authors showed that Cityscapes overper-
formed recent approaches in terms of complexity, annotation richness, scene versa-
tility, and dataset size. Dataset is divided into train, validation and test sets based on
the size of city, geographic location and time of the year in equal shares. Cityscapes
contains packages with different sizes and types of data. The original size of the
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FIGURE 3.1: U-net architecture. Each blue box corresponds to multi-
channel feature map. White boxes represent copied feature maps.
The arrows denote the different operations. (Ronneberger, Fischer,

and Brox, 2015)

images and masks is 2048× 1024 which we converted to 256× 256 to reduce task
complexity. For experiments we required two specific datasets:

1. Dataset for GAN. To synthesize the dataset for GAN we used raw data from
Cityscapes. It consists of video snippets 30 frames long which result in approx-
imately 150000 images. Each video snippet is separately transformed into set
of image pairs as described in the figure 3.3. As adjacent pairs are very similar
we decided to shrink the dataset by taking pairs with some step to make the
dataset more versatile.

2. Dataset for segmentation network. The dataset consists of 5000 images with
fine annotations. Each image belongs to one video snippet from the raw data.
The segmentation mask consists of 30 different visual classes. As some classes
appear very rarely only 19 classes are considered for evaluation.

3.3 Adjacent frame generation using GAN

3.3.1 GAN architecture

To generate the adjacent frame we used pix2pix architecture. There are two ideas for
the generator: encoder-decoder and U-net (figure 3.2).
We chose to use the architecture based on U-net. It contains eight encoding blocks
which consist of convolution layer, instance normalization (Ulyanov, Vedaldi, and
Lempitsky, 2016), LeakyReLU (Xu et al., 2015) and dropout (Srivastava et al., 2014)
except first three blocks, and eight decoding blocks with sequential application of
transposed convolution, instance normalization, ReLU and dropout (except last three
blocks). Respective encoding and decoding blocks have a skip connection.
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The discriminator consists of four blocks (convolution layer, instance normalization,
and leaky ReLU), zero padding and final convolution layer. The output of discrimi-
nator is a small image where each pixel has a value between 0 and 1 and represents
how trustworthy each subarea of the picture is. Such architecture was also used by
Isola et al., 2016.

FIGURE 3.2: Choices for the generator architecture. (Isola et al., 2016)

3.3.2 Synthesizing dataset for GAN

To train GAN which was described previously, we need a set of videos or sequences
of photos. Our aim is to convert the raw data into a set of pairs of images with
some given frame (time) difference. The main hyperparameter of resulting dataset
is sequential or time difference between the frames. The bigger hyperparameter is -
the more different images in each pair are. Also, the parameter is dependent on type
of original dataset (how fast the scene is changing in video). Given the sequence of
photos and hyperparameter of sequential difference, we can combine photos as it is
shown in the figure 3.3.

FIGURE 3.3: Transformation of the image sequence I, given the se-
quential difference d, which results in GAN dataset.

3.3.3 Training and results

During the training of pix2pix network we faced two different problems:

• Best value of frame difference of the dataset. Resulting generative adversarial
network is expected to produce different image from the input. Performance
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of the network highly depends on the dataset and its parameters. Frame dif-
ference d is the hyperparameter of dataset which represents relation between
the frames in each pair (figure 3.3). Firstly, we trained the network using the
datasets with d = 1, 2, 3 but the pairs contained very similar photos. As a
result, the generator was not learning dynamics and semantic of the dataset.
After multiple attempts, we came up with value d = 6 which corresponds
to the dataset with pairs of images that are separated by 5 sequential images
or have approximately 0.36s time difference (each video snippet contains 30
photos and has 1.8s duration).

• Quality of generated image. Firstly, generative adversarial network was trained
using loss as the combination of classic CGAN objective and L1 distance. An-
other approach was to combine traditional loss with perceptual loss from the
feature maps of VGG19 pretrained on ImageNet. After multiple experiments
we came up with following loss formula:

L = LGAN + λ · LL1 (3.1)

where λ equals to 100.

Having checked the results of validation set, we found two patterns of generated
images. To keep in mind, the dataset is collected from camera attached to the mov-
ing car.

Firstly, objects which are very close to car and are on the edges of the photo will
likely be passed and will not be found on the following frames. Respectively, the
image, predicted by GAN, could not predict position of close objects on the right
and left side of picture. In the figure 3.4, predicted images have strongly blurred or
distorted objects (cars) on the edges of photo.

Secondly, we consider situation when photo contains objects which are moving across
the road, orthogonally to car trajectory, for example, pedestrians crossing the road.
Objects are expected to stay in the frame as camera is not moving, but the position
of dynamic objects will change significantly. In this case, to produce trustworthy
image, the generator substitutes objects with the background as position of objects
is hard to predict. The following case is represented in the figure 3.5.

3.4 Experiments

The main difference between photo and video segmentation is connection between
the adjacent frames in a video, as they are sequential. Information from the segmen-
tation of previous frame is insightful for the following segmentation process. We
propose to use segmentation models which require mix of current image and fea-
tures from the previous image segmentation as an input. We came up with three
feature types:

• Previous image. The main idea is that having information about current and
previous frame, segmentation model understands the dynamics of objects by
the frame difference.

• Previous estimated segmentation mask. As adjacent images are expected to
be relatively similar, the same hypothesis is applied to segmentation masks.
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FIGURE 3.4: Examples of images being produced by the generator.
Objects (cars) which are close to camera and situated from the sides
are expected to partially disappear from the following frames, respec-

tively blurred or distorted by generator.

The prediction of previous image brings context and semantic understanding
already gained from the past.

• Previous estimated segmentation mask converted to RGB. Considering the
cityscapes dataset, it contains 19 major classes. Segmentation mask, produced
by the network, has 19 channels respectively. To visualize the data as RGB
image, each class is attributed some specific color (human - red, motorcycle -
blue, nature - green, etc.). We assume that following dimensionality reduction
is as efficient as original segmentation mask and the network should be faster
due to smaller input size (3 channels).

As we do not have annotated video dataset, we need to synthesize the adjacent
frame data. We assume that the following information can be obtained by two ap-
proaches:

• Transformation of ground truth segmentation mask.

• Generating previous or adjacent frame using generative adversarial network.

Let us consider the following methods separately.

3.4.1 Generated adjacent frame as a feature

The following proposed methods consider that we have annotated photo dataset
and video dataset from same source or from same domain. Video dataset is used to
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FIGURE 3.5: Cases of "lazy" work of generator. The generator substi-
tutes dynamic objects with the background as their position changes
significantly. Examples: pedestrians or cyclists crossing the road, cars

on the crossroads.

train the GAN. After the network is trained only the generator network is needed.
Annotated photo dataset is required for pipeline to train the segmentation network.
Having generated adjacent image using GAN we implemented different approaches
how to use the information for training pipeline:

• Pure generated image. Having observed the pattern of generated images, we
decided to use generated image as additional feature. Segmentation network
receives concatenation of original image and generated adjacent image as an
input. The pipeline is described in the figure 3.6.

The main assumption is that generated image is similar to previous frame if
we had a video sequence.

• Segmentation mask of generated adjacent image. We would like to repro-
duce the flow when during video segmentation the input of current frame
contains the current image and previous predicted mask. To produce segmen-
tation mask, given the adjacent frame only, we applied segmentation baseline,
which requires single image as input and outputs segmentation mask. Finally,
predicted mask (by the baseline) is concatenated with original image. Result-
ing tensor, which has 22 channels, is used as input to train the network (figure
3.6).
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FIGURE 3.6: Training pipelines of the segmentation network using
adjacent frame generator. Usage of pure generated adjacent image

(top) and segmentation mask of generated image (bottom)

• Segmentation mask of the generated adjacent image converted to RGB. The
pipeline is nearly same comparing to previously proposed approach, but be-
fore predicted mask is concatenated with original image, we convert the mask
into RGB image. The number of channels of input is 6, which is significantly
smaller than previous method.

3.4.2 Augmented ground truth segmentation mask as a feature

Let us consider the case when we have annotated photo dataset only. Given the seg-
mentation mask of current frame, we assume that previous mask is very similar to
current one. Thus, to estimate the segmentation mask of previous frame, we aug-
ment ground truth segmentation mask.

The segmentation mask can be represented in a classic way or we can transform
it into RGB photo. Given two segmentation mask representations, we came up with
two training pipelines described in the figure 3.7:

• Augmented GT segmentation mask as a feature

• Augmented GT segmentation mask converted to RGB as a feature
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FIGURE 3.7: Training pipelines of segmentation network using trans-
formed ground truth mask: augmented mask as a feature (top) and

augmented mask converted to RGB (bottom)

The main concern of this method is an algorithm of ground truth mask transforma-
tion. To transform the ground truth segmentation mask, we used a mix of affine
transformation and grid distortion. As a result of custom ground truth mask trans-
formations, segmentation network can receive the following features as input:

• Slightly augmented GT mask (p = 0.2)

• Moderately augmented GT mask (p = 0.2)

• Strongly augmented GT mask (p = 0.1)

• Empty mask (p = 0.5)

where p is the probability of transformation and words "slightly", "moderately" and
"strongly" mean the relation between hyperparameters values of affine transforma-
tion and grid distortion.

When using augmented GT mask as input, there is a probability to overfit the net-
work as input feature is very similar to expected output. To avoid overfitting, we
decided to nullify the mask randomly with probability 0.5. When input mask is nul-
lified, segmentation network has only one source to learn: the original photo. Also,
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while segmentation network processes the first frame of video, there is no infor-
mation about previous mask as it doesn’t exist. Thus, video segmentation network
should be useful in cases when the previously predicted segmentation mask is not
available.

3.4.3 Training details

All the models we trained were implemented using PyTorch framework. The train-
ing was performed on GeForce GTX 1080 GPU using the Cityscapes(Cordts et al.,
2016) dataset. The images and segmentation masks were downsized to 256× 256 to
reduce complexity of the task. Optimization was performed using Adam (Kingma
and Ba, 2014) as a solver by the method of error back-propagation. The models had
been trained for 150 epochs with learning rate 2× 10−5 and a batch size = 4. All of
our models have U-net architecture but with different number of input channels (3,6
or 22).
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Chapter 4

Metrics and evaluation

4.1 Metrics

To evaluate the performance of segmentation network we compared models using
two criteria: segmentation accuracy and consistency. Ideally, video segmentation
network should provide accurate and stable results, but stability is not helpful in
combination with poor segmentation accuracy. Thus, we consider the network to be
"better" if two criteria overperform simultaneously:

Segmentation accuracy. To measure the accuracy of segmentation network we used
annotated photo dataset (validation subset). Given predicted mask and ground
truth mask, we calculated mean intersection over union metric. The formula of in-
tersection over union for a class looks the following way:

IoUi =
TPi

FPi + FNi + TPi
(4.1)

where i is a class id, TP is number of true positives FN - false negatives and FP -
false positives respectively. Let us denote N as number of segmentation classes. The
values of TP, FN and FP are calculated from N × N confusion matrix C where cij is
amount of pixels from ground truth class i predicted as class j.

Mean intersection over union is an average of all IoUs:

IoU =
1
N

N

∑
i=1

IoUi (4.2)

Video segmentation consistency (stability). Assuming that the adjacent frames
of video sequence are similar, we expect that ideally segmentation masks of these
frames are similar too. If segmentation network is unstable then, given two adjacent
frames, network can recognize the same object differently as scene is changing dy-
namically.

To measure the consistency of predictions, we propose the metric to measure sta-
bility. Given the video sequence {I1, I2, . . . LN}, segmentation network predicts the
mask sequence {M1, M2, . . . MN}. The main idea is that previous mask Mk−1 is con-
sidered to be ground truth mask for the Mk. Confusion matrix C is calculated from
the mask pairs {Mk−1, Mk, } (k ∈ 2, N). Having obtained the confusion matrix, we
calculate mean intersection over union using previously described formula.
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Important to mention that the single value of stability metric does not represent
the consistency itself. Metric strongly depends on the dataset type, whether scene is
changing dramatically or slightly. We use stability metric for comparison only.

4.2 Results

For the evaluation, we calculated accuracy and consistency metrics of models with
following additional features:

• No features (Baseline)

• Generated adjacent frame (GANImg)

• Segmentation mask of generated adjacent image (GANMask)

• Segmentation mask of generated adjacent image converted to RGB (GANMaskRGB)

• Augmented GT segmentation mask (AugmGT)

• Augmented GT segmentation mask converted to RGB (AugmGTRGB)

Results of segmentation accuracy are presented in the table 4.1. The values marked
in red correspond to experiments which used ground truth mask as input. Thus,
segmentation accuracy of AugmGT and AugmGTRGB is not comparable to base-
line. We observe that average segmentation accuracy of experiments has seen in-
crease comparing to baseline.

Method Generated adjacent frame Transformed GT mask

Experiment Baseline GANImg GANMask GANMaskRGB AugmGT AugmGTRGB

Best value 50.47 52.24 47.64 51.68 52.36 57.04
Average value
(10 last epochs) 39.11 44.62 40.97 44.12 42.57 43.77

TABLE 4.1: Evaluation results. Segmentation accuracy (mIoU)

Results of video segmentation consistency are presented in the table 4.2. Metric was
calculated using multiple video snippets from validation subset.
We have observed the increase of consistency in all experiments comparing to base-
line. The highest metric value corresponds to GANMaskRGB.

Method Generated adjacent frame Transformed GT mask

Experiment Baseline GANImg GANMask GANMaskRGB AugmGT AugmGTRGB

mIoU 40.06 45.80 53.40 55.49 47.19 51.76

TABLE 4.2: Evaluation results. Video segmentation consistency
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Chapter 5

Conclusion

In this work, we proposed the methods of efficient video semantic segmentation
that take into account video consistency and can be implemented without annotated
video dataset. We show that using semantic segmentation mask of previous frame
as a feature for current frame segmentation improves accuracy and consistency.
We described two methods of adjacent mask estimation for training pipeline:

• Augmenting ground truth mask via affine transformation and non-linear grid
distortion

• Predicting mask via baseline segmentation network on image produced by
GAN that models adjacent in time images

Described methods overperform baseline in terms of segmentation accuracy and
consistency. Also we showed that reduction of previous mask dimensionality and
using compressed mask as a feature yields higher performance.
We achieved best results using the network trained with features obtained from
GAN and baseline segmentation network (GANMaskRGB).
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