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Data augmentation is widely used as a part of the training process applied to
deep learning models, especially in the computer vision domain. Currently,
common data augmentation techniques are designed manually. Therefore
they require expert knowledge and time. Moreover, optimal augmentations
found for one dataset, often do not transfer to other datasets as effectively.
We propose a simple novel method that can automatically learn task-specific
data augmentation techniques called safe augmentations that do not break
the data distribution and can be used to improve model performance. More-
over, we provided a new training pipeline for using safe augmentations for
different computer vision tasks. Our method works both with image classifi-
cation and image segmentation and achieves significantly better accuracy on
CIFAR-10, CIFAR-100, SVHN, Tiny ImageNet and Cityscapes datasets com-
paring to other augmentation techniques.
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Chapter 1

Introduction

We, as humans, can analyze and interpret 3D surroundings for all our pur-
poses and intents quite easily. Computer vision is a science that intends to
give this ability to machines. Computer vision is being utilized today as a
part of many applications, including object acknowledgment, medical imag-
ing, autonomous driving, surveillance, 3D modeling, visible authentications,
etc. (Parashar, 2017)

1.1 Motivation

Deep neural networks achieve human-level or even higher performance in
many computer vision tasks, such as image classification, image restoration,
image or video segmentation, etc. (Zahangir Alom et al., 2018). For example,
the human top-5 image classification error on the ImageNet dataset is 5%,
whereas the current state-of-the-art deep neural networks achieve nearly 3%
(Russakovsky et al., 2015).

However, deep learning models require a massive amount of training
data, and this is often a big problem. Data augmentation is one of the ap-
proaches that can help to solve the problem by expanding training data by
doing transformations that preserve semantic information and class labels.
The choice which data augmentation techniques to use for the specific dataset
and task is not a trivial one. While some augmentation could help the model
to learn and generalize better, others could make the model performance
even worse. For instance, a horizontal flip is proven to be useful augmen-
tation for ImageNet-like datasets, but not for the MNIST dataset (LeCun and
Cortes, 2010), because horizontally flipped digits are often no longer valid
digits. Currently, common data augmentation techniques are designed ei-
ther empirically or by leveraging expert knowledge. Hence, it takes a lot of
time and efforts.

The main idea of our research is to make the process of choosing data
augmentations automatic, namely to learn from data which augmentation
techniques will lead to model generalization and accuracy improvements.

1.2 Goals of the master thesis

1. To provide an overview of previous works on reducing overfitting.
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2. To explore recent examples of automatically learned data augmenta-
tions.

3. To present our approach and compare results.



3

Chapter 2

Related Work

In this section, we provide a brief review of previous commonly used works
that have dealt with reducing overfitting and improving generalization of
the model. We also explore recent research on performing data augmentation
automatically and compare them with our approach.

2.1 Deep learning. Overfitting

Deep learning had made a huge step forward in many domains, includ-
ing computer vision. In 2012, the very first deep convolutional neural net-
work called AlexNet (Krizhevsky, Sutskever, and Hinton, 2012) won the Im-
ageNet Large Scale Visual Recognition Challenge (Russakovsky et al., 2015)
and achieved significantly better accuracy in visual object recognition than
any other traditional machine learning or computer vision algorithms. This
was a crucial breakthrough, and since then, almost all state-of-the-art algo-
rithms in computer vision domain are based on deep learning.

Deep neural networks(DNNs) contain multiple non-linear hidden layers
with a large number of parameters, and thus they can learn very complex
relationships between inputs and outputs. However, DNNs often tend to
perform very well on training data and poorly on unseen data, especially
when trained on a relatively small train set - this problem is called overfitting
(Hawkins, 2004). To reduce it without requiring a massive amount of training
data, different methods have been developed. We provide a short overview
of several of them.

Weight decay. The idea is to decrease the model complexity with adding
a constraint to the growth of the weights through some kind of weight decay
(Krogh and Hertz, 1992). It can be achieved by adding a term to the cost
function that penalizes large weights.

E(w) = E0(w) +
λ

2 ∑
i

w2
i , (2.1)

where E0 is the loss function and λ is the parameter that controls how
much the magnitude of the weights will be penalized. Weight decay is widely
interpreted as a form of L2 regularization because in case of gradient descent
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they are equivalent. However, it is not the case for other types of optimiza-
tion algorithms, i.e., Adam or K-FAC. It is shown that the weight decay reg-
ularization improves the generalization of the model consistently (Zhang et
al., 2018a).

Dropout. The idea is to both reduce overfitting and provide a way of
approximately combining exponentially many different neural network ar-
chitectures efficiently. It is done by randomly removing units of the neural
network along with their incoming and outgoing connections. The unit is
"dropped" with the fixed probability p independently of other units. Dropout
is proven to work in different domains, showing significant success in ob-
ject classification and speech recognition (Hinton et al., 2012). One of the
drawbacks of this approach is the training time. Each training case tries to
learn different random architecture. Thus, the training time of network with
dropout is 2-3 times slower compared to a standard network (Srivastava et
al., 2014).

Early stopping. The idea is to stop the training of a neural network before
it has overfitted the training dataset. Typically the generalization error is
estimated by the average error on a validation set. In the simplest case, there
are four steps how to do early stopping:

1. Split the dataset into train set and validation set.

2. Train model on the train set and evaluate the error on the validation set
periodically, e.g., every 1, 2 or 5 epoch.

3. Stop the training once the error on the validation set increases com-
pared to the previous evaluation.

4. Use weights of the model with the smallest validation error.

However, training neural networks can be noisy in the real world. Hence,
validation error often has more than one local minimum and stopping at first
sign of overfitting may not be a good idea. Therefore, some delay in model
stopping is almost always used (Prechelt, 1998). Early stopping is perhaps
one of the most commonly used forms of regularization in deep learning,
because of its simplicity and effectiveness.

2.2 Data augmentation

Data augmentation is another approach that reduces overfitting by artifi-
cially increasing the size of the dataset and enhancing it using label preserv-
ing transformations. Each transformation function can be expressed as the
following mapping:

φ : D → T, (2.2)

where D is the original dataset and T is the augmented set of D. The term
label preserving means that given an image x from class y, augmented im-
age φ(x) should belong to the same class y. The final training set D′ is then
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represented as:
D′ = D ∪ T (2.3)

Data augmentation has been used for quite a long time, e.g., back in 1997

FIGURE 2.1: Examples of simple label preserving transforma-
tions using the image taken from the Tiny ImageNet dataset
(provided by Fei-Fei Li, Andrej Karpathy, and Justin John-
son as a part of the cs231n course at Stanford University

http://cs231n.stanford.edu/).

Yaeger, Lyon, and Webb were generating additional data using small changes
in skew, rotation and scaling during the training of a character classifier
(Yaeger, Lyon, and Webb, 1997).

Traditional augmentations. Common practice for image data is to use
geometric transformations, such as flipping, cropping, rotating, scaling, etc.,
and color transformations, such as adjusting color, brightness, resolution, etc.
They are often called generic or traditional augmentations (2.1). They all fall
under the category of data warping and are usually performed in the data
space, e.g., Wong et al. have shown that it is better to perform data augmen-
tation in data space than in feature space as long as label preserving trans-
forms are known (Wong et al., 2016). This type of transformations is easy
to use and efficient to implement. One main disadvantage is that you need
to have expert knowledge in the image domain to choose transformations
that will not break the labels of the images. Traditional augmentations are
broadly used and have shown excellent results in reducing overfitting and
improving model performance (Perez and Wang, 2017; Taylor and Nitschke,
2017).

Generative Adversarial Networks (GANs). In 2014 Goodfellow et al.
have proposed a new class of neural networks that can generate realistic data
from scratch using generator and discriminator networks that are trained in
the minimax two-player game framework (Goodfellow et al., 2014). GANs
can be used as a form of unsupervised data augmentation by generating new
data from the source distribution. They have also been used for style transfer,
e.g., transferring images from one weather condition to another (2.2). These
generated images can be used to help the model to work in different condi-
tions, for instance, to train autonomous cars to drive in night or snow, having
collected data from sunny weather only. GANs are also shown to be success-
fully used for data augmentation in the medical imaging domain by synthet-
ically augment mammogram and MRI images (Bowles et al., 2018; Wu et al.,
2018).

http://cs231n.stanford.edu/
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FIGURE 2.2: Example of style transfer using CycleGAN (Zhu
et al., 2017).

2.3 Comparison with other works

The recent paper by Hernández-García and König has shown that data aug-
mentation alone can achieve the same or even higher performance than ex-
plicit regularization techniques (weight decay, dropout, etc.), without wast-
ing model capacity (Hernández-García and König, 2018). Despite described
advantages, common data augmentation methods are usually dataset-specific
and designed manually, which require prior expert knowledge and time.

Our idea is to learn from data which transformation methods to use for
the specific dataset and task. Recently, a lot of interesting works have been
done aiming to automate the process of data augmentation. We dived them
into the following two groups.

Generate data transformations. Cubuk et al. proposed a new procedure
called AutoAugment to learn augmentation policies that lead to the high-
est accuracy of the model on a given dataset. They created a search space
of data augmentation policies and used search algorithm based on reinforce-
ment learning to find the optimal one. The results are great: they were able to
achieve state-of-the-art accuracy on CIFAR-10, CIFAR-100, SVHN, and Ima-
geNet datasets. Moreover, It is shown that policies learned from one dataset
can be transferred to other similar datasets. One of the drawbacks of Au-
toAugment might be the computational complexity and long training time
due to the extensive search space of possible policies (Cubuk et al., 2018).
Ratner et al. learned generative sequence model over user-defined trans-
formations using GAN-like framework. Their idea is to compose and pa-
rameterize a set of user-specified transformation functions in ways that are
diverse but still preserve class labels. Their approach allows leveraging do-
main knowledge flexibly and straightforwardly. (Ratner et al., 2017).

Generate augmented data directly. Smart Augmentation proposed by
Lemley, Bazrafkan and Corcoran can automatically generate augmented data
by merging two or more samples from the same class, in a way that re-
duces the loss of the original model (Lemley, Bazrafkan, and Corcoran, 2017).
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DeVries and Taylor proposed domain-independent data augmentation tech-
nique by using simple transformations in the learned feature space. They
train a sequence autoencoder to construct a learned feature space in which
they extrapolate between samples (DeVries and Taylor, 2017). Tran et al. in-
troduced a novel Bayesian method for generating additional data based on
the distribution learned from the training set (Tran et al., 2017). Generative
adversarial networks have been extensively used for producing augmented
data. For example, Antoniou, Storkey, and Edwards presented DAGAN - An
image conditional GAN-based model that learns from one data item how to
generate other realistic within-class data items. DAGAN can be applied to
unseen classes of data and can also enhance few-shot learning systems. (An-
toniou, Storkey, and Edwards, 2017). Another approach called DADA: Deep
Adversarial Data Augmentation was proposed by Zhang et al. to train deep
learning models in extremely low data regimes. They show that that DADA
outperforms both traditional data augmentation and a few GAN-based op-
tions (Zhang et al., 2018b).
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Chapter 3

The Proposed Method

We present a simple approach of automatically learning which transforma-
tion methods do not break the data distribution and can be used to improve
the model performance. Our learned set of transformations are called safe
augmentations, and we propose to use them for fine-tuning the already pre-
trained models.

Our method is computationally efficient and can be easily performed
along with the original task. It is shown in the Experiments section (5) that
using safe augmentations leads to significant performance improvements of
image classification and semantic segmentation tasks on several different
datasets.

3.1 Learning safe augmentations

We propose to learn safe augmentations from data using a convolutional neu-
ral network (CNN). Consider a dataset D and a set of all available augmen-
tation techniques A. The task is to define which transformations from set A
do not break the distribution of the D, i.e., to select S ⊂ A, where S is a set of
safe augmentation. Our pipeline can be divided into the four main steps.

Step 1. Train the CNN to solve the following multi-label classification
problem. Given a set A, for every batch of images, a random subset a ⊂ A is
applied. The subset a is of random size from 0 to the defined maximal size.
In our experiments, we used maximum size of 5. Each transformation from
subset a is applied with the probability p = 1. The model tries to predict
which augmentations were applied. As a loss function, we use Laugm - a
multi-label one-versus-all loss based on max-entropy, between input x and
target y. Laugm is equivalent to applying sigmoid function along with the
binary cross entropy loss.

Laugm(x, y) = −∑
i

y[i] ∗ log((1+ exp(−x[i]))−1)+ (1− y[i]) ∗ log
(

exp(−x[i])
(1 + exp(−x[i]))

)
(3.1)

where i = 0, ... ,x.length− 1, and y[i] in {0, 1}.
Step 2. After the model is being trained, evaluate it on the unseen test

data without any augmentations and collect per-label false positives, i.e.,
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how many times the model predicts that the specific augmentation technique
was applied when, in fact, it was not.

Step 3. Evaluate the model on the unseen test data using the same pro-
cedure of applying augmentations as in the training phase. Collect per-label
classification accuracy for each transformation technique.

Step 4. Divide all augmentations into two groups: safe and other. If it is
hard for the model to distinguish whether a particular transformation was
applied and the model never predicts it on the clean set, then we believe that
this transformation cannot break the data distribution and can be safely used
during the training of the original task. Thus, we consider augmentation as
safe if it has relatively low per-label classification accuracy on the test set
with augmentations (step 3) and low false positive rate on the clean test set
without augmentations (step 2).

FIGURE 3.1: Image classification vs Augmentation false posi-
tives (step 2) and Augmentation classification (step 3). Red line
denotes image classification accuracy without augmentations.
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For example, figure (3.1) shows the described above metrics for the Tiny
ImageNet dataset along with the image classification accuracy of every single
augmentation. Blur is an example of non-safe transformation with the small
false positive rate on the clean test set and very high augmentation classifica-
tion accuracy on the augmented test set, so it is easy for the model to distin-
guish when Blur was applied. On the other hand, HorizontalFlip is a good
example of safe augmentation with both low false positive rate and augmen-
tation classification accuracy. It is clearly shown than HorizontalFlip sig-
nificantly increases the image classification accuracy on the Tiny ImageNet
dataset, whereas Blur decreases it.

Note that we can only evaluate one transformation at a time, i.e., we can-
not take into account the impact of different augmentations on each other.
So the combination of safe augmentations is not necessarily safe. For exam-
ple, given a dataset of 32x32 images and image classification task, we found
that RandomCrop(height - 7, width - 7) and CenterCrop(height - 7, width - 7) are
safe transformations. But, when these two functions are applied together, it
is likely that such a combination is no longer safe because the augmented
image could be too small.

3.1.1 Joint learning

To learn augmentations that not only do not break the data distribution but
also improve original task accuracy, we decided to train the multi-label clas-
sification problem (step 1) in a joint learning setup. To do that, we propose
to modify the architecture of the original models in the following way.

For the image classification task (3.2), the new loss Ltotal is calculated as
sum of the augmentation classification loss Laugm and the image classification
loss Lclass.

Ltotal = Laugm + Lclass (3.2)

where Lclass is the cross-entropy loss.

Lclass(x, y) = − log

(
exp(x[y])

∑j exp(x[j])

)
= −x[y] + log

(
∑

j
exp(x[j])

)
(3.3)

where i = 0, ... ,C− 1 and C - number of classes.
For the semantic image segmentation task (3.3) the new loss Ltotal is cal-

culated in a similar way as sum of the augmentation classification loss Laugm
and the semantic segmentation loss Lsegm.

Ltotal = Laugm + Lsegm (3.4)

where Lsegm is the cross-entropy loss same as Lclass, but here x is a two-
dimensional predicted mask, y is the two-dimensional target mask, and the
goal is to label every pixel in x with the correct class.

For each augmented batch of images we calculate defined above Ltotal loss
and then perform gradient updates. Joint learning setup helps to find better
set of safe augmentations that can be used to improve performance of the
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FIGURE 3.2: Example of joint learning setup for the image clas-
sification task.

FIGURE 3.3: Example of joint learning setup for the semantic
segmentation task using Feature Pyramid Network (Lin et al.,

2016).

original task. All the results presented in the Experiments section (5) were
obtained using this setup.

3.2 Safe augmentations usage

Having learned the set of safe augmentations S for a given dataset and task,
we propose to use them to improve the accuracy of the original task in the
following way.

Step 1. Train the original task using a set of all augmentations A. For
every batch of images, a random subset a ⊂ A of fixed size is applied. In our
experiments, we used a subset of the size 3. Each transformation is applied
with the fixed probability p = 0.5.

Step 2. Fine-tune the already pre-trained model on all augmentations
using a subset of safe augmentations S. For every batch of images, a random
subset s ⊂ S of fixed size is applied. The subset size and probability of
applying transformations are the same as in the previous step.
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We showed that training the model using described two-step pipeline
leads to the highest accuracy comparing to other alternative pipelines (5).
We believe that using all augmentations, including those that break the data
distribution can force the model to learn more general features. Thus, they
can be used for the model pre-training. After that, we need to fine-tune the
model using safe augmentations for learning dataset-specific features.

FIGURE 3.4: Example of using random subsets s ⊂ S of safe
augmentations on images from CIFAR-100 dataset. Each trans-
formation is applied with the probability p = 0.5. Each crops is

of size 25x25 pixels.
Set 1: HorizontalFlip, RandomContrast, RandomSizedCrop.

Set 2: RandomCrop, RandomContrast, RandomRotate90.
Set 3: RandomSizedCrop, RandomContrast, RandomCrop.

Set 4: RandomContrast, RandomBrightness, RandomGamma.
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Chapter 4

Data

Here we give an overview of the datasets that we used to conduct experi-
ments and evaluate our approach. We used high-quality midsize datasets
that are the most popular among researchers. Below we provide a summary
of each of them.

4.1 Image classification

For the image classification task, we used four different datasets.
CIFAR-10. The CIFAR-10 dataset consists of 60.000 32x32 color images in

10 classes, with 6.000 images per class. There are 50.000 training images and
10.000 test images. The ten different classes represent airplanes, cars, birds,
cats, deer, dogs, frogs, horses, ships, and trucks (Krizhevsky, 2009).

CIFAR-100. The CIFAR-100 dataset is almost the same as CIFAR-10, ex-
cept it contains 100 different classes with 600 images per class (500 training
and 100 testing images). The 100 classes are grouped into 20 superclasses.
For example, superclass flowers contains the following classes: orchids, pop-
pies, roses, sunflowers, tulips (Krizhevsky, 2009).

SVHN. The Street View House Numbers (SVHN) dataset is a real-world
image dataset of color digits obtained from house numbers in Google Street
View images. It consists of 73257 digits for training and 26032 digits for test-
ing, each image is resized to a fixed resolution of 32x32 pixels.(Netzer et al.,
2011)

Tiny ImageNet. The Tiny ImageNet dataset contains 200 classes. Each
class has 500 training images and 50 validation images. All images are of
size 64x64 pixels. This dataset was provided by Fei-Fei Li, Andrej Karpathy,
and Justin Johnson as a part of the cs231n course at Stanford University.

4.2 Image segmentation

For the semantic image segmentation task, we used a relatively new dataset
called Cityscapes. It is a large-scale dataset collected from street views from
50 different cities. Cityscapes is used to train and test approaches for pixel-
level and instance-level semantic labeling. It has 5000 fully annotated images
of size 1024x2048 pixels. It contains 30 different classes, including person, car,
road, building, sky, etc. (Cordts et al., 2016)
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Chapter 5

Experiments

5.1 Augmentations

We used a main set A of 15 common augmentations from Albumentations li-
brary that provides fast image transforms based on highly-optimized OpenCV
library (Buslaev et al., 2018).

Transformation functions
HorizontalFlip
VerticalFlip
RandomRotate90
Transpose
ToGray
ShiftScaleRotate
RandomCrop
CenterCrop
RandomSizedCrop
RandomContrast
RandomBrightness
RandomGamma
CLAHE
Blur
GaussNoise

TABLE 5.1: Set of all augmentations A used in experiments.

5.2 Image classification

To evaluate our approach on image classification task, we chose to use the
Densely Connected Convolutional Network (DenseNet), which is a modern
architecture that requires fewer parameters and achieves decent results on
many benchmark datasets. (Huang et al., 2016).
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FIGURE 5.1: DenseNet-121 architecture for 224x224 images.
Dx: Dense Block x. Tx: Transition Block x (Ruiz, 2018).

5.2.1 Training details

All training was performed on a single GTX 1080 GPU. We perform the phase
of learning safe augmentations using the joint learning setup (3.2). As the
main model we use DenseNet-121 (5.1). Both image classification and aug-
mentation classification tasks are trained from scratch using stochastic gradi-
ent descent (SGD) optimizer. The initial learning rate is set to 10−1, momen-
tum to 0.9 and weight decay to 0.0005. All models are trained for 500 epochs.
We use reducing learning rate on the plateau by 0.1 with 10 epochs patience
and early stopping with 20 epochs patience.

5.2.2 Results

Here we provide all quantitative results obtained on four different datasets.
In order to compare our approach, for every dataset we train the image classi-
fication task using different augmentation techniques, namely without aug-
mentations, using random subset of size 3 of all augmentations and using
random subset of size 3 of found safe augmentations. We also use defined
above sets of transformations to fine-tune the model pre-trained on all trans-
formations. All augmentations in our experiments with the image classifica-
tion task is applied with the probability p = 0.5.

CIFAR-10 CIFAR-100 Tiny ImageNet SVHN
RandomCrop RandomCrop RandomCrop RandomContrast
CenterCrop CenterCrop CenterCrop RandomBrightness
RandomSizedCrop RandomSizedCrop RandomSizedCrop RandomGamma
HorizontalFlip HorizontalFlip HorizontalFlip GaussNoise
RandomRotate90 RandomRotate90 RandomRotate90
RandomBrightness RandomBrightness RandomBrightness
RandomGamma RandomGamma RandomGamma

RandomContrast

TABLE 5.2: Safe augmentations found using joint learning
setup for CIFAR-10, CIFAR-100, Tiny ImageNet and SVHN

datasets.
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CIFAR-10 and CIFAR-100

We used all crops described in the table (5.1) with the size (height− 7, width−
7), where height and width represent the size of the image. We trained both
augmentation classification task and image classification task using the batch
of size 256.

Our approach found almost the same set of safe augmentations for CIFAR-
10 and CIFAR-100 datasets, which makes sense because these datasets are
very similar (5.2). We manually defined another set called safe augmenta-
tions v2 by removing RandomCrop and CenterCrop. Since our approach can
only evaluate transformations independently, it cannot determine the possi-
bly harmful influence of one transformation on another. In fact, safe augmen-
tations v2 achieved the best results in terms of image classification accuracy
both on CIFAR-10 and CIFAR-100. Nevertheless, our proposed pipeline of
fine-tuning the model using safe augmentations showed great accuracy and
outperformed most of the tested augmentation techniques (5.3, 5.4).

Test loss Test accuracy (%)
Trained without Augmentations 0.698039 79.551

Trained using Safe Augmentations 0.468199 85.224
Trained using All Augmentations 0.362399 88.252

Fine-tuned with All Augmentations 0.342988 88.681
Fine-tuned with Safe Augmentations 0.358708 88.388

Fine-tuned with Safe Augmentations V2 0.356512 88.798

TABLE 5.3: Image classification results on CIFAR-10 dataset
with different augmentation techniques. All fine-tuning exper-
iments were performed using the model pre-trained on all aug-

mentations.

Test loss Test accuracy (%)
Trained without Augmentations 1.968367 53.418

Trained using Safe Augmentations 1.417157 63.125
Trained using All Augmentations 1.284332 65.488

Fine-tuned with All Augmentations 1.294823 65.839
Fine-tuned with Safe Augmentations 1.282066 65.937

Fine-tuned with Safe Augmentations V2 1.268305 66.015

TABLE 5.4: Image classification results on CIFAR-100 dataset
with different augmentation techniques. All fine-tuning exper-
iments were performed using the model pre-trained on all aug-

mentations.



Chapter 5. Experiments 17

SVHN

Same as for CIFAR-10 and CIFAR-100, we used all crops described in the
table (5.1) with the size (height− 7, width− 7), where height and width repre-
sent the size of the image. We trained both augmentation classification task
and image classification task using the batch of size 256.

Our method found 4 safe augmentations (5.2), which all are color-based
transformations. Using the found set of transformations for fine-tuning the
model pre-trained on the set of all transformations lead to the highest test
accuracy (5.5).

Test loss Test accuracy (%)
Trained without Augmentations 0.175104 95.032

Trained using Safe Augmentations 0.181426 95.004
Trained using All Augmentations 0.167121 95.620

Fine-tuned with All Augmentations 0.165516 95.501
Fine-tuned with Safe Augmentations 0.145694 96.229

TABLE 5.5: Image classification results on SVHN dataset with
different augmentation techniques. All fine-tuning experi-
ments were performed using the model pre-trained on all aug-

mentations.

Tiny ImageNet

Top-1 (%) Top-3 (%) Top-5 (%)
Trained without Augmentations 49.609 68.046 74.804

Trained using Safe Augmentations 57.148 74.726 80.957
Trained using All Augmentations 58.925 76.416 82.382

Fine-tuned with All Augmentations 58.896 76.025 82.060
Fine-tuned with Safe Augmentations 58.867 76.386 82.236

Fine-tuned with Safe Augmentations V2 59.160 76.425 82.656

TABLE 5.6: Image classification results on Tiny ImageNet test
set with different augmentation techniques. Top-1, top-3 and
top-5 denote the corresponding test classification accuracy. All
fine-tuning experiments were performed using the model pre-

trained on all augmentations.

We used all crops described in the table (5.1) with the size (height− 14, width−
14), where height and width represent the size of the image. We trained both
augmentation classification task and image classification task using the batch
of size 256. Similarly to CIFAR-10 and CIFAR-100, we created a set of safe
augmentations v2 by excluding RandomCrop and CenterCrop from the orig-
inally found set of safe augmentations.
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Our method found the set of 7 safe augmentations. The proposed pipeline
of fine-tuning models with safe transformations outperforms most of the
tested techniques (5.6). Note that set of manually created safe augmentations
v2 achieves the best accuracy.

5.3 Image segmentation

To evaluate our approach on semantic image segmentation task, we chose to
use the Feature Pyramid Network (FPN), which is a fast and accurate archi-
tecture that generates multi-scale feature maps for better object detection in
different scales (Lin et al., 2016).

5.3.1 Training details

All training was performed on a single GTX 1080 GPU. We perform the phase
of learning safe augmentations using the joint learning setup (3.3). As the
main model, we use FPN with the DenseNet-121 backbone. Both image clas-
sification and augmentation classification tasks are trained from scratch us-
ing Adam optimizer. The initial learning rate is set to 10−4. All models are
trained for 200 epochs. We use reducing learning rate on plateau by 0.5 with
7 epochs patience and early stopping with 15 epochs patience.

5.3.2 Results

Here we provide all quantitative results. To compare our approach, we train
the semantic image segmentation task using different augmentation tech-
niques, namely without augmentations, using a random subset of size 3 of all
augmentations and using a random subset of size 3 of found safe augmen-
tations. We also use defined above sets of transformations to fine-tune the
model pre-trained on all transformations. All augmentations in our experi-
ments with the semantic segmentation task are applied with the probability
p = 0.5.

Cityscapes

Transformations
HorizontalFlip
RandomBrightness
RandomGamma
Transpose

TABLE 5.7: Safe augmentations found using joint learning
setup for the Cityscapes dataset.
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We trained both augmentation classification task and image classification
task using the batch of size 16. We rescaled every image to 256x256 pixels due
to the limited training resources. We used same set of all augmentations (5.1),
except for RandomSizedCrop, because we already have RandomCrop and do
Resize for every image. We also changed the size of the crops to (512, 512).

Our method found 4 safe augmentations (5.7). Using the found set of
transformations for fine-tuning the model pre-trained on the set of all trans-
formations lead to the highest validation performance in terms of intersec-
tion over union metric(5.8).

Validation loss Validation IoU (%)
Trained without Augmentations 0.32913 45.340

Trained using default Augmentation 30.389 51.112
Trained using Safe Augmentations 0.29692 51.584
Trained using All Augmentations 0.25249 59.413

Fine-tuned with All Augmentations 0.28026 60.373
Fine-tuned with Safe Augmentations 0.27121 62.091

TABLE 5.8: Semantic image segmentation results on Cityscapes
dataset with different augmentation techniques. All fine-tuning
experiments were performed using the model pre-trained on all

augmentations.
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Chapter 6

Conclusion

We present a novel approach for learning task-specific augmentations that
do not break the data distribution and can be safely used for training of the
original task. Additionally, we propose a training pipeline using safe aug-
mentations. Our methods show great results in many different datasets on
image classification task and semantic image segmentation task. We compare
our approach with a diverse set of possible augmentation techniques.

Future work. Our method of choosing safe augmentations is still a semi-
automated one because we must manually divide all augmentations into two
groups using the provided metrics. We are currently working on making this
process fully automatic. We would also like to explore our approach in a
transfer learning setup, to see if we can train one model and use it to get safe
augmentations from many similar datasets.
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