
UKRAINIAN CATHOLIC UNIVERSITY

MASTER THESIS

Generation of code from text
description with syntactic parsing

and Tree2Tree model

Author:
Anatolii STEHNII

Supervisor:
Dr. Rostyslav HRYNIV

A thesis submitted in fulfillment of the requirements
for the degree of Master of Computer Science

in the

Department of Computer Sciences

Faculty of Applied Sciences

Lviv 2017

http://www.ucu.edu.ua
http://www.cs.ucu.edu.ua/
http://www.cs.ucu.edu.ua/

i

Declaration of Authorship
I, Anatolii STEHNII, declare that this thesis, titled “Generation of code from
text description with syntactic parsing and Tree2Tree model” and the work pre-
sented in it are my own. I confirm that:

• This work was done wholly or mainly while in candidature for a research
degree at this University.

• Where any part of this thesis has previously been submitted for a degree
or any other qualification at this University or any other institution, this
has been clearly stated.

• Where I have consulted the published work of others, this is always clearly
attributed.

• Where I have quoted from the work of others, the source is always given.
With the exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I
have made clear exactly what was done by others and what I have con-
tributed myself.

Signed:

Date:

ii

UKRAINIAN CATHOLIC UNIVERSITY

Abstract
Faculty of Applied Sciences

Master of Computer Science

Generation of code from text description with syntactic parsing and
Tree2Tree model

by Anatolii STEHNII

Software development requires vast knowledge of different programming tools
which cannot be kept in human memory. Therefore software developers often
formulate their task in human language to query online knowledge bases like
StackOverflow to get short snippets of code. In this work, we explored the way
of code generation from natural language description and prepared web API for
Python which translates NL descriptions to short snippets of code. Our model
implements sequence-to-sequence model with recursive encoder and uses syn-
tactic trees instead of plain sequence on input. Results have not outperformed
current state-of-the-art performance. However, presented Tree2Tree model has
potential in other applications and this work makes a solid base for a further
research.

HTTP://WWW.UCU.EDU.UA
http://www.cs.ucu.edu.ua/

iii

Acknowledgements
I would like to thank Vsevolod Dyomkin and Rostyslav Hryniv who supervised
and directed my research for this thesis. Special thanks to Artem Chernodub for
hints about neural network implementation.

This work would not be possible without computational resources for a neural
network training provided by ArviLab. Thanks to CoreNLP and EasyCCG de-
velopers, who provided great tools for a natural language parsing. And thanks
to PyTorch team for an easy and handy framework.

Last, but not least I am grateful to Ukrainian Catholic University and Olek-
sii Molchanovskyi personally for the first master program in data science in
Ukraine. I also want to thank Grammarly, Inc for covering my tuition fees.

iv

Contents

Declaration of Authorship i

Abstract ii

Acknowledgements iii

List of Figures vi

List of Tables vii

List of Abbreviations viii

List of Symbols ix

1 Introduction 1
1.1 Motivation . 1
1.2 Goals of the master thesis . 2
1.3 Thesis structure . 2

2 Related works 3
2.1 Automatic programming . 3
2.2 Deep learning . 4
2.3 Snippet generation . 5
2.4 Semantic language models . 6
2.5 Comparison with other works . 7

3 Background information and theory 9
3.1 Abstract syntax tree . 9
3.2 syntactic parsing . 10

3.2.1 Constituency parsing . 10
3.2.2 Combinatory-categorial grammar 13
3.2.3 Dependency parsing . 14

v

3.3 Word embeddings . 15
3.4 Long-short term memory network 16
3.5 Sequence-to-sequence machine translation 18

3.5.1 Attention . 18
3.5.2 Beam search . 20

3.6 Recursive neural networks . 21
3.7 Pointer networks . 22

4 Model 24
4.1 Code generation problem . 24
4.2 Abstract syntax tree generation . 24

4.2.1 ApplyRule actions . 26
4.2.2 GenToken actions . 27

4.3 Action probabilities . 28
4.3.1 Encoder . 28
4.3.2 Decoder . 29
4.3.3 Calculating probabilities . 30

4.4 Training and Inference . 31

5 Experiments 32
5.1 Datasets . 32

5.1.1 Preprocessing . 32
5.2 Implementation details . 34
5.3 Experimental setup . 35
5.4 Results . 35
5.5 Case studies . 37

6 Conclusion 42
6.1 Contribution . 42
6.2 Points to improve . 42

A Python 3.6 abstract syntax tree grammar 45

Bibliography 50

vi

List of Figures

3.1 Abstract Syntax Tree . 10
3.2 Syntax tree . 12
3.3 Dependency graph . 14
3.4 Word vectors . 15
3.5 Long-short term memory . 17
3.6 Seq2Seq model . 19
3.7 RvNN flow . 21

vii

List of Tables

5.1 Statistics of datasets . 33
5.2 Quoted items preprocessing . 33
5.3 Nested object references preprocessing 33
5.4 Synthetic description example . 34
5.5 Final results . 36

viii

List of Abbreviations

AST Abstract Syntax Tree
BiLSTM Bidirectional Long Short-Term Memory
BLEU Bilingual Evaluation Understudy
CCG Combinatory Categorial Grammar
CFG Context Free Grammar
DNN Deep Neural Network
IDE Integrated Development Environment
LSTM Long Short-Term Memory
MT Machine Translation
NMT Neural Machine Translation
NL Natural Language
OOV Out Of Vocabulary
PBG Phrase Based Grammar
PCFG Probabilistic Context-Free Grammar
ReLU Rectified Linear Unit
RNN Reccurent Neural Network
RvNN Recursive Neural Network
Seq2Seq Sequence-to-Sequence
Seq2Tree Sequence-to-Tree
SRvN Simple Recursive Network
Tree2Tree Tree-to-Tree

ix

List of Symbols

· matrix multiplication
◦ entrywise multiplication
[x1, x2] concatenation of vectors x1 and x2

p(y|x) probability of y given x
P vector of probability distribution
τ abstract syntax tree
η node in natural language syntax tree

x(t) LSTM input vector for sequence step t
h(t) LSTM hidden state vector for sequence step t
c(t) LSTM memory cell vector for sequence step t
f (t) LSTM forget gate vector for sequence step t
i(t) LSTM input gate vector for sequence step t
u(t) LSTM memory cell input vector for sequence step t
o(t) LSTM output gate vector for sequence step t

h(t)e encoder embedding vector for encoding step t
He matrix of encoder embeddings
h(t)d decoder embedding vector for decoding step t
Hd matrix of decoder embeddings
α(t) attention vector for decoding step t
ϕ(t) context vector for decoding step t

a(t) AST generation action for step t
r(t) AST production rule for step t
v(t) AST terminal token for step t
e(v) one hot encoding for vocabulary item v

w word embedding vector
W linear transformation weights
b linear transformation bias

fpointer pointer network function
flstm Long Short-Term Memory single step function
so f tmax normalized exponential function
tanh hyperbolic tangent function

x

To my patient and loving family

1

Chapter 1

Introduction

1.1 Motivation

Software development is often described as a knowledge-intensive field (Ro-
billard, 1999). Implementation and maintenance of enterprise software sys-
tems require broad knowledge of various programming languages and appli-
cation of programming interfaces. While in 2002 to create a website a devel-
oper had to know HTML/CSS, PHP and MySQL, in 2017 this requires knowl-
edge about frontend ecosystem, backend frameworks, and different NoSQL
query languages. Documentation becomes a bottleneck while solving simple
tasks, especially for new developers. For that reason software development in-
volves regular use of search engines and Q&A databases (Treude, Barzilay, and
Storey, 2011). Code snippets from crowdsourced resources like StackOverflow
are adopted and reused in other projects. Developers often seek to find existing
examples of working code to solve regular tasks instead of writing and testing
it from scratch (Brandt et al., 2010). And to find corresponding code snippet, the
software developers first formulate its description as a query for search engine
(Brandt et al., 2009).

However, web search is a time-consuming task, which causes interruptions of
the coding process. As an alternative, the code description could be translated
directly to code. Such translation tool would reduce the burden of remember-
ing the details of a particular language or API and allow a developer to use his
or her time for more creative aspects of development. That was a motivation of
the present work: we wanted to develop a model of description-to-code trans-
lation, which could transform informal instrcutions to actual language specific
implementation.

Chapter 1. Introduction 2

1.2 Goals of the master thesis

1. To explore previous examples of code generation tools.

2. To train a Description2Code syntactic model and compare its performance
to previous works.

3. To develop code generation plugin for PyCharm IDE.

1.3 Thesis structure

This work is structured as follows: In chapter 2 we have a review of related pub-
lications and presented a comparison with previous code generation projects.
In chapter 3 we provided a theoretical background for methods we used in this
work. In chapter 4 we explained the idea of a Tree2Tree model with all details
about its structure and implementation. In chapter 5 we described data prepro-
cessing, explained the model implementation details and presented evaluation
results. And finally, in chapter 6 we drawn the conclusion and set the points for
a further research.

3

Chapter 2

Related works

2.1 Automatic programming

A problem of translation of high-level specifications to low-level instructions
was recognized at the early years of computational industry. It addresses the
important goal of computer science and artificial general intelligence — to shift
the burden of requirements understanding and instructions implementation
from a human to a machine. The notion of automatic programming was first
established in FORTRAN compiler in 1957 (Backus et al., 1957) and used as
a prototype of a high-level programming concept. Later the automatic pro-
gramming split into two complementary approaches: bottom-up and top-down
(Balzer, 1985). In the first approach, a specification language is developed as a
set of high-level functions and modules. And in the second approach, informal
specification language is translated to a formal level, which can be compiled
automatically. While the first approach was a background for high-order pro-
gramming languages and frameworks, the second approach gave raise to an
automatic code generation field.

First attempts to build automatic programming system addressed the roles of
symbolic evaluations, deduction and programming knowledge in the program-
ming process. That was coherent with symbolic artificial intelligence, a dom-
inant paradigm in artificial intelligence research from the mid-1950s until the
late 1980s (Haugeland, 1989). Green, 1969 and Lee, Waldinger, and Chang, 1974
was focused on the use of theorem-prover to produce the programs. In 1976, the
PSI program synthesis system (Green, 1976; Green et al., 1977) was concerned
with coding a high-level program knowledge from requirements collected via
a dialog with a user. It used a set of expert modules to build a program model

Chapter 2. Related works 4

from natural language and generate a code for this model. For example, one of
the generator modules was PECOS (Barstow, 1979), which used a set of sym-
bolic rules to design abstract algorithms like a sorting or a path finding.

Another automated coding attempt was made in 1978 with project SAFE (Balzer,
Goldman, and Wile, 1978). It used the semantic parsing to resolve ambigu-
ity in informal specifications and translate them into a symbolic representation.
While SAFE was a laboratory prototype designed to solve a limited set of tasks,
its results were used in further automated programing researches like a specifi-
cation language Gist (Balzer, 1985) and automatic requirement derivation sys-
tem SPECIFIER (Miriyala and Harandi, 1991).

Although these works have given a great advance in ideas about knowledge
representation and informality translation, they have major flaws. Symbolic ap-
proach to artificial intelligence was criticized (Harnad, 1990; McDermott, 1987)
for a symbolic grounding problem and problems with uncertainty represen-
tation. Dreyfus, 1994 argued that symbols and formal rules could not catch
unconscious instincts which form the human intelligence. Therefore further re-
search of automatic programming addressed this problem with statistical ma-
chine learning methods like neural networks and a representation learning.

2.2 Deep learning

Deep neural networks have two major advantages for the natural language mod-
eling and translation. The first is representation learning (Bengio, Courville, and
Vincent, 2013), which allows to transform data into the representation which
contains important features for a current task. This feature allows to create
knowledge representations of informal instructions automatically, without com-
plex preparations. And the second is the ability to approximate statistical dis-
tribution prior to some conditions (White, 1992), which allows to deal with un-
certainty in the language interpretation.

With invention of word embeddings (Bengio et al., 2003) sequences of informal
instructions became a possible input for neural models. Great advance in lan-
guage modeling was introduced by recurrent neural networks (Gers and Schmid-
huber, 2001; Hochreiter and Schmidhuber, 1997; Jozefowicz et al., 2016; Sunder-
meyer, Schlüter, and Ney, 2012) which were able to capture features encoded

Chapter 2. Related works 5

in a sequential structure of the natural language. Sequence-to-sequence models
(Sutskever, Vinyals, and Le, 2014) with recent novel methods like attention tech-
nique (Bahdanau, Cho, and Bengio, 2014; Jean et al., 2014; Luong, Pham, and
Manning, 2015) allowed to surpass results of phrase-based machine translation
in production level systems like Google Translation (Wu et al., 2016).

Code generation with neural models was interpreted as a neural machine trans-
lation problem and used an established approach — sequence-to-sequence model
with attention. Ling et al., 2016 proposed an architecture of latent predictor net-
works with structured attention for generation of Magic: The Gathering and
HearthStone cards implementation from card description in Java and Python.
Chen et al., 2016 used a latent attention to generate If-Then recipes for natural
descriptions for IFTTT.com dataset. A remarkable idea of pointer networks in-
troduced by Vinyals, Fortunato, and Jaitly, 2015 allow to re-use parts of an input
sequence in an output. It was used by Zhong, Xiong, and Socher, 2017 along
with the reinforcement learning for a generation of SQL queries from informal
questions (Bhoopchand et al., 2016).

2.3 Snippet generation

Instead of end-to-end translation of complex high-order requirements to a soft-
ware system into compiled instructions, code generation could be used as a
handy snippet generation tool. For example, Little and Miller, 2009 proposed a
keyword based generation of Java code and implemented it in an integrated de-
velopment environment plugin for Eclipse. Gvero and Kuncak, 2015 addressed
the problem of description-to-code generation as a machine translation task and
used probabilistic context-free grammar model to generate a list of ranked code
expressions for a developer. Codehint (Galenson et al., 2014) is another plugin
for Eclipse which explores Java virtual machine execution state to build a search
space of possible expressions for a given description and then to select the most
likely one using the statistical model built offline from existing projects. Nat-
uralJava (Price et al., 2000) uses decision trees to infer a Java abstract syntax
tree from English sentences. Allamanis et al., 2015 created bimodal models of
language and code to generate a code from a description and reversed for C#.

Chapter 2. Related works 6

Another common approach in the code generation is a creation of a code for a
predefined context. In other words, creation a code for defined input and out-
put of a module. These solutions allow to fill gaps and create connections in the
program template. Raychev, Vechev, and Yahav, 2014 used statistical language
models to synthesize a code for holes in application programming interfaces
with a most likely sequence of statements. Jha et al., 2010 proposed code gener-
ation approach with I/O oracle, constrained to input-output behavior and a set
of available components. Search in the expression space performed with off-the-
shelf Satisfiability Modulo Theory solvers. Domain-specific solution StreamBit
(Solar-Lezama et al., 2005) shifts the task of most complex and error sensitive
bit-level operations from a programmer to a code generator. A developer only
needs to write a sketch — a domain-specific description which then gets trans-
lated to a C implementation. Srivastava, Gulwani, and Foster, 2010 used verifi-
cation tools to perform a proof-theoretic program synthesis with a given input-
output functional specification and a specification of the synthesized programs
looping structure.

2.4 Semantic language models

A semantic model of the natural language is a meaning representation which
could be understood by the machine. Tasks like natural language understand-
ing or paraphrase detection heavily relies on semantic models like abstract mean-
ing representation (Banarescu et al., 2013) or combinatory categorial grammar
(Clark and Curran, 2007). These models also could be domain specific formal
representation like a natural language database interface (Berant et al., 2013;
Zettlemoyer and Collins, 2012), instructions for a robot (Artzi and Zettlemoyer,
2013) or a smart home instructions (Quirk, Mooney, and Galley, 2015). Since a
semantic meaning representation already contains formal instructions, we be-
lieve that their use for code generation task could significantly improve the re-
sult.

Until recently in the neural modeling of natural language dominated an idea
that neural networks do not require any information about a syntactic structure
of sentences. Outstanding results of deep neural networks in the representa-
tion learning and the structure parsing suggested to use a plain sequence of
words as an input for a neural model and allow it to learn a representation of

Chapter 2. Related works 7

all other important features backpropagating a gradient of error. However, re-
cent results of syntactic structures usage for the machine translation (Chen et
al., 2017) and the reading comprehension (Xie and Xing, 2017) outperform the
result of Seq2Seq models. To parse syntactic structures, recursive neural networks
(Goller and Kuchler, 1996; Socher et al., 2011) and recurrent neural networks gram-
mar (Dyer et al., 2016) were used. Recursive neural networks also have shown
good results for the semantic (Tai, Socher, and Manning, 2015) and dependency
parsing (Zhu et al., 2015).

Another approach of a syntax structure usage was addressed by Dong and
Lapata, 2016; Rabinovich, Stern, and Klein, 2017; Yin and Neubig, 2017. In
these works an augmented decoder was used to generate a tree (syntax tree
for syntactic parsing or abstract syntax tree for a code generation) instead of a
sequence. These models reduced model search space by inferring prior knowl-
edge about target language syntax into their information flow.

2.5 Comparison with other works

Keyword programming approach (Little and Miller, 2009) is tailored to a Java
syntax and requires substantial work to be reused in other languages. The same
problem has plugin anyCode, described in Gvero and Kuncak, 2015. Plugin
Codehint (Galenson et al., 2014) implemented a handy user experience for code
generation. It uses specially marked comments as a place marker to insert gen-
erated code. However, its approach of usage Java virtual machine state as explo-
ration space could not be transferred to dynamic typed languages like Python.
The model described in our work does not require to run a program to gen-
erate a target code. And, it is language agnostic and could be trained for any
language requiring only an appropriate dataset of code lines and descriptions.

Architecture described in Zhong, Xiong, and Socher, 2017 shows an interest-
ing approach with pointer networks for reuse of description parts, for example
variables or function names. However, it is domain specific, since it is a natural
language database interface, thus it can not be compared with general use code
generation. Chen et al., 2016 and Ling et al., 2016 also described only domain
specific code generation.

Chapter 2. Related works 8

Yin and Neubig, 2017 proposed to use a vanilla long short-term memory en-
coder and an augmented long short-term memory decoder with additional neu-
ral connections to reflect the structure of abstract syntax tree. This idea has
a great potential as it infers the code model in its structure. In our work the
above approach is modified by using Tree-LSTM as encoder with parsed se-
mantic trees as input. We believe, that usage of syntactic tree information in
the model can enhance the instructions understanding and improve the model
results.

9

Chapter 3

Background information and theory

3.1 Abstract syntax tree

The abstract syntax tree is a tree representation of an abstract structure of pro-
gramming code. For each expression or statement in the code, abstract syntax
tree assigns the corresponding node. Abstract syntax tree could not contain
all the details of the underlying code like parentheses or indentation, but its
structure allows to interpret a code execution process unambiguously. The es-
tablished grammar of abstract syntax tree reduces search space of the model
and implies the validity of generated code.

The Python abstract grammar contains a set of production rules, composed of a
head node and multiple child nodes. For example, in fig. 3.1 the first rule is
used to generate the assignment of statement result to a variable. It consists of
the head node of type Assign and two child nodes of types Name and Call, re-
spectively. Non-terminal nodes (the blue ones) defines a structure of the target
code, while terminal nodes (the green ones) refer to symbol tokens, like vari-
ables, constants or operations. Full Python 3.6 abstract grammar can be found
in appendix A.

1Picture is created in Python library showast.

https://github.com/hchasestevens/show_ast

Chapter 3. Background information and theory 10

FIGURE 3.1: Abstract syntax tree of code snippet ls = sorted(a,

key=lambda x: x[1])1.

3.2 syntactic parsing

3.2.1 Constituency parsing

Theory of sentence analysis is derived from the idea that the words of a sen-
tence seem to combine into patterns and structures. Each word is classified as
a different in terms of its function in a sentence. According to this function, to
each word there can be assigned its lexical category or part of speech, like a
noun (N), an adjective (A), or a verb (V).

This system could be extended to the level of syntactic categories, combining
words or other syntactic categories with a similar function into phrases. Each
phrase is characterized by the properties of a headword that it includes. For

Chapter 3. Background information and theory 11

example, the headword of the subject of a sentence is a noun, so it is classified
as a noun phrase (NP). A verb is regarded as the head of the sentence predicate,
so predicate is classified as a verb phrase (VP). Rules which describe how lexical
categories can be combined into syntactic categories is called rewriting rules. For
example, a noun phrase category may be described as the parent of adjective
and noun categories, and it may be represented by a rule of the following form:

NP => A N

A formalization of such a rule-based sentence structure system is called a phrase-
based grammar or a constituency grammar. A grammar is defined by the following
constituents: VN is a non terminal vocabulary, which contains the lexical and
syntactic category labels; VT is a terminal vocabulary and it contains a set of
words. P identifies a collection of the production rules of the grammar. To
illustrate this concept, we present a short grammar to parse a sentence “good
dogs like cats” to its syntactic representation. The grammar for this example
contains the following vocabulary:

VN = S, NP, VP, A, N, V

VT = cats, dogs, like, good
(3.1)

The production rules for this grammar would be following:

S => NP VP

NP => A N

NP => N

VP => V NP

N => dogs

N => cats

V => like

A => good

A graphic representation of the syntactic tree of this sentence can be seen in
fig. 3.2.

The phrase-based grammar might also be referred as the context-free grammar,
because it provides clear mechanism for combining a phrases from their con-
stituents without usage of sentence context.

Chapter 3. Background information and theory 12

S

VPNP

A N V NP

Ngood dogs like

cats

FIGURE 3.2: Example of syntax tree.

Chapter 3. Background information and theory 13

3.2.2 Combinatory-categorial grammar

Phrase-structure grammars analyze the sentence recursively applying rewriting
rules, starting from identification of the parts of speech or lexical categories of
individual words. This rule governs how words can be combined into phrases
and sentences. Compared with phrase-structure grammars, combinatory-catego-
rial grammars do not contain a separate collection of category-combining rules.
Lexical categories of words such as adjectives and nouns describe the func-
tions that determine how these words can combine with other categories. Each
node in CCG tree can be translated into lambda calculus representation (Artzi,
FitzGerald, and Zettlemoyer, 2013), thus CCG is a transparent interface between
syntax and semantics of a sentence.

Consider an example. Adjective “good” is in the category corresponding to a
function that maps from the nouns into the noun phrases. The association of
this item with a function looks like that:

good = NP/N

λx.good(x)2

NP on the left side of the slash character denotes a function return value and N

on the right side denotes a function argument. This function could be resolved
with a forward function application operation, denoted by character >:

dogs => N

good dogs => NP/N>N = NP

λx.good(x)(DOGS) = good(DOGS)

With the backward slash character \ the category on the right side denotes a
function return and the category on the left side denotes a function argument.
Example:

bird => N

flies => N\S

bird flies => N>N\S = S

λx. f lies(x)

λx. f lies(x)(BIRD) = f lies(BIRD)

2To make connection of CCG categories with the lambda calculus clear, we will complement
each example of categorial operations with the corresponding lines of lambda calculus.

Chapter 3. Background information and theory 14

A verb such as “like” is usually taking two arguments and associated as follows:

like => (S/NP)\N

cats => N

like cats => (S/NP)\N>N = S/NP

λx.λy.like(x, y)

λx.λy.like(y, x)(CATS) = λy.like(y, CATS)

The function (S/NP)\N maps N to a range of functions of the form S/NP. Charac-
ter < denotes backward function application. A final sentence example:

good dogs => NP

like cats => S/NP

good dogs like cats => NP<S/NP = S

λy.like(y, CATS)

λy.like(y, CATS)(good(DOGS)) = like(good(DOGS), CATS)

3.2.3 Dependency parsing

FIGURE 3.3: Dependency graph for sentence “nice dogs like
cats”3.

Chapter 3. Background information and theory 15

Another approach to represent a sentence semantical structure is the dependency
parsing. Dependency grammar is different from constituency grammars like CFG
or CCG, which build sentence tree by applying rewrite rules to constitute high
level phrases from low level syntactic categories and lexems. The dependency
grammar also defines sentence structure as a graph, but without phrasal nodes
like NP or VP. Instead each node represents one word which points to it de-
pendents. Since such representation do not rely on established phrase word
order it is well suited for the analysis of languages with free word order, such
as Ukrainian.

In fig. 3.3 sentence “nice dogs like cats” is parsed to dependency graph. It con-
sists of the following dependencies:

amod = adjectival modifier

nmod = nominal modifier

case = case marker

3.3 Word embeddings

man

woman

uncle

aunt

FIGURE 3.4: Example of collinearity between two word vectors.

3Picture is created in GrammarScope.

http://grammarscope.sourceforge.net/

Chapter 3. Background information and theory 16

The task of language modeling requires the transformation of words and doc-
uments into vector representation. Simple tasks like text classification could be
done using naive representations like a bag of words or one hot encoding. How-
ever, these approaches would require excessive memory usage to handle large
vocabulary and usually do not infer existing semantical connections between
words in a language.

Methods of word embeddings solve both problems, providing dense vectors of
real numbers, which represent word positions in a n-dimensional space. This
space represents the contextual similarity of the words, thus word embeddings
support semantic relations as vector operations. For example, adding a vector
woman to a vector uncle and subtracting a vector man will result in a vector
approximately pointing to the same point as the vector aunt (see fig. 3.5).

3.4 Long-short term memory network

Model of LSTM network is an extension of the simple recurrent network. It can
store values in the hidden layer for a short or long period of time because it uses
no activation function within its recurrent components. This makes it possible
to backpropagate error gradient through long sequences of data without gradi-
ent vanishing or gradient exploding. This properties allow LSTM to catch long
term patterns in the input sequences and make it a perfect choice for natural
language modeling.

At the time step t LSTM consumes a previous value of a hidden state h(t−1),
a memory cell c(t−1) and an input vector x(t). The new value of memory cell
uses gates to forget a part of the previous value and remember a new value. An
input gate calculation:

i(t) = σ(Wi · [h(t−1), x(t)] + bi) (3.2)

A forget gate:
f (t) = σ(W f · [h(t−1), x(t)] + b f) (3.3)

Chapter 3. Background information and theory 17

FIGURE 3.5: Long-short term memory network achitecture (Olah,
2015).

A new memory state:

u(t) = tanh(Wu · [h(t−1), x(t)] + bu)

C(t) = ft ◦ C(t−1) + it ◦ u(t)
(3.4)

A new hidden state:
o(t) = σ(Wo[h(t−1), x(t)] + bo)

h(t) = o(t) ◦ tanh(C(t))
(3.5)

An LSTM step can be presented as a function:

h(t), c(t) = flstm(x(t), h(t−1), c(t−1)) (3.6)

The value of the memory cell often is not used in further computations and thus
can be omitted:

h(t) = flstm(x(t), h(t−1)) (3.7)

For the task of natural language processing, an important information about a
current word can be stored not only in the previous words but also in the next
words of the sentence. To catch this information a model of bidirectional LSTM
(BiLSTM) was proposed (Graves, Fernández, and Schmidhuber, 2005; Schuster
and Paliwal, 1997). It represents each word as a concatenation of a forward and
a backward embedding:

Chapter 3. Background information and theory 18

h(t)f orward = flstm. f orward(x(t), h(t−1)
f orward)

h(t)backward = flstm.backward(x(t), h(t+1)
backward)

h(t) = [h(t)f orward, h(t)backward]

(3.8)

3.5 Sequence-to-sequence machine translation

The task of the machine translation can be formalized as a mapping of a se-
quence of words in a source language to a sequence of words in a target lan-
guage (Neubig, 2017). This task can be solved with an encoder-decoder model,
which consists of two RNNs. The first RNN consumes input sequence step by
step and encodes it into so-called thought vector. After encoding, the second
RNN uses thought vector as its initial hidden state and decodes an output sen-
tence word by word. Each word from the decoder output is used as an input
for the next decoding step until the model outputs the end-of-sentence token.

During the training, Seq2Seq model learns its parameters maximizing the log-
likelihood P(y|x) of the target sequence y given the input sequence x. The next
input of the decoder can be selected in two ways:

• Without Teacher Forcing: the previous prediction used as the next input.

• With Teacher Forcing: A value from the target sequence used as the next
input.

3.5.1 Attention

Theoretically, a sufficiently large encoder-decoder model should be able to per-
form the machine translation perfectly. However, to encode all words and their
dependencies in the arbitrary-length sentences, the thought vector should have
enormous length. Such model would require massive computational resources
to train and to use, thus this approach is ineffective.

This problem can be solved with attention technique (Bahdanau, Cho, and Ben-
gio, 2014). Its basic idea is to replace a single vector representation of the input
sentence with references to representations of different words in it. On the en-
coding step, each word representation h(t)e is stored as a column of matrix He.

Chapter 3. Background information and theory 19

Decoder

Encoder

he(1)

embed

hello

he(2)

how

he(3)

are

he(4)

you

hd(1)

embed

<s>

softmax

hallo

hd(2)

hallo

softmax

wie

hd(3)

wie

softmax

geht

hd(4)

geht

softmax

es

hd(5)

es

softmax

dir

hd(6)

dir

softmax

<s>

embed embed embed

embed embed embed embed embed

Thought
vector

Thought
vector

He

c(1) c(2) c(3) c(4) c(5) c(6)

FIGURE 3.6: Seq2Seq with attention model.

During the decoding step, each decoder input is extended with context vector
ϕ(t−1):

h(t)d = lstm([w(t), ϕ(t)], h(t−1)
d) (3.9)

Context vector ϕ(t) is calculated as a weighted sum of the encoder representa-
tions:

ϕ(t) = He · α(t) (3.10)

Weights for the attention vector α(t−1) can be calculated with an arbitrary atten-
tion score function (for example, vector product) for each pair of the decoder
vector h(t)d and the encoder vector h(i)e , ∀i ∈ 1..n, where n is a length of the en-
coded sequence. In this work we used DNN with one hidden layer as suggested

Chapter 3. Background information and theory 20

in the work of Bahdanau, Cho, and Bengio, 2014:

α̂
(t)
i = Wattn1 · [h

(i)
e , h(t−1)

d]

α
(t)
i = Wattn2 · tanh(α̂(t)i)

α(t) = so f tmax(α(t))

(3.11)

This way each decoder step can use information from an arbitrary part of the en-
coded sequence. The input representation will not be limited to the fixed length
thought vector, and thus it can model natural language with any sequence and
vocabulary size. An architecture of sequence-to-sequence model with attention
can be seen in fig. 3.6.

3.5.2 Beam search

After the model learned the probability model on training examples, it can gen-
erate new translations. This can be done in several ways (Neubig, 2017):

• Random Sampling: For each time step t randomly select output words
w(t) for y from the probability distribution P(y|x).

• Gready Search: Find the y that maximizes P(y|x), selecting each next
word w(i) with maximum probability ˆw(t) = argmax

w(t)
P(w(i)|x, w(<i)).

• Beam Search: Find the n outputs with the highest probabilities according
to P(y|x).

Beam search is similar to greedy search, but instead of considering only the one
best hypothesis argmax

w(t)
P(w(i)|x, w(<i)), it is considering b best hypotheses at

each time step, where b is the width of the beam. To find the best hypotheses,
beam search explores the generation graph in the breadth-first manner. At each
level of the search tree it calculates a probability for each candidate from the
target space and then selects b variants with the highest probability. This way
it allows to generate sequences with the higher cumulative probability, which
could have been missed by the greedy search.

Chapter 3. Background information and theory 21

3.6 Recursive neural networks

The architecture of a recurrent neural network contains an inductive bias about
a conditional probability of a target variable with the previous values in a se-
quence. Natural language can be modeled in this way, as a plain sequence of
words. However, this approach ignores domain knowledge about the syntactic
structure of a text. A syntactic tree contains important information about rela-
tions between individual terms and thus should not be omitted in the task of
natural language modeling.

catslikedogsgood

embedembedembedembed

WW

vcatsvlikevdogsvgood

f f

W

f

vVPvNP

vS

FIGURE 3.7: Examle of recursive neural network flow.

Topological structures with a variable length can be modeled by neural net-
works recursively applying the same set of weights to each node. To model a
syntactic tree, each word is represented by a corresponding word vector and

Chapter 3. Background information and theory 22

then parent vectors are computed using a bottom-up approach with composi-
tion functions. For example, representation of the syntactic tree of the sentence
“good dog like cats” could be modeled in the following way:

hNP = f (W · [wgood, wdog] + b)

hVP = f (W · [wlike, wcats] + b)

hS = f (W · [hNP, hVP] + b)

(3.12)

where f is any differentiable non-linearity like tanh or ReLU. The example of a
semantic tree parsing with the recursive network is presented in fig. 3.7.

3.7 Pointer networks

A neural network operates with vector representations of words that are se-
lected from a predefined vocabulary. This imposes the problem of unknown
words that don’t have a vector representation. This is especially important for
the translation task where both an input and an output sequences could contain
rare, special words or names. However, names of people or locations should
not be translated but copied to a target sequence. Luong et al., 2015 proposed
a solution of this problem with a pointer network. For each decoding step it cal-
culates the probability of the next word to be copied from the input sequence.
Calculation of this probability is described below step-by-step.

Let’s denote Hencoder as a matrix of encoder output vectors and h(t)decoder - as a
decoder output vector on decoding step t. First a hidden state of the pointer
network is calculated:

He.pointer = He · We

hd.pointer = h(t)d · Wd

Hpointer = tanh(He.pointer + hd.pointer)
(3.13)

Then each row from the matrix Hpointer is translated to one value and a proba-
bility calculated as result of so f tmax:

Chapter 3. Background information and theory 23

Hprob = Hpointer · Wpointer

P = softmax(Hprob) (3.14)

The vector P contains a probability for each input sequence token to be copied
into the output sequence. In the following explanations, a pointer network func-
tion is denoted as fpointer:

P = fpointer(He, h(t)d) (3.15)

24

Chapter 4

Model

4.1 Code generation problem

Given a natural language description x our task is to infer the Python code y
based on the intent of the x. Python code y can be deterministically converted
to an AST τ and vice-versa, though in this work a source code y and its abstract
syntax tree τ are considered equivalent. A probabilistic grammar model of gen-
erating an abstract syntax tree τ given description x is defined as P(τ|x). The
best corresponding syntax tree τ is defined as

τ̂ = argmax
τ

p(τ|x) (4.1)

Probability from eq. (4.1) is modeled with neural model with a set of weights
θ. To learn values of θ we used a set of training examples, which consist of
tuples (τ(x), x). The parameters of the model are learned by maximizing the
conditional log-probabilities for the training set:

θ = argmax
θ

∑
τ(x),x

log p(τ(x)|x; θ) (4.2)

4.2 Abstract syntax tree generation

The output of decoder is an abstract syntax tree which consist of terminal and
non-terminal nodes. As suggested in work of Yin and Neubig, 2017, we factor-
ized the generation process of AST into sequential application of actions of two
types:

Chapter 4. Model 25

• ApplyRule[r] corresponds to non-terminal nodes. It applies a production
rule r to the current derivation tree.

• GenToken[v] corresponds to terminal nodes. It finishes the node by ap-
pending a token v.

Let us consider as example the AST from fig. 3.1. Its generation consist of the
following actions:

Listing 1. AST production sequence.

1 ApplyRule[root => (stmt*)]

2 ApplyRule[stmt => (Assign)]

3 ApplyRule[Assign => (expr*{targets}), (expr{value})]

4 ApplyRule[expr* => (expr)]

5 ApplyRule[expr => (Name)]

6 ApplyRule[Name -> (str{id})]

7 GenToken["ls"]

8 GenToken["<eos>"]

9 ApplyRule[expr => (Call)]

10 ApplyRule[Call => (expr{func}), (expr*{args}), (keyword*{keywords})]

11 ApplyRule[expr => (Name)]

12 ApplyRule[Name -> (str{id})]

13 GenToken["sorted"]

14 GenToken["<eos>"]

15 ApplyRule[expr* => expr]

16 ApplyRule[expr => (Name)]

17 ApplyRule[Name => (str{id})]

18 GenToken["a"]

19 GenToken["<eos>"]

20 ApplyRule[keyword* => keyword]

21 ApplyRule[keyword => (str{arg}), (expr{value})]

22 GenToken["key"]

23 GenToken["<eos>"]

24 ApplyRule[expr => (Lambda)]

25 ...

26 ApplyRule[Lambda => (arguments args), (expr body)]

27 ApplyRule[arguments => (arg* args)]

28 ApplyRule[arg* => arg]

Chapter 4. Model 26

29 ApplyRule[arg => (str{arg})]

30 GenToken["x"]

31 GenToken["<eos>"]

32 ApplyRule[expr => Subscript]

33 ApplyRule[Subscript => (expr{value}), (slice{slice})]

34 ApplyRule[expr => (Name)]

35 ApplyRule[Name => (str{id})]

36 GenToken["x"]

37 GenToken["<eos>"]

38 ApplyRule[slice => (Index)]

39 ApplyRule[Index => (expr{value})]

40 ApplyRule[expr => (Num)]

41 ApplyRule[Num => (int{n})]

42 GenToken["1"]

43 GenToken["<eos>"]

Under this grammar model, the probability of generating an AST τ is factorized
as:

p(τ|x) =
n

∏
t=1

p(a(t)|x, a(<t)) (4.3)

where at is the action taken at the time step t and a<t is the sequence of actions
before t.

For each time step t the model selects the next action with a maximum prob-
ability — ApplyRule to grow the tree or GenToken to fill values in its terminal
nodes. We must notice, that this model have one important flaw. List nodes like
a expr* can not be expanded to an arbitrary number of children. Each num-
ber of children require a separate rule in the grammar, like expr* => (expr),

(expr), expr* => (expr), (expr), (expr) etc. Therefore this model will re-
quire huge vocabulary to cover all possible production rules in dataset with
arbitrary length functions. We proposed our solution to this issue in section 6.2.

4.2.1 ApplyRule actions

At any generation moment a tree τ contains a single frontier node (for time step
t it is n ft). An action ApplyRule expands the frontier node in depth-first, left-
to-right traversal of the tree. A production rule r expands n ft by appending

Chapter 4. Model 27

all child nodes specified by the selected production. For example, in listing 1
in step 10 the rule for the node Call extends this node with three new nodes:
expr{func}, expr*{args}, keyword*{keywords}.

When n ft is a terminal node, which can not be expanded further, the next action
must be GenToken.

Unary closures. Sometimes, generating an AST requires applying a chain of
unary productions. For example, in listing 1 in steps 4-6 it takes three time
steps to generate target for Assign statement:

ApplyRule[expr* => (expr)]

ApplyRule[expr => (Name)]

ApplyRule[Name -> (str{id})]

Such a formal redundancy allows to have a smaller production rule grammar
but would increase a sequence length. Thus, they can be replaced with one
action by taking the closure of the chain of unary productions:

ApplyRule[expr* => (str{id})]

Model was tested both with and without the unary closures.

4.2.2 GenToken actions

If a tree has reached a leaf and n ft is a terminal node, the GenToken actions is
used to fill this node. Each token generation ends with a special end-of-string to-
ken "<eos>". This way complex tokens like the a function name sortBySecondIndex
can be split on parts [’sort’, ’By’, ’Second’, ’Index’], thus reduce the to-
ken vocabulary and allow complex rare tokens to be constructed from their con-
stituents. After the end-of-string token generation model proceeds to the next
frontier node.

The vocabulary of predefined token values can be inferred from a dataset. How-
ever, it is clear that this vocabulary will not cover all possible tokens for any
environment. To cope with this problem, values can be copied directly from the
input sequence. Therefore, it allows the model to use literals and names from a
code description.

Chapter 4. Model 28

4.3 Action probabilities

Probabilities in eq. (4.3) are estimated by a neural attentional encoder-decoder
model. Both encoder and decoder informational flow is structured by syntactic
trees.

4.3.1 Encoder

The main architectural novelty in this work is a Tree-LSTM encoder. Details
about its input structures and implementation described below.

Input NL description x consist of two parts. The first is a sequence of length n of
word vectors {w(t)}n

t=1. The second is a syntax tree which consists of m nodes
{η(t)}m

t=1, where m ≥ n. Details about the description tree parsing can be found
in section 5.1.1. For all t ≤ n, each tree node η(t) has a corresponding input vec-
tor from a word sequences w(t). For t > n, an input vector for η(t) is padding-
vector. Each tree node η(t) has a set of children nodes ch(η(t)) = {ηi}k

i=1. There-
fore a single input element x(t) can be defined as a tuple (η(t), w(t), ch(η(t))):

x(t) =

(η(t), w(t), ch(η(t))) if t ≤ n

(η(t), wpad, ch(η(t))) if t > n
(4.4)

To encode this structures we used a Tree-LSTM from Tai, Socher, and Manning,
20151. Similary to a SRvN, described in section 3.6, this model starts from tree
leaves, and recursively computes a node embedding h(t) for each x(t) using val-
ues of a memory cell {ci}k

i=1 = memory(ch(η(t))) and previous embeddings
{hi}k

i=1 = hidden(ch(η(t))) from children nodes:

1We used pytorch implementation from https://github.com/dasguptar/treelstm.pytorch

https://github.com/dasguptar/treelstm.pytorch

Chapter 4. Model 29

ĥ =
k

∑
i=1

hi

i(t) = σ(Wi · [ĥ, w(t)] + bi)

u(t) = tanh(Wu · [ĥ, w(t)] + bu)

f(t)i = σ(W f · [hi, w(t)] + b f)

c(t) = i(t) ◦ u(t) + ∑k
i=1 f (t)i ◦ ci

o(t) = σ(Wo · [ĥ, w(t)] + bo)

h(t) = o(t) ◦ tanh(c(t))

(4.5)

4.3.2 Decoder

The decoder is a RNN which sequentially generates an AST model as defined
in eq. (4.3). Each production action naturally grounds to a step in the decoder.
This way, the sequence of production rules from listing 1 can be interpreted as
unrolling RNN time steps with some additional connections from parent action
steps.

We used implementation of decoder from Yin and Neubig, 2017. It is a vanilla
LSTM with additional connections which reflect the topological structure of the
code syntax. For each decoding step, input vector is concatenation of a frontier
node embedding n(t), a previous action embedding a(t−1) and a parent feeding
p(t). The parent feeding is a concatenation of a decoder hidden state from parent
step h(t)dp and a parent rule embedding r(t)p . Consider as example steps 3-9 in
listing 1:

ApplyRule[Assign => (expr*{targets}), (expr{value})]

...............

GetToken["<eos>"]

ApplyRule[expr => (Call)]

It has a frontier node expr, a previous action GetToken["<eos>"] and a par-
ent rule Assign => (expr*{targets}), (expr{value}). Corresponding vec-
tors for the node, rule and token stored as column vectors in matrices Wn, Wr,
Wv.

Chapter 4. Model 30

Additionally, a decoder input contains attention and attention over history con-
text vectors. The context vectors are calculated as described in section 3.5.1.
Attention over history uses vectors from a previous decoder output:

ϕ
(t)
h = Hd · α

(t)
h (4.6)

Given all described above input values and a previous decoder embedding
h(t−1)

d , the next decoding step is calculated as follows:

h(t)d = flstm([a(t−1), n(t), p(t), ϕ(t−1), ϕ
(t−1)
h], h(t−1)

d) (4.7)

4.3.3 Calculating probabilities

In this section we explained how action probabilities from eq. (4.3) are calcu-
lated from a decoder embeddings h(t).

ApplyRule. The probability of applying a rule r as the current action a(t) is
given by a softmax:

h(t)r = tanh(Wr1 · h(t) + br1)

Pr = so f tmax(Wr · h(t)r + br)

p(a(t) = ApplyRule[r]|x, a(<t)) = Pr · e(r)

(4.8)

where e(r) is an one-hot embedding for a rule r.

GenToken. As described in section 4.2.2, a token v can be generated from a
predefined vocabulary or copied from the input. Therefore probability of an
action to be GenToken[v] is defined as a marginal probability:

p(a(t) = GenToken[v]|x, a(<t)) = p(gen|x, a(<t))p(v|gen, x, a(<t))+

p(copy|x, a(<t))p(v|copy, x, a(<t))
(4.9)

p(gen|·), p(copy|·) = so f tmax(Ws · h(t) + bs) (4.10)

Chapter 4. Model 31

Probability of selection a token v from the vocabulary is calculated similarly to
eq. (4.8). The difference is that the decoder embedding is concatenated with a
context vector ϕ(t):

h(t)v = tanh(Wv1 · [h(t), ϕ(t)] + bv1)

Pv = so f tmax(Wv · h(t)v + bv)

p(v|gen, x, a(<t)) = Pv · e(v)

(4.11)

To model the copy probability we used the pointer network (Luong et al., 2015)
described in the section 3.7. The same as in eq. (4.11), we used the decoder
embedding concatenated with the context vector:

Pc = fpointer(He, [h(t), ϕ(t)])

p(v|copy, x, a(<t)) = Pc · e(v)
(4.12)

Usage of the concatenated vector [h(t), ϕ(t)] for a token generation probability
calculation is reasonable since tokens are likely to occur in the input sequence,
thus context vector might store some important information.

4.4 Training and Inference

Values for all weights and biases were inferred from training examples, as de-
scribed in eq. (4.2). Each AST τ from a training set was transformed into a se-
quence of ground truth actions. The next decoder input is selected from ground
truth sequence (the teacher forcing, described in section 3.5). The model is opti-
mized by maximizing the log-likelihood of the ground truth actions sequence.
Optimization was performed by the method of error back-propagation using
ADAM (Kingma and Ba, 2014) algorithm. At inference time, given an NL de-
scription, we used beam search described in section 3.5.2 to approximate the
best AST ŷ in eq. (4.1).

32

Chapter 5

Experiments

5.1 Datasets

HearthStone (HS) dataset (Ling et al., 2016) is a collection of Python classes
which implements cards from the card game HearthStone. Each card has a set
of attributes which is concatenated to produce an input sequence. The dataset
contains 665 Python classes with descriptions.

Django dataset (Oda et al., 2015) contains a corpus of lines of Python code with
manually annotated pseudo-code from the Django web framework. Corpus
contains 18,805 pairs of Python statements and corresponding English pseudo-
codes.

Additional information about the datasets can be found in table 5.1.

5.1.1 Preprocessing

All input descriptions was tokenized using Stanford CoreNLP1 Java package.
Quoted text, which might be referred as values for string constants, was re-
placed with special markers (see table 5.2). Nested object references in queries,
like re.findall was split by the period so the pointer network can copy each
part separately (see table 5.3). For HS we also constructed synthetic descrip-
tions, using structured parts of target class descriptions (see table 5.4). Then
all descriptions were parsed to trees with three different approaches, described
below.

1https://stanfordnlp.github.io/CoreNLP

https://stanfordnlp.github.io/CoreNLP

Chapter 5. Experiments 33

Dataset HS Django
Train 533 16.000
Development 66 1.000
Test 66 1.805
Avg. tokens in description‡ 47.3 13.7
Avg. nodes in constituency tree 93.5 26.3
Avg. nodes in CCG tree 109.4 28
Avg. characters in code 324.3 43.9
Avg. size of AST (# nodes) 66.4 9.5

Statistics of Grammar
terminal vocabulary size 550 3466
w/o unary closures
productions† 100 222
node types† 61 96
Avg. # of actions per example† 173.4 20.3
w/ unary closures
productions† 100 237
node types† 57 92
Avg. # of actions per example† 141.7 16.4

TABLE 5.1: Statistics of datasets and associated grammars
(†Previously reported by Yin and Neubig, 2017. ‡Number of de-
pendency tree nodes is equal to a number of tokens in the descrip-

tion.)

Input query: while ’<’ is contained in value and ’>’ is con-
tained in value,

Input query preprocessed: while _STR_0_ is contained in value and
_STR_1_ is contained in value ,

Target code: while ’<’ in value and ’>’ in value:
Target code preprocessed: while ’_STR_0_’ in value and ’_STR_1_’ in

value:

TABLE 5.2: Quoted items preprocessing for item #2 from the de-
velopment split of Django.

Input query: from django.utils.six.moves import
html_parser as _html_parse into default
name space.

Input query preprocessed: from django.utils.six.moves (django utils six
moves) import html_parser as _html_parse
into default name space .

TABLE 5.3: Nested bject references preprocessing for item #93
from the developer split of Django.

Chapter 5. Experiments 34

Structured input: Deadly Poison NAME_END -1 ATK_END -1
DEF_END 1 COST_END -1 DUR_END Spell
TYPE_END Rogue PLAYER_CLS_END NIL
RACE_END Free RARITY_END Give your weapon
+2 Attack.

Synthetic description: Name: Deadly Poison, attack: -1, defence: -1, cost: 1,
duration: -1, type: Spell, player class: Rogue, race:
None, rarity: Free. Give your weapon +2 Attack.

TABLE 5.4: Synthetic description for the item #3 from the devel-
oper split of HS.

To create CFG sentence representation we used LexicalizedParser (Klein and
Manning, 2003) from the CoreNLP. Dependency parsing was done by DependencyParser

(Chen and Manning, 2014) from the CoreNLP. For CCG parsing we used pack-
age EasyCCG2 (Lewis and Steedman, 2014).3

5.2 Implementation details

Dynamic computational graph. Model of Yin and Neubig, 2017 was build on
the framework Theano4. But Theano is not able to build a dynamic compu-
tational graph to encode syntactic trees. Therefore, we have implemented our
model on PyTorch5.

Mini-batch training. The nature of a recursive tree encoding does not allows
to process data in batches, since each query defines a unique computational
graph. But other components of the model was able to perform batch opera-
tions on data. Therefore we used a wrapper module for encoder, which was
splitting input batches on single queries, processed them with Tree-LSTM mod-
ule sequentially and combined back into batch. We used batches of size 10 for
HS and 50 for Django.

Model parameters. The sizes of nodes, rules and terminal embeddings were
256. Except for the word embeddings, for which it was 300. We used pre-trained
Common Crawl GloVe vectors (Pennington, Socher, and Manning, 2014) for

2http://homepages.inf.ed.ac.uk/s1049478/easyccg.html
3We were not able to include figures with parsed trees examples in this thesis due to their

large size, but you can find them at our GitHub repo
4http://deeplearning.net/software/theano/
5http://pytorch.org/

http://homepages.inf.ed.ac.uk/s1049478/easyccg.html
https://github.com/tsdaemon/treelstm-code-generation/tree/master/pictures
http://deeplearning.net/software/theano/
http://pytorch.org/

Chapter 5. Experiments 35

the word embeddings weights. We were not freezing this weights, so the pre-
trained values could be additionally adjusted during the training. The dimen-
sions of the encoder and decoder hidden states and memory cells were 256.
Hidden states of the attention and the pointer networks were of size 50. Also,
we used the last state of the encoder as the initial state of the decoder (thought
vector). For decoding, we used the beam of size 10.

Regularization. Since our datasets were relatively small for such complex neu-
ral model, we added strong regularization using Variational Dropout suggested
in work of Gal and Ghahramani, 2016. Similarly to the approach described in
the work of Zimmermann, Tietz, and Grothmann, 2012 we were adding Gaus-
sian noise with mean 0.0 and STD 0.1 to the initial states h(0) and c(0) of encoder.
These methods introduced significant improvement in both training speed and
evaluation scores.

5.3 Experimental setup

Evaluation metrics. For this experiment, we measured accuracy as a fraction of
output code which fully matches target examples. Additionally, to measure the
quality of examples without full match we used average token level BLEU-4, as
suggested by Ling et al., 2016 and Yin and Neubig, 2017. However, BLEU and
accuracy do not measure the actual correctness of a generated code. Therefore
we defined errors metric as a fraction of output trees which we were not able to
convert into a code.

Baseline. Along with the Tree-LSTM encoder, we build a bidirectional LSTM
encoder, previously described in the work of Yin and Neubig, 2017. This was
done to have a clear baseline for our tree encoding method.

5.4 Results

We compared our results with two approaches: (1) Latent Predictor Network
(LPN) of Ling et al., 2016 and (2) Syntactic Neural Model of Yin and Neubig,
2017.

Chapter 5. Experiments 36

HS Django
ACC BLEU ERROR ACC BLEU ERROR

Retrieval system:† 0.0 62.5 - 14.7 18.6 -
Phrasal statistical MT:† 0.0 34.1 - 31.5 47.6 -
Hierarchical statistical MT:† 0.0 43.2 - 9.5 35.9 -
NMT‡ 1.5 60.4 - 45.1 63.4 -
Seq2Tree‡ 1.5 53.4 - 28.9 44.6 -
Seq2Tree-UNK‡ 13.6 62.8 - 39.4 58.2 -
LPN† 4.5 65.6 - 62.3 77.6 -
Syntactic Neural Model‡ 16.7 75.8 - 71.6 84.5 -
w/ unary closures:
Bi-directional LSTM encoder 9.1 71.6 0.6 68 82.5 0.8
Tree-LSTM encoder
with dependency trees 4.5 66.7 3.0 32.9 55.5 1.1
with constituency trees 4.5 63.9 13.2 42.0 61.8 0.9
with CCG trees 3.0 66.1 5.1 48.7 68.7 1.5

w/o unary closures:
Bi-directional LSTM encoder 16.2 74.2 0.3 71.0 84.5 0.4
Tree-LSTM encoder
with dependency trees 6 71.5 4.0 32.0 55.0 0.9
with constituency trees 4.5 64.9 13.2 42.3 61.0 1.1
with CCG trees 3.0 65.3 11.0 49.4 69.6 1.8

TABLE 5.5: Evaluation results for both datasets. †Results previ-
ously reported by Ling et al., 2016. ‡Results previously reported

by Yin and Neubig, 2017.

Chapter 5. Experiments 37

As presented in table 5.5, the performance of the models with the Tree-LSTM
encoder have results comparable with LPN. Yet no model was able to improve
current state-of-the-art results of Syntactic Neural Model. Also, tree encoders
have shown a much higher rate of errors than the BiLSTM encoder.

Results of the model with BiLSTM encoder match the previously reported re-
sults of Syntactic Neural Model. This makes us certain that our implementation
is valid and difference in performance with previous results caused actually by
our tree encoders.

The dependency trees encoding has shown better results for HS. Dependency
trees do not contain phrasal nodes and therefore they are shorter. This can be a
proper justification for the difference in results for HS which contains long and
homogeneous descriptions. However, results for the Django have a contrary
bias. The performance of dependency trees is much lower than the performance
of CFG and CCG trees. It can be explained by a fact, that Django has shorter
and more divergent queries and due to this properties its dependency trees have
lower generalization ability. CCG and CFG trees have less divergent structures
where each node have no more than two children. Therefore informational flow
in such trees might have higher approximation abilities. Yet this is only an
assumption and requires additional research.

5.5 Case studies

To provide a clear understanding of the model performance we decided to
present and comment few code generation examples from both datasets.

As can be seen in listing 1, the model was able to translate the intention of the
card to deal 3 damage on the line 17. However, it was not able to produce
a long sequence of actions from the lines 28-31, required to create a list of all
targets. Probably, this mistake is connected to the grammar model problem that
we described in section 4.2.

Listing 1. Code generated for the item #5 from the test set of HS

1 # Query:

2 Name: Hellfire, attack: -1, defence: -1, cost: 4,

3 duration: -1, type: Spell, player class: Warlock,

Chapter 5. Experiments 38

4 race: None, rarity: Free.

5 Deal $3 damage to ALL characters.

6

7 # Reference code:

8 class Hellfire(SpellCard):

9

10 def __init__(self):

11 super().__init__(’Hellfire’, 4, CHARACTER_CLASS.WARLOCK,

12 CARD_RARITY.FREE)

13

14 def use(self, player, game):

15 super().use(player, game)

16 targets = copy.copy(game.other_player.minions)

17 targets.extend(game.current_player.minions)

18 targets.append(game.other_player.hero)

19 targets.append(game.current_player.hero)

20 for minion in targets:

21 minion.damage(player.effective_spell_damage(3), self)

22

23 # Predicted code:

24 class Hellfire(SpellCard):

25

26 def __init__(self):

27 super().__init__(’Hellfire’, 4, CHARACTER_CLASS.WARLOCK,

28 CARD_RARITY.RARE, target_func=hearthbreaker.targeting.

29 find_spell_target)

30

31 def use(self, player, game):

32 super().use(player, game)

33 self.target.damage(player.effective_spell_damage(3), self)

34

In listing 2, you can see that model was mo able to understand complex script

Chapter 5. Experiments 39

for a Murloc behavior from line 5. While the model was able to learn the align-
ment between simple query properties and the target class, really complex in-
structions still is not comprehensible.

Listing 2. Code generated for the item #27 from the test set of HS

1 # Query:

2 Name: Siltfin Spiritwalker, attack: 2, defence: 5,

3 cost: 4, duration: -1, type: Minion,

4 player class: Shaman, race : Murloc, rarity: Epic.

5 Whenever another friendly Murloc dies, draw a card.

6 Overload: (1)

7

8 # Reference code:

9 class SiltfinSpiritwalker(MinionCard):

10

11 def __init__(self):

12 super().__init__(’Siltfin Spiritwalker’, 4, CHARACTER_CLASS.SHAMAN,

13 CARD_RARITY.EPIC, minion_type=MINION_TYPE.MURLOC, overload=1)

14

15 def create_minion(self, player):

16 return Minion(2, 5, effects=[Effect(MinionDied(IsType(MINION_TYPE.

17 MURLOC)), ActionTag(Draw(), PlayerSelector()))])

18

19 # Predicted code:

20 class SiltfinSpiritwalker(MinionCard):

21

22 def __init__(self):

23 super().__init__(’Siltfin Spiritwalker’, 4, CHARACTER_CLASS.SHAMAN,

24 CARD_RARITY.EPIC, battlecry=Battlecry(Give(Buff(ManaChange(-1))

25), CardSelector(condition=IsSpell())))

26

27 def create_minion(self, player):

28 return Minion(2, 2)

29

In listings 3 and 4 we presented a comparison of results from the models with
different encoders. The result from the baseline model with BiLSTM encoder

Chapter 5. Experiments 40

almost matched the target in both cases. However, a predicted code has not all
elements from a reference code. This can be a result of inability of the grammar
to produce the lists of arbitrary lengths, described in section 4.2. Still, the model
with BiLSTM encoder produced the code with a much higher quality than the
models with the tree encoders.

Listing 3. Code generated for the item #665 from the test set of Django

1 # Query:

2 call the method self._text_chars with 4 arguments: length,

3 truncate, text and truncate_len, return the result.

4

5 # Reference code:

6 return self._text_chars(length, truncate, text, truncate_len)

7

8 # Code, predicted with BiLSTM encoder:

9 return self._text_chars(length, truncate, text)

10

11 # Code, predicted with tree encoder and CCG trees:

12 return self.clear_checkbox_id(text, text)

13

14 # Code, predicted with tree encoder and dependency trees:

15 return self._text_chars(text, text)

Listing 4. Code generated for the item #924 from the test set of Django

1 # Query:

2 tt is a tuple with 9 elements: dt.year, dt.month,

3 dt.day, dt.hour, dt.minute, dt.second,

4 result of the method dt.weekday,

5

6 # Reference code:

7 tt = dt.year, dt.month, dt.day, dt.hour,

8 dt.minute, dt.second, dt.weekday(), 0, 0

9

10 # Code, predicted with BiLSTM encoder:

11 tt = dt.year, dt.month, dt.day

12

Chapter 5. Experiments 41

13 # Code, predicted with tree encoder and dependency trees:

14 timetuple = dt.year, dt.timetuple, dt.timetuple

15

16 # Code, predicted with tree encoder and CFG trees:

17 date_data = dt.year, dt.year, dt.microsecond

42

Chapter 6

Conclusion

In this work, we have not reached a substantial performance improvement over
the previously reported results. Conventional approach with BiLSTM encoder
has shown better results with the lower error rate. What also has a significant
value, it trains faster and it can be trained using batches. However, our study
of the Tree2Tree models has an important value for the further exploration of
machine translation and code generation. We believe that potential of Tree-
LSTM is yet to be discovered in other applications and we want to continue our
research in this field.

6.1 Contribution

In this work we made the following contribution:

• Implemented Tree2Tree model on PyTorch.1

• Evaluated performance of tree encoders in sequence-to-sequence model.

• Created online API for code generation. 2

6.2 Points to improve

Tree encoder. The recursive encoder has not surpassed results of the conven-
tional BiLSTM encoder. However, it still has a potential to explore. Embeddings
for lexical categories can be added to an input along with the word embeddings.

1All code is available on GitHub.
2API is available here.

https://github.com/tsdaemon/treelstm-code-generation/
http://daemon-engineer.com/apps/codegen

Chapter 6. Conclusion 43

Additional layers (recursive or recurrent) can be added on the top of the first
layer. Knowledge about a tree structure can be induced into the attention layer
to make an attention coherent with a query hierarchy. But since the syntactic
models require a substantial effort to maintain the query parsing and cannot be
encoded in batches, we do not consider this as a priority for the code generation
task.

Improve grammar model. As we mentioned in section 4.2, the grammar model
that we have used in this project is not suitable for a code with a long sequences
of expressions in its AST. This can be solved with another grammar model,
which supports arbitrary number of children nodes for the list nodes. A spe-
cial final action can be used to indicate the list end.

Code context encoding. Our model used as an input only code description. Ob-
viously, other code around a code line can contain important information which
can be used for generation. In this model, we used an unconstrained terminal
vocabulary, what is the naive approach, since each code line has different names
of variables and functions in its scope. Therefore, usage of a code context in the
model can made significant improvement for the correctness of the result.

Datasets. Datasets used for this work has few important flaws. HS is homo-
geneous and small, therefore it can only be used for a model evaluation and
experiments. Django actually does not contains NL descriptions since it has
pseudo-codes generated from the underlying code. Therefore this model re-
quires evaluation on more heterogeneous datasets (like created by Barone and
Sennrich, 2017). And the initial goal of development of an IDE plugin capable
to be a handy tool for any developer, requires dataset which was created with a
special attention to the most frequent developer requests. Probably, StackOver-
flow can be used as a source of statistics for that.

Evaluation. As mentioned in section 5.3, BLEU is a metric specifically designed
for a human languages translation evaluation, therefore it can not appropri-
ately represent the performance of a language to code translation. Tools like
unit testing or static code analysis can provide measurements more relevant to
this domain field. This should be considered during a development of more
appropriate language-to-code dataset.

Another applications. Developed in this project codebase can be easily reused.
The idea of the structured decoding has a great potential in other problems

Chapter 6. Conclusion 44

like question answering or text generation. We are planning to continue our
research of other problems on a base of this work.

45

Appendix A

Python 3.6 abstract syntax tree
grammar

The following grammar is taken from official documentation of Python module
ast. It contains the description of all AST rules. Each rule describes how specific
node type expands to other nodes and what types of children it could contain.
Modifier * denotes that there could be multiple child nodes of that type. Modi-
fier ? denotes that this child node is optional. For example, Assert(expr test,

expr? msg) mean that node Assert requires expression to test and optionally
it could contain expression with a message.

-- ASDL’s 7 builtin types are:

-- identifier, int, string, bytes, object, singleton, constant

--

-- singleton: None, True or False

-- constant can be None, whereas None means "no value" for object.

module Python

{

mod = Module(stmt* body)

| Interactive(stmt* body)

| Expression(expr body)

-- not really an actual node but useful in Jython’s typesystem.

| Suite(stmt* body)

stmt = FunctionDef(identifier name, arguments args,

stmt* body, expr* decorator_list, expr? returns)

https://docs.python.org/3/library/ast.html

Appendix A. Python 3.6 abstract syntax tree grammar 46

| AsyncFunctionDef(identifier name, arguments args,

stmt* body, expr* decorator_list, expr? returns)

| ClassDef(identifier name,

expr* bases,

keyword* keywords,

stmt* body,

expr* decorator_list)

| Return(expr? value)

| Delete(expr* targets)

| Assign(expr* targets, expr value)

| AugAssign(expr target, operator op, expr value)

-- ’simple’ indicates that we annotate simple name without parens

| AnnAssign(expr target, expr annotation, expr? value, int simple)

-- use ’orelse’ because else is a keyword in target languages

| For(expr target, expr iter, stmt* body, stmt* orelse)

| AsyncFor(expr target, expr iter, stmt* body, stmt* orelse)

| While(expr test, stmt* body, stmt* orelse)

| If(expr test, stmt* body, stmt* orelse)

| With(withitem* items, stmt* body)

| AsyncWith(withitem* items, stmt* body)

| Raise(expr? exc, expr? cause)

| Try(stmt* body, excepthandler* handlers, stmt* orelse, stmt* finalbody)

| Assert(expr test, expr? msg)

| Import(alias* names)

| ImportFrom(identifier? module, alias* names, int? level)

| Global(identifier* names)

| Nonlocal(identifier* names)

| Expr(expr value)

| Pass | Break | Continue

-- XXX Jython will be different

Appendix A. Python 3.6 abstract syntax tree grammar 47

-- col_offset is the byte offset in the utf8 string the parser uses

attributes (int lineno, int col_offset)

-- BoolOp() can use left & right?

expr = BoolOp(boolop op, expr* values)

| BinOp(expr left, operator op, expr right)

| UnaryOp(unaryop op, expr operand)

| Lambda(arguments args, expr body)

| IfExp(expr test, expr body, expr orelse)

| Dict(expr* keys, expr* values)

| Set(expr* elts)

| ListComp(expr elt, comprehension* generators)

| SetComp(expr elt, comprehension* generators)

| DictComp(expr key, expr value, comprehension* generators)

| GeneratorExp(expr elt, comprehension* generators)

-- the grammar constrains where yield expressions can occur

| Await(expr value)

| Yield(expr? value)

| YieldFrom(expr value)

-- need sequences for compare to distinguish between

-- x < 4 < 3 and (x < 4) < 3

| Compare(expr left, cmpop* ops, expr* comparators)

| Call(expr func, expr* args, keyword* keywords)

| Num(object n) -- a number as a PyObject.

| Str(string s) -- need to specify raw, unicode, etc?

| FormattedValue(expr value, int? conversion, expr? format_spec)

| JoinedStr(expr* values)

| Bytes(bytes s)

| NameConstant(singleton value)

| Ellipsis

| Constant(constant value)

-- the following expression can appear in assignment context

| Attribute(expr value, identifier attr, expr_context ctx)

| Subscript(expr value, slice slice, expr_context ctx)

| Starred(expr value, expr_context ctx)

| Name(identifier id, expr_context ctx)

Appendix A. Python 3.6 abstract syntax tree grammar 48

| List(expr* elts, expr_context ctx)

| Tuple(expr* elts, expr_context ctx)

-- col_offset is the byte offset in the utf8 string the parser uses

attributes (int lineno, int col_offset)

expr_context = Load | Store | Del | AugLoad | AugStore | Param

slice = Slice(expr? lower, expr? upper, expr? step)

| ExtSlice(slice* dims)

| Index(expr value)

boolop = And | Or

operator = Add | Sub | Mult | MatMult | Div | Mod | Pow | LShift

| RShift | BitOr | BitXor | BitAnd | FloorDiv

unaryop = Invert | Not | UAdd | USub

cmpop = Eq | NotEq | Lt | LtE | Gt | GtE | Is | IsNot | In | NotIn

comprehension = (expr target, expr iter, expr* ifs, int is_async)

excepthandler = ExceptHandler(expr? type, identifier? name, stmt* body)

attributes (int lineno, int col_offset)

arguments = (arg* args, arg? vararg, arg* kwonlyargs, expr* kw_defaults,

arg? kwarg, expr* defaults)

arg = (identifier arg, expr? annotation)

attributes (int lineno, int col_offset)

-- keyword arguments supplied to call (NULL identifier for **kwargs)

keyword = (identifier? arg, expr value)

-- import name with optional ’as’ alias.

alias = (identifier name, identifier? asname)

Appendix A. Python 3.6 abstract syntax tree grammar 49

withitem = (expr context_expr, expr? optional_vars)

}

50

Bibliography

Allamanis, Miltos et al. (2015). “Bimodal Modelling of Source Code and Natu-
ral Language”. In: Proceedings of the 32nd International Conference on Machine
Learning. Ed. by Francis Bach and David Blei. Vol. 37. Proceedings of Ma-
chine Learning Research. Lille, France: PMLR, pp. 2123–2132. URL: http://
proceedings.mlr.press/v37/allamanis15.html.

Artzi, Yoav, Nicholas FitzGerald, and Luke S Zettlemoyer (2013). “Semantic
Parsing with Combinatory Categorial Grammars.” In: ACL (Tutorial Abstracts)
3.

Artzi, Yoav and Luke Zettlemoyer (2013). “Weakly supervised learning of se-
mantic parsers for mapping instructions to actions”. In: Transactions of the As-
sociation for Computational Linguistics 1, pp. 49–62.

Backus, John W et al. (1957). “The FORTRAN automatic coding system”. In:
Papers presented at the February 26-28, 1957, western joint computer conference:
Techniques for reliability. ACM, pp. 188–198.

Bahdanau, Dzmitry, Kyunghyun Cho, and Yoshua Bengio (2014). “Neural Ma-
chine Translation by Jointly Learning to Align and Translate”. In: arXiv: 1409.
0473v7 [cs.CL].

Balzer, R. (1985). “A 15 Year Perspective on Automatic Programming”. In: IEEE
Transactions on Software Engineering SE-11.11, pp. 1257–1268. DOI: 10.1109/
tse.1985.231877.

Balzer, Robert, Noreen Goldman, and David Wile (1978). “Informality in pro-
gram specifications”. In: IEEE Transactions on Software Engineering 2, pp. 94–
103.

Banarescu, Laura et al. (2013). “Abstract meaning representation for sembank-
ing”. In: Proceedings of the 7th Linguistic Annotation Workshop and Interoperabil-
ity with Discourse, pp. 178–186.

Barone, Antonio Valerio Miceli and Rico Sennrich (2017). “A parallel corpus of
Python functions and documentation strings for automated code documen-
tation and code generation”. In: arXiv: 1707.02275v1 [cs.CL].

http://proceedings.mlr.press/v37/allamanis15.html
http://proceedings.mlr.press/v37/allamanis15.html
http://arxiv.org/abs/1409.0473v7
http://arxiv.org/abs/1409.0473v7
http://dx.doi.org/10.1109/tse.1985.231877
http://dx.doi.org/10.1109/tse.1985.231877
http://arxiv.org/abs/1707.02275v1

BIBLIOGRAPHY 51

Barstow, David R (1979). “An experiment in knowledge-based automatic pro-
gramming”. In: Artificial Intelligence 12.2, pp. 73–119.

Bengio, Y., A. Courville, and P. Vincent (2013). “Representation Learning: A Re-
view and New Perspectives”. In: IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence 35.8, pp. 1798–1828. DOI: 10.1109/tpami.2013.50.

Bengio, Yoshua et al. (2003). “A neural probabilistic language model”. In: Journal
of machine learning research 3.Feb, pp. 1137–1155.

Berant, Jonathan et al. (2013). “Semantic Parsing on Freebase from Question-
Answer Pairs.” In: EMNLP. Vol. 2. 5, p. 6.

Bhoopchand, Avishkar et al. (2016). “Learning Python Code Suggestion with a
Sparse Pointer Network”. In: arXiv: 1611.08307v1 [cs.NE].

Brandt, Joel et al. (2009). “Two studies of opportunistic programming”. In: Pro-
ceedings of the 27th international conference on Human factors in computing sys-
tems - CHI 09. ACM Press. DOI: 10.1145/1518701.1518944.

Brandt, Joel et al. (2010). “Example-centric programming”. In: Proceedings of the
28th international conference on Human factors in computing systems - CHI 10.
ACM Press. DOI: 10.1145/1753326.1753402.

Chen, Danqi and Christopher Manning (2014). “A fast and accurate depen-
dency parser using neural networks”. In: Proceedings of the 2014 conference on
empirical methods in natural language processing (EMNLP), pp. 740–750.

Chen, Huadong et al. (2017). “Improved Neural Machine Translation with a
Syntax-Aware Encoder and Decoder”. In: arXiv: 1707.05436v1 [cs.CL].

Chen, Xinyun et al. (2016). “Latent Attention For If-Then Program Synthesis”.
In: arXiv: 1611.01867v1 [cs.CL].

Clark, Stephen and James R. Curran (2007). “Wide-Coverage Efficient Statistical
Parsing with CCG and Log-Linear Models”. In: Computational Linguistics 33.4,
pp. 493–552. DOI: 10.1162/coli.2007.33.4.493.

Dong, Li and Mirella Lapata (2016). “Language to Logical Form with Neural
Attention”. In: arXiv: 1601.01280v2 [cs.CL].

Dreyfus, Hubert L (1994). “What computers still can’t do”. In: Topics in Health
Information Management 15.1, p. 87.

Dyer, Chris et al. (2016). “Recurrent Neural Network Grammars”. In: arXiv:
1602.07776v4 [cs.CL].

Gal, Yarin and Zoubin Ghahramani (2016). “A Theoretically Grounded Ap-
plication of Dropout in Recurrent Neural Networks”. In: Advances in Neu-
ral Information Processing Systems 29. Ed. by D. D. Lee et al. Curran Asso-
ciates, Inc., pp. 1019–1027. URL: http : / / papers . nips . cc / paper / 6241 -

http://dx.doi.org/10.1109/tpami.2013.50
http://arxiv.org/abs/1611.08307v1
http://dx.doi.org/10.1145/1518701.1518944
http://dx.doi.org/10.1145/1753326.1753402
http://arxiv.org/abs/1707.05436v1
http://arxiv.org/abs/1611.01867v1
http://dx.doi.org/10.1162/coli.2007.33.4.493
http://arxiv.org/abs/1601.01280v2
http://arxiv.org/abs/1602.07776v4
http://papers.nips.cc/paper/6241-a-theoretically-grounded-application-of-dropout-in-recurrent-neural-networks.pdf

BIBLIOGRAPHY 52

a- theoretically- grounded- application- of- dropout- in- recurrent-

neural-networks.pdf.
Galenson, Joel et al. (2014). “CodeHint: dynamic and interactive synthesis of

code snippets”. In: Proceedings of the 36th International Conference on Software
Engineering - ICSE 2014. ACM Press. DOI: 10.1145/2568225.2568250.

Gers, F.A. and E. Schmidhuber (2001). “LSTM recurrent networks learn simple
context-free and context-sensitive languages”. In: IEEE Transactions on Neural
Networks 12.6, pp. 1333–1340. DOI: 10.1109/72.963769.

Goller, C. and A. Kuchler (1996). “Learning task-dependent distributed repre-
sentations by backpropagation through structure”. In: Proceedings of Interna-
tional Conference on Neural Networks (ICNN96). IEEE. DOI: 10.1109/icnn.
1996.548916.

Graves, Alex, Santiago Fernández, and Jürgen Schmidhuber (2005). “Bidirec-
tional LSTM networks for improved phoneme classification and recognition”.
In: Artificial Neural Networks: Formal Models and Their Applications–ICANN 2005,
pp. 753–753.

Green, Cordell (1969). Application of theorem proving to problem solving. Tech. rep.
SRI INTERNATIONAL MENLO PARK CA ARTIFICIAL INTELLIGENCE CEN-
TER.

– (1976). “The design of the PSI program synthesis system”. In: Proceedings of
the 2nd international conference on Software engineering. IEEE Computer Society
Press, pp. 4–18.

Green, Cordell et al. (1977). “A Summary of the PSI Program Synthesis System.”
In: IJCAI. Vol. 5, pp. 380–381.

Gvero, Tihomir and Viktor Kuncak (2015). “Interactive Synthesis Using Free-
form Queries”. In: Proceedings of the 37th International Conference on Software
Engineering - Volume 2. ICSE ’15. Florence, Italy: IEEE Press, pp. 689–692. URL:
http://dl.acm.org/citation.cfm?id=2819009.2819139.

Harnad, Stevan (1990). “The symbol grounding problem”. In: Physica D: Non-
linear Phenomena 42.1-3, pp. 335–346.

Haugeland, John (1989). Artificial intelligence: The very idea. MIT press.
Hochreiter, Sepp and Jürgen Schmidhuber (1997). “Long short-term memory”.

In: Neural computation 9.8, pp. 1735–1780.
Jean, Sébastien et al. (2014). “On Using Very Large Target Vocabulary for Neural

Machine Translation”. In: arXiv: 1412.2007v2 [cs.CL].

http://papers.nips.cc/paper/6241-a-theoretically-grounded-application-of-dropout-in-recurrent-neural-networks.pdf
http://papers.nips.cc/paper/6241-a-theoretically-grounded-application-of-dropout-in-recurrent-neural-networks.pdf
http://papers.nips.cc/paper/6241-a-theoretically-grounded-application-of-dropout-in-recurrent-neural-networks.pdf
http://dx.doi.org/10.1145/2568225.2568250
http://dx.doi.org/10.1109/72.963769
http://dx.doi.org/10.1109/icnn.1996.548916
http://dx.doi.org/10.1109/icnn.1996.548916
http://dl.acm.org/citation.cfm?id=2819009.2819139
http://arxiv.org/abs/1412.2007v2

BIBLIOGRAPHY 53

Jha, Susmit et al. (2010). “Oracle-guided component-based program synthesis”.
In: Proceedings of the 32nd ACM/IEEE International Conference on Software Engi-
neering - ICSE 10. ACM Press. DOI: 10.1145/1806799.1806833.

Jozefowicz, Rafal et al. (2016). “Exploring the Limits of Language Modeling”.
In: arXiv: 1602.02410v2 [cs.CL].

Kingma, Diederik P. and Jimmy Ba (2014). “Adam: A Method for Stochastic Op-
timization”. In: CoRR abs/1412.6980. arXiv: 1412.6980. URL: http://arxiv.
org/abs/1412.6980.

Klein, Dan and Christopher D Manning (2003). “Accurate unlexicalized pars-
ing”. In: Proceedings of the 41st Annual Meeting on Association for Computational
Linguistics-Volume 1. Association for Computational Linguistics, pp. 423–430.

Lee, R. C. T., R. J. Waldinger, and C. L. Chang (1974). “An improved program-
synthesizing algorithm and its correctness”. In: Communications of the ACM
17.4, pp. 211–217. DOI: 10.1145/360924.360967.

Lewis, Mike and Mark Steedman (2014). “A* CCG Parsing with a Supertag-
factored Model.” In: EMNLP, pp. 990–1000.

Ling, Wang et al. (2016). “Latent Predictor Networks for Code Generation”. In:
arXiv: 1603.06744v2 [cs.CL].

Little, Greg and Robert C Miller (2009). “Keyword programming in Java”. In:
Automated Software Engineering 16.1, p. 37.

Luong, Minh-Thang, Hieu Pham, and Christopher D. Manning (2015). “Effec-
tive Approaches to Attention-based Neural Machine Translation”. In: arXiv:
1508.04025v5 [cs.CL].

Luong, Thang et al. (2015). “Addressing the Rare Word Problem in Neural Ma-
chine Translation”. In: CoRR abs/1410.8206. arXiv: 1410.8206. URL: http:
//arxiv.org/abs/1410.8206.

McDermott, Drew (1987). “A critique of pure reason”. In: Computational intelli-
gence 3.1, pp. 151–160.

Miriyala, K. and M.T. Harandi (1991). “Automatic derivation of formal software
specifications from informal descriptions”. In: IEEE Transactions on Software
Engineering 17.10, pp. 1126–1142. DOI: 10.1109/32.99198.

Neubig, Graham (2017). “Neural Machine Translation and Sequence-to-sequence
Models: A Tutorial”. In: CoRR abs/1703.01619. arXiv: 1703.01619. URL: http:
//arxiv.org/abs/1703.01619.

http://dx.doi.org/10.1145/1806799.1806833
http://arxiv.org/abs/1602.02410v2
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://dx.doi.org/10.1145/360924.360967
http://arxiv.org/abs/1603.06744v2
http://arxiv.org/abs/1508.04025v5
http://arxiv.org/abs/1410.8206
http://arxiv.org/abs/1410.8206
http://arxiv.org/abs/1410.8206
http://dx.doi.org/10.1109/32.99198
http://arxiv.org/abs/1703.01619
http://arxiv.org/abs/1703.01619
http://arxiv.org/abs/1703.01619

BIBLIOGRAPHY 54

Oda, Yusuke et al. (2015). “Learning to Generate Pseudo-Code from Source
Code Using Statistical Machine Translation (T)”. In: 2015 30th IEEE/ACM In-
ternational Conference on Automated Software Engineering (ASE). IEEE. DOI: 10.
1109/ase.2015.36.

Olah, C. (2015). “Understanding LSTM Networks”. URL: http://colah.github.
io/posts/2015-08-Understanding-LSTMs/.

Pennington, Jeffrey, Richard Socher, and Christopher Manning (2014). “Glove:
Global vectors for word representation”. In: Proceedings of the 2014 conference
on empirical methods in natural language processing (EMNLP), pp. 1532–1543.

Price, David et al. (2000). “NaturalJava”. In: Proceedings of the 5th international
conference on Intelligent user interfaces - IUI 00. ACM Press. DOI: 10 . 1145 /
325737.325845.

Quirk, Chris, Raymond J Mooney, and Michel Galley (2015). “Language to Code:
Learning Semantic Parsers for If-This-Then-That Recipes.” In: ACL (1), pp. 878–
888.

Rabinovich, Maxim, Mitchell Stern, and Dan Klein (2017). “Abstract Syntax Net-
works for Code Generation and Semantic Parsing”. In: arXiv: 1704.07535v1
[cs.CL].

Raychev, Veselin, Martin Vechev, and Eran Yahav (2014). “Code completion
with statistical language models”. In: ACM SIGPLAN Notices 49.6, pp. 419–
428. DOI: 10.1145/2666356.2594321.

Robillard, Pierre N. (1999). “The role of knowledge in software development”.
In: Communications of the ACM 42.1, pp. 87–92. DOI: 10.1145/291469.291476.

Schuster, Mike and Kuldip K Paliwal (1997). “Bidirectional recurrent neural net-
works”. In: IEEE Transactions on Signal Processing 45.11, pp. 2673–2681.

Socher, Richard et al. (2011). “Parsing natural scenes and natural language with
recursive neural networks”. In: Proceedings of the 28th international conference
on machine learning (ICML-11), pp. 129–136.

Solar-Lezama, Armando et al. (2005). “Programming by sketching for bit-streaming
programs”. In: Proceedings of the 2005 ACM SIGPLAN conference on Program-
ming language design and implementation - PLDI 05. ACM Press. DOI: 10.1145/
1065010.1065045.

Srivastava, Saurabh, Sumit Gulwani, and Jeffrey S. Foster (2010). “From pro-
gram verification to program synthesis”. In: Proceedings of the 37th annual
ACM SIGPLAN-SIGACT symposium on Principles of programming languages -
POPL 10. ACM Press. DOI: 10.1145/1706299.1706337.

http://dx.doi.org/10.1109/ase.2015.36
http://dx.doi.org/10.1109/ase.2015.36
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://dx.doi.org/10.1145/325737.325845
http://dx.doi.org/10.1145/325737.325845
http://arxiv.org/abs/1704.07535v1
http://arxiv.org/abs/1704.07535v1
http://dx.doi.org/10.1145/2666356.2594321
http://dx.doi.org/10.1145/291469.291476
http://dx.doi.org/10.1145/1065010.1065045
http://dx.doi.org/10.1145/1065010.1065045
http://dx.doi.org/10.1145/1706299.1706337

BIBLIOGRAPHY 55

Sundermeyer, Martin, Ralf Schlüter, and Hermann Ney (2012). “LSTM neural
networks for language modeling”. In: Thirteenth Annual Conference of the In-
ternational Speech Communication Association.

Sutskever, Ilya, Oriol Vinyals, and Quoc V Le (2014). “Sequence to Sequence
Learning with Neural Networks”. In: Advances in Neural Information Process-
ing Systems 27. Ed. by Z. Ghahramani et al. Curran Associates, Inc., pp. 3104–
3112. URL: http://papers.nips.cc/paper/5346-sequence-to-sequence-
learning-with-neural-networks.pdf.

Tai, Kai Sheng, Richard Socher, and Christopher D. Manning (2015). “Improved
Semantic Representations From Tree-Structured Long Short-Term Memory
Networks”. In: arXiv: 1503.00075v3 [cs.CL].

Treude, Christoph, Ohad Barzilay, and Margaret-Anne Storey (2011). “How do
programmers ask and answer questions on the web?” In: Proceeding of the
33rd international conference on Software engineering - ICSE 11. ACM Press. DOI:
10.1145/1985793.1985907.

Vinyals, Oriol, Meire Fortunato, and Navdeep Jaitly (2015). “Pointer Networks”.
In: Advances in Neural Information Processing Systems 28. Ed. by C. Cortes et al.
Curran Associates, Inc., pp. 2692–2700. URL: http://papers.nips.cc/paper/
5866-pointer-networks.pdf.

White, Halbert (1992). Artificial neural networks: approximation and learning theory.
Blackwell Publishers, Inc.

Wu, Yonghui et al. (2016). “Google’s Neural Machine Translation System: Bridg-
ing the Gap between Human and Machine Translation”. In: arXiv: 1609 .
08144v2 [cs.CL].

Xie, Pengtao and Eric Xing (2017). “A Constituent-Centric Neural Architec-
ture for Reading Comprehension”. In: Proceedings of the 55th Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers). Vol. 1,
pp. 1405–1414.

Yin, Pengcheng and Graham Neubig (2017). “A Syntactic Neural Model for
General-Purpose Code Generation”. In: arXiv: 1704.01696v1 [cs.CL].

Zettlemoyer, Luke S. and Michael Collins (2012). “Learning to Map Sentences
to Logical Form: Structured Classification with Probabilistic Categorial Gram-
mars”. In: arXiv: 1207.1420v1 [cs.CL].

Zhong, Victor, Caiming Xiong, and Richard Socher (2017). “Seq2SQL: Generat-
ing Structured Queries from Natural Language using Reinforcement Learn-
ing”. In: arXiv: 1709.00103v4 [cs.CL].

http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf
http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf
http://arxiv.org/abs/1503.00075v3
http://dx.doi.org/10.1145/1985793.1985907
http://papers.nips.cc/paper/5866-pointer-networks.pdf
http://papers.nips.cc/paper/5866-pointer-networks.pdf
http://arxiv.org/abs/1609.08144v2
http://arxiv.org/abs/1609.08144v2
http://arxiv.org/abs/1704.01696v1
http://arxiv.org/abs/1207.1420v1
http://arxiv.org/abs/1709.00103v4

BIBLIOGRAPHY 56

Zhu, Chenxi et al. (2015). “A Re-ranking Model for Dependency Parser with
Recursive Convolutional Neural Network”. In: arXiv: 1505.05667v1 [cs.CL].

Zimmermann, Hans-Georg, Christoph Tietz, and Ralph Grothmann (2012). “Fore-
casting with recurrent neural networks: 12 tricks”. In: Neural Networks: Tricks
of the Trade. Springer, pp. 687–707.

http://arxiv.org/abs/1505.05667v1

	Declaration of Authorship
	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	List of Abbreviations
	List of Symbols
	Introduction
	Motivation
	Goals of the master thesis
	Thesis structure

	Related works
	Automatic programming
	Deep learning
	Snippet generation
	Semantic language models
	Comparison with other works

	Background information and theory
	Abstract syntax tree
	syntactic parsing
	Constituency parsing
	Combinatory-categorial grammar
	Dependency parsing

	Word embeddings
	Long-short term memory network
	Sequence-to-sequence machine translation
	Attention
	Beam search

	Recursive neural networks
	Pointer networks

	Model
	Code generation problem
	Abstract syntax tree generation
	ApplyRule actions
	GenToken actions

	Action probabilities
	Encoder
	Decoder
	Calculating probabilities

	Training and Inference

	Experiments
	Datasets
	Preprocessing

	Implementation details
	Experimental setup
	Results
	Case studies

	Conclusion
	Contribution
	Points to improve

	Python 3.6 abstract syntax tree grammar
	Bibliography

