
UKRAINIAN CATHOLIC UNIVERSITY

MASTER THESIS

Enhancing controllability of text
generation

Author:
Anton SHCHERBYNA

Supervisor:
Kostiantyn OMELIANCHUK

A thesis submitted in fulfillment of the requirements
for the degree of Master of Science

in the

Department of Computer Sciences
Faculty of Applied Sciences

Lviv 2020

http://www.ucu.edu.ua
http://www.johnsmith.com
http://www.jamessmith.com
http://researchgroup.university.com
http://department.university.com

ii

Declaration of Authorship
I, Anton SHCHERBYNA, declare that this thesis titled, “Enhancing controllability of
text generation” and the work presented in it are my own. I confirm that:

• This work was done wholly or mainly while in candidature for a research de-
gree at this University.

• Where any part of this thesis has previously been submitted for a degree or
any other qualification at this University or any other institution, this has been
clearly stated.

• Where I have consulted the published work of others, this is always clearly
attributed.

• Where I have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have
made clear exactly what was done by others and what I have contributed my-
self.

Signed:

Date:

iii

“Think globally, act locally!”

Bohdan Hawrylyshyn

iv

UKRAINIAN CATHOLIC UNIVERSITY

Faculty of Applied Sciences

Master of Science

Enhancing controllability of text generation

by Anton SHCHERBYNA

Abstract

Many models could generate text conditioned on some context, but those approaches
don’t provide us with the ability to control various aspects of the generated text (e.g.,
sentiment). To address this problem, Variational Autoencoder is typically used be-
cause they give the ability to manipulate in latent space and, in this way, control text
generation. However, it has been shown that VAE with strong autoregressive de-
coders, which are used for text modeling, faces posterior collapse problem. We think
that one of the reasons why this problem occurs is a restrictive gaussian assumption
we made about approximate posterior. In this work, we want to apply well-known
approaches based on Normalizing Flows to improve approximate posterior for text
modeling and check if it can help avoid posterior collapse.

HTTP://WWW.UCU.EDU.UA
http://department.university.com

v

Acknowledgements
I want to thank UCU and all its people for their day-to-day contribution to build-
ing the most fantastic community in Ukraine. I especially want to thank Olexii
Molchanovskyi and the the whole team of APPS faculty for organizing this master’s
program. Of course, I would like to thank my supervisor Kostiantyn Omelianchuk
for proposing the topic of this work and his intellectual guidance. I thank Artem
Chernodub for mentorship during seminars and thoughtful questions. Also, I’m
thankful to Grammarly for providing computational resources, which helped a lot
during experimentation. Finally, I say thank you to my groupmates, friends, and
family who were incredibly supportive all this time.

vi

Contents

Declaration of Authorship ii

Abstract iv

Acknowledgements v

1 Introduction 1
1.1 Text Generation Overview . 1
1.2 Variational Autoencoders . 2
1.3 Posterior Collapse . 3
1.4 Thesis Structure . 3

2 Related Work 5
2.1 KL-annealing & β-VAE . 5
2.2 Word Dropout . 6
2.3 Lagging Inference . 6
2.4 Semi-Amortized VAE . 6
2.5 Implicit-VAE . 7
2.6 Comparison . 7

3 Normalizing Flows for Variational Inference 9
3.1 Normalizing Flows . 9
3.2 Improve Approximate Posterior with NF 10
3.3 Planar Flow . 10
3.4 Inverse Autoregressive Flow . 10

4 Experiments 13
4.1 Datasets . 13
4.2 Evaluation . 14
4.3 Experiments Setup . 14
4.4 Discussion . 14

5 Conclusions 18
5.1 Contribution . 18
5.2 Future Work . 18

Bibliography 20

vii

List of Figures

1.1 Simple sequence to sequence model . 2
1.2 VAE for text modeling . 3

2.1 Implicit-VAE . 7

3.1 IAF step . 11

viii

List of Tables

2.1 Relate work comparison . 8
2.2 Time spent on training (relative to plain VAE) 8

4.1 Preprocessed samples from Yahoo dataset 13
4.2 Preprocessed samples from Yelp dataset 13
4.3 Experiments results . 15
4.4 Experiments results (bigger latent size) 16
4.5 Generated samples, Yahoo dataset . 17

ix

List of Abbreviations

LSTM Long Short-Term Memory
RNN Recurrent Neural Network
VAE Variational Autoencoder
NF Normalizing Flow
IAF Inverse Autoregrssive Flow
NLL Negative Log Likelihood
ELBO Evidence Lower Bound
KL Kullback-Leibler
MLP Multilayer Perceptron

x

List of Symbols

Ex Expectation
Eθ(x) Encoder network
Dθ(x) Decoder network
DKL Kullback-Leibler divergence
x ∼ p(x) Sampling from distribution
det d f

dx Determinant of Jacobian of transformation f

1

Chapter 1

Introduction

1.1 Text Generation Overview

In recent years there was a significant advancement in the field of text generation.
In 2014 sequence to sequence models with LSTM encoder and decoder were pro-
posed (Sutskever et al., 2014). This approach became state-of-the-art in the field and
was successfully used for various tasks, e.g., machine translation. However, LSTM
networks tend to forget information from the whole sequence, so the next signifi-
cant improvement - attention mechanism - was proposed (Bahdanau et al., 2014).
The main idea of this approach is to provide a decoder with the information from
each token from the source sequence directly and score each piece of information by
usefulness for the decoder. Finally, a pure attentional model, which is called Trans-
former, was proposed (Vaswani et al., 2017). Since then, transformer-like models
became state-of-the-art methods in text representation learning and text generation.
For example, BERT released by Google (Devlin et al., 2018) became the standard
for extracting representations from texts, and GPT-2 made by OpenAI became the
most powerful tool for text generation. In the case of GPT-2, authors even provided
weights only for a small model with limited capabilities. They said that their model
is capable of producing such high-quality texts, so they fear somebody can use it to
produce realistic fakes.

All those models have a similar structure. Typical text generation model consists
of encoder Eθ(x) and decoder Dφ(h). Both encoder and decoder can be represented
as a deep neural network: LSTM (Sutskever et al., 2014), CNN (Ott et al., 2019),
or stacked feed-forward networks, which forms transformer-like model Vaswani et
al., 2017. Encoder extracts information from the source sequence {xi} into hidden
representations {h} and then decoder produces target sequence based on those rep-
resentations (Figure 1.1). Such models trained end-to-end and use various training
signals. For example, we can force the encoder to encode one sentence and decoder
to produce the next sentence from the same text. We can use the so-called "hidden
language model" approach when our sequence to sequence model is forced to pre-
dict intentionally deleted tokens from source sequence. Or we can encode source
text and then try to decode it as we do with autoencoders. In all cases, we use classic
categorical entropy between distribution predicted by network and true distribution
as a loss function.

Also, it’s worth noting that right now, transformer-like models outperform old
models based on LSTM, but they are harder to train, require much more training
data and computational resources, so we’ll concentrate on LSTM based models.
Moreover, there is no difference between LSTM and transformer-based models in
terms of our problem so that we can transfer all methods created for the LSTM model
to transformer-like.

2 Chapter 1. Introduction

... ...

x1 x2 xn

h

Encoder

Decoder

RNN RNN RNN RNN RNN RNN

x1 x2 xn

FIGURE 1.1: Simple sequence to sequence model

But all those approaches lack one crucial property - controllability. By controlla-
bility, we mean an ability to change attributes of the generated text (e.g., sentiment).
Models described above conditioned only on the text they saw previously, which is
uninterpretable and unpredictable controllable parameter. Also, the space of hidden
representations of such models is unsmooth (Bowman et al., 2015). It means that
we can’t interpolate in the latent space to discover dependencies between different
hidden representations and generated text.

1.2 Variational Autoencoders

There was considerable progress in the direction of the controllable generation in the
vision domain. VAE (Kingma et al., 2013) extends classic autoencoder with proba-
bilistic argumentation and gives the ability to control generation by exploring latent
space. For this purpose we define latent variable z ∼ pz(z) which has some proba-
bilistic prior distribution (typically Gaussian), then we define some complex condi-
tional distribution x ∼ pθ(x|z). In the vision domain, it’s Normal distribution with
mean and variance expressed by a neural network with parameters θ, but in the case
of text, it can be categorical distribution over tokens modeled by RNN. Now we can
define the likelihood:

pθ(x) =
∫

pθ(x|z)p(z)dz (1.1)

But it appears to be intractable, so we can’t optimize it directly. But there is a
solution: we introduce new conditional posterior distribution qφ(z|x) parameter-
ized by neural network with parameters φ (Figure 1.2). Now we can derive a lower
bound (ELBO) on the data likelihood pθ(x), which is tractable, so we can optimize it
with gradient descent. All derivation can be found in (Kingma et al., 2013):

L = Ez∼qφ(z|x)logpθ(x|z)−DKL(qφ(z|x)||p(z)) ≤ logθ(p|z) (1.2)

This loss consists of reconstruction part and Kullback-Leibler divergence be-
tween approximate posterior qφ(z|x) and prior p(z), so minimizing this term we
make approximate posterior closer to model posterior. Using this model, we can
encode source sample to latent space, tweak the latent, and decode it.

Also, it’s worth to mention, that we can’t sample directly from qφ(z|x) during
training, because in this case, we can’t propagate gradients through sampling step,

1.3. Posterior Collapse 3

but we can apply simple reparameterization trick. We can sample from Gaussian
distribution ε ∼ N(0, 1) and define z as follows:

z = µ + σ ∗ ε (1.3)

... ...

x1 x2 xn

h

Encoder

Decoder

RNN RNN RNN RNN RNN RNN

x1 x2 xn

µ, σ

N(0, 1)

µ + σεMLP

FIGURE 1.2: VAE for text modeling

1.3 Posterior Collapse

However, such approach for controllable data modeling has some drawbacks. The
main problem is that the value of KL divergence tends to become zero, which means
that our posterior qθ(z|x) becomes entirely indistinguishable from prior p(z). One
simple explanation of such phenomena is that autoregressive decoder is sensitive
to the smallest variations in the hidden state, so a random sampling process from
posterior can cause the model to ignore such highly variable values and explain
data with the modeling capabilities of the decoder. It causes significant problems
when we use the strong autoregressive network as a decoder, which we often do
for modeling sequences (in our case - texts). It means that the decoder tends to
ignore outputs of the encoder, so we do not backpropagate enough through it, and
it produces meaningless latent, which decoder tends to ignore even more (Bowman
et al., 2015). This makes our model fully deterministic like a classic autoencoder, and
we can no longer use latent to manipulate with the decoder. Solving this problem is
crucial for using VAE for controllable text generation.

1.4 Thesis Structure

This thesis has following structure:

1. Chapter 1. We make an overview of the text generation field in general, de-
scribed the variational approach, which gives an ability to control the genera-
tion process and outlined its problem, which we’ll try to solve.

2. Chapter 2. We describe and analyze existing approaches to the problem.

3. Chapter 3. We describe the Normalizing Flow framework and how we can
apply it to improve the posterior approximation.

4. Chapter 4. We provide details about our experiments and discuss results.

4 Chapter 1. Introduction

5. Chapter 5. We summarize the outcomes of this work and outline possible di-
rections for future work.

5

Chapter 2

Related Work

In this section, we’ll cover the most recent works in which the posterior collapse
problem is faced. It’s important to note that we’ll cover works that are primarily
focused on text modeling with VAE even though this problem is common for other
domains, where the strong autoregressive decoder is used. Also, it worth noting that
there are exist many more approaches, but those covered in this section are the most
common and used as benchmarks in most papers. We’ll use them as benchmarks
too, so it’s important to get the general idea behind each of them and understand
their limitations.

2.1 KL-annealing & β-VAE

In the first paper published on this topic (Bowman et al., 2015) authors proposed
approach that we described previously and faced problems that we outlined above.

In fact, they were also first to propose a simple solution for the posterior collapse.
They added weight to the KL term during training, and at the beginning of the op-
timization process they set it to zero, so during first steps model can get as much
information as it can into variable z, and while training progresses, they gradually
increase the weight, forcing approximate posterior to be closer to the prior reducing
flexibility for latent variable z.

β-VAE (Higgins et al., 2017) is an extension of a KL-annealing approach, but
with deeper optimization explanation. We can represent our ELBO as a constrained
optimisation problem:

L = Ez∼qφ(z|x)logpθ(x|z), DKL(qφ(z|x)||p(z)) < ε (2.1)

Then using Karush-Khun-Tucker theorem we can introduce Lagrangian:

L = Ez∼qφ(z|x)logpθ(x|z)− β(DKL(qφ(z|x)||p(z))− ε) (2.2)

Knowing that ε ≥ 0 from the properties of KL-divergence and using the same
Karush-Khun-Tucker theorem we can rewrite it as:

L = Ez∼qφ(z|x)logpθ(x|z)− βDKL(qφ(z|x)||p(z)), (2.3)

where β measure the amount of information that z can capture. In the original paper
authors claimed that bigger values for β are crucial to learn disentangled representa-
tions, as it forces the model to factorize the space more efficiently. Despite interest in
disentanglement, to solve the posterior collapse, we can set β ≤ 0 during the whole
training process.

However, those approaches have a significant drawback - we optimize not a di-
rect ELBO (in case of a KL-annealing, only during last steps when β = 1 we do

6 Chapter 2. Related Work

optimize ELBO). Also, for β-VAE with small β it’s hard to tell if the result is better
due to this approach or because of a lousy optimization.

2.2 Word Dropout

Another approach to the posterior collapse problem proposed by (Bowman et al.,
2015) was word dropout. During training, we decode target sequence not in a purely
autoregressive moe, but based on ground-truth samples. In other words, it means
that on timestep t, we provide our decoder not token generated by our model on
timestep t − 1, but real token from the data. Such approach helps train decoder
faster. As we said previously one of the reasons for the posterior collapse problem
is a strong autoregressive decoder, so we can weaken decoder by randomly chang-
ing ground-truth tokens with special UNK token, which is used to code unknown
words (words that we don’t have in a dictionary). However, experiments show that
it comes with the cost as reconstruction quality becomes significantly worse.

2.3 Lagging Inference

We can view the problem of posterior collapse from the training dynamics perspec-
tive, as presented in (He et al., 2019). Authors of this paper propose a new strategy
for training VAE - aggressively optimize encoder. During the classic training step,
they update weights φ of the encoder for k times instead of one and then update
weights of the decoder θ only ones. Authors claim that in such way they can solve
a problem (which leads to posterior collapse), that they discover - the approxima-
tion of posterior lags behind true posterior in the beginning of the training. This
method shows excellent results, but it also increases the time needed for training
significantly.

2.4 Semi-Amortized VAE

This work introduces interesting idea based on Stochastic variational inference. To
explain this concept, let’s view classic VAE from a different perspective. VAE is
based on a type of a variational inference, which is called "amortized". It means that
variational parameters are predicted by one global inference network for each data
sample. This gives the ability to optimize such model end-to-end with decoder and
scale to large datasets. However, there exist another approach for variational infer-
ence in which we initially set random variational parameters for each data point and
then optimize them during training procedure maximizing familiar ELBO instead of
optimizing posterior qθ(z|x) parametrized by encoder network with parameters θ.
So new posterior looks as follows:

z ∼ q(z; λ) (2.4)

where λ = [µ, σ] is a learnable vector and q(z; λ) is still normally distributed. Such
approach allows us to obtain much better variational parameters, but the stochastic
inference of variational parameter λ for each data sample on each training step is
hugely time-consuming. In Semi-Amortized VAE, authors propose to combine both
approaches: they initialize variational parameter λ as the output of the encoder net-
work and then refine them using stochastic variational inference. Also, the authors

2.5. Implicit-VAE 7

proposed a way to optimize this model end-to-end propagating through stochastic
inference steps. However, the time complexity is still an issue.

2.5 Implicit-VAE

In this work, the authors tried to face both problems. They changed approximated
posterior qφ(z|x) from Normal distribution with parameters inferred by encoder net-
work with sample-based distribution represented by sampling mechanism based on
an encoder network:

z = q(x, ε), (2.5)

where ε ∼ N(0, 1). Also, it’s worth noting that they combine ε with the last hidden
state of the LSTM encoder via MLP. This trick makes approximated posterior much
more expressive than Normal distribution with parameters inferred through the en-
coder. Also, it makes a transition from the last hidden state of the encoder to the
initial hidden state of the decoder more smooth, which is essential for solving poste-
rior collapse problem. However, this approach has some optimization problems as
KL term with implicit qφ(z|x) becomes intractable. Authors proposed to replace KL
term with the dual form:

DKL(qφ(z|x)||p(z)) = maxvEz∼qφ(z|x)vψ(x, z)−Ez∼p(z)exp(vψ(x, z)) (2.6)

So, in this case, we can’t optimize precise ELBO, and also on each training step, we
have to evaluate KL term through another optimization procedure, which increases
the time needed for training.

... ...

x1 x2 xn

h

Encoder

Decoder

RNN RNN RNN RNN RNN RNN

x1 x2 xn

z

N(0, 1)

MLP

FIGURE 2.1: Implicit-VAE

2.6 Comparison

We aggregated all results 2.1 from the works described above to support our argu-
ments about the drawbacks of each method and provide further thoughts.

As we said, KL-annealing proposed by (Bowman et al., 2015) isn’t sufficient to
solve the posterior collapse problem as KL value converged to 0. Word dropout tech-
nique to weaken decoder helps, but dramatically hurts reconstruction capabilities of
the model.

8 Chapter 2. Related Work

β-VAE shows good results in terms of KL divergence value and data modeling
abilities, but we think that it happens due to insufficient optimization during train-
ing, so latent produced by this model still useless for the decoder. Approach with
aggressive encoder update shows the best results and it suggests that their hypoth-
esis about the reason for the posterior collapse issue could be right.

Yahoo Yelp
Model NLL KL PPL NLL KL PPL
LSTM-LM 328.0 - - 358.1 - -
VAE + Annealing 328.6 0.0 - 357.9 0.0 -
β-VAE (β = 0.4) 328.7 6.3 - 358.2 4.2 -
β-VAE (β = 0.8) 328.8 0.0 - 358.1 0.0 -
Word dropout 25% 334.2 1.44 - - - -
Word dropout 50% 345.0 5.29 - - - -
Lagging Inference 328.2 5.6 - 356.9 3.4 -
Lagging Inference + Annealing 326.7 5.7 - 355.9 3.8 -
SA-VAE 329.2 0.1 - 357.8 0.3 -
SA-VAE + Annealing 327.2 5.2 - 355.9 2.8 -
Implicit-VAE + Annealing 309.1 11.4 47.93 348.7 11.6 36.88

TABLE 2.1: Relate work comparison

SA-VAE shows comparable results to Lagging Inference, but as we can see in 2.2,
it takes significantly more time to train such a model than Lagging Inference model.

Model Time
VAE 1
VAE + Lagging inference 2-3
SA-VAE 9-10
Implicit-VAE 1.3

TABLE 2.2: Time spent on training (relative to plain VAE)

Implicit-VAE shows the best performance, but we must remember that they use
the estimation of KL divergence, so their results aren’t directly comparable to others.
It’s a bit strange that ELBO, which should consist of the reconstruction part and KL,
is much smaller than the likelihood of the data modeled by the pure LSTM model.

To sum up, we can say that Lagging Inference approach with annealing is the
most consistent approach with a good trade-off between model quality and training
time, interesting view of posterior collapse issue, and most trustful results. So we
can use this model as main benchmark for our experiments.

9

Chapter 3

Normalizing Flows for Variational
Inference

In previous section, most of the approaches tried to face posterior collapse problem
from different perspectives, but only one tried to face a problem with the perspective
of restrictive Gaussian assumption on posterior. However, making posterior more
flexible can improve the quality of the whole model. There is some evidence that
posterior collapse problem can be caused by a restrictive condition that we put on
an approximate posterior (Cremer et al., 2018; Fang et al., 2019) as we model it as
a simple Normal distribution with parameters inferred by encoder network, which
limits the possibility for approximate posterior to match true posterior distribution.
So it’s essential to try to face this problem by making posterior more complex and
check if it helps. To achieve this, Normalizing Flows framework was proposed in
(Jimenez Rezende et al., 2015). Also, an improved autoregressive Normalizing Flow
(IAF) for variational inference was proposed in (Kingma et al., 2016). In this section,
we’ll explain what are Normalizing Flow and autoregressive Normalizing Flow in
detail and how they can be used to improve approximated posterior.

3.1 Normalizing Flows

At first we need to recall how we can transform probability density function. Let
z ∈ Rn be a random variable with the density function q(z). Now we define some
bijective and differentiable function f (x) : Rn → Rn. Then we can compute density
of the transformed variable ẑ = f (z) as follows:

q̂(ẑ) = q(f−1(ẑ))|det
d f−1

dz
| = q(f−1(ẑ))|det

d f
dz
|−1 = q(z)|det

d f
dz
|−1 (3.1)

where det stands for determinant and the whole term |det d f
dz | is a determinant of

Jacobian of the transformation. Now we can apply a sequence of such transforma-
tions:

zK = fK ◦ ... ◦ f1(z0), K ∈ N (3.2)

and define density for zk as:

qk(zK) = q0(z0)
K

∏
i=1
|det

d fk

dzk−1
|−1 (3.3)

Such transformation of variable and its density is called Flow and Normalizing Flow,
respectively. It’s important to choose such transformation f , so its Jacobian is easy
to compute, then we can easily use this trick in applications.

10 Chapter 3. Normalizing Flows for Variational Inference

3.2 Improve Approximate Posterior with NF

Before we describe examples of such transformations, let’s explain how we can ap-
ply this approach to improve approximate posterior. Let’s recall that in plain VAE
our posterior qφ(z|x) is defined as Normal distribution with parameters µφ and σphi
inferred by encoder network and the whole process to obtain z is next:

z = µφ + σφε, ε ∼ N(0, 1) (3.4)

Now let’s denote z as z0, qφ(z|x) as q0(z0|x) and apply described above transforma-
tion to it. We get some variable zk with density qK(zK|x) = q0(z0|x)∏N

i=1 |det d fk
dzk−1
|−1.

Now let’s write down KL divergence for plain VAE:

DKL(qφ(z|x)||p(z)) = Ez∼qφ(z|x)log(
qφ(z|x)

p(z
) =

Ez∼qφ(z|x)(logqφ(z|x)− logp(z))
(3.5)

Having new density for zK we can rewrite it as follows:

DKL(qK,φ(zK|x)||p(z)) = EzK∼qK,φ(zK |x)(logqK,φ(zK|x)− logp(zK)) =

Ez∼q,φ(z|x)(logq0(z0|x)
N

∏
i=1
|det

d fk

dzk−1
|−1 − logp(zK)) =

Ez∼q,φ(z|x)(logq0(z0|x) +
N

∑
i=1

log|det
d fk

dzk−1
|−1 − logp(zK)) =

Ez∼q,φ(z|x)(logq0(z0|x)−
N

∑
i=1

log|det
d fk

dzk−1
| − logp(zK))

(3.6)

Now we have a tractable function, which we can optimize like a loss for plain VAE.

3.3 Planar Flow

Now let’s explore simple example of such flow with planar transformations. Let’s
define f as follows:

f (z) = z + uh(wTz + b), (3.7)

where u, w ∈ Rn, b ∈ R, h is a differentiable element-wise non-linearity. We can
compute determinant for this transformation as follows:

ψ(z) = h−1(wTz + b)w|det
d f
dz
| = |det(I + uψ(z)T)| = |1 + uTψ(z)| (3.8)

This is an extremely simple instance of transformation suitable for such flows be-
cause it only contracts and expands space of latent perpendicular to the hyperplane
wTz + b = 0.

3.4 Inverse Autoregressive Flow

In (Kingma et al., 2016) another type of flow based on an inverse transformation
was proposed. Let z ∈ Rn with components {zi}i∈{1,...,n} and ε ∼ N(0, 1), ε ∈ Rn

µi : Ri−1 → Ri−1 and σi : Ri−1 → Ri−1 are functions, which we use to infer mean

3.4. Inverse Autoregressive Flow 11

and variance of zi based on previous i− 1 components:

z0 = µ0 + σ0ε0

zi = µi(z1:i−1) + σi(z1:i−1)εi
(3.9)

Obviously, dµi
dzj

= 0 and dσi
dzj

= 0 for each j ≥ i, so Jacobian of such transformation
is lower triangular with σi on the diagonal. However, the sampling process from
this model is sequential and requires much time, so we can’t efficiently draw sam-
ples from posterior approximated by such flow. But what we can do is to introduce
inverse flow:

εi =
zi − µi(z1:i−1)

σi(z1:i−1)
(3.10)

We can denote µ as µ = [µ1, ..., µn] and σ as σ = [σ1, ..., σn], then we can vectorize
previous equation (µ and σ are element-wise vector functions):

ε =
z− µ(z)

σ(z)
(3.11)

Like in previous case we can easily compute Jacobian of such transformation as dµi
dzj

=

0 and dσi
dzj

= 0 for each j ≥ i, so that dε
z is a lower triangular with −σi on diagonal.

Now it’s important to note that functions µ can be represented as simple linear
MLP, then we can parallelize those computations as we initially have all zi. However,
we can incorporate approach from (Germain et al., 2015), which computes µ and σ
in single pass preserving autoregressive property.

Now we can reparameterize transformation derived above for simplicity, so for
k-th step 3.1 of the flow it will look as follows:

zk = µk + σkzk−1 (3.12)

µ σ

AutoregressiveNN

∗ +

zk−1 zk

FIGURE 3.1: IAF step

It’s also worth to notice that it looks like our initial transformation, but in this
case we transform whole variable zk−1 = [zk−1,1, ..., zk−1,n] into new variable zk =
[zk,1, ..., zk,n] in one pass, and our initial transformation was defined for each com-
ponent separately. But we still can compute Jacobian for this transformation in a
similar way as dz

dzk−1
is a lower triangular with σk,i on diagonal. Finally, we can write

12 Chapter 3. Normalizing Flows for Variational Inference

down complete density for the posterior:

q(zK|x) = q0(z0|x)
K

∏
k=1

N

∏
i=1
−σk,i (3.13)

Interesting fact that as we model µ and σ as autoregressive autoencoder (e.g.,
MADE (Germain et al., 2015)) and compute forward transformation in one pass, we
can easily stack a lot of such transformation and get enough modeling capacity to
scale for high-dimensional variables.

This type of transformation used in a flow gives the ability to model a much more
flexible posterior. Its efficiency had been shown on a broad range of image datasets.
However, to our best knowledge, there are no reported results with this flow applied
in a VAE for text modeling.

13

Chapter 4

Experiments

4.1 Datasets

We use two standard datasets in the field on which most of the results are reported
- Yahoo and Yelp. Both of them contains millions of sentences with varying length,
but we took a subset of only 100000 samples for training and 10000 for test and
validation phase. The vocabulary size for Yahoo is 20001, and Yelp is 19997. In
general, we used the same preprocessing strategy as in (He et al., 2019) and (Fang
et al., 2019) to obtain comparable results.

drinks are weak and not made correctly . i guess that ’s what you get with a barely legal bartender .
do n’t even bother ordering chicken strips unless you like paying $ 10 for 4 _UNK nuggets that are

half burned . definitely wo n’t be back .

square trade rip off warranties sold here ! i bought a product with a warranty that staples sells ,
it turns out it is by square trade . this is absolute garbage , i ’ve been on hold for 45 minutes just

being transferred _UNK around india for my warranty that supposedly exists , what good is
the warrant if i ca n’t even talk to a person _UNK the call que keeps saying 1 minute to

talk to someone, it ’s been saying that for the last 45 minutes wtf !!!! rip off !! scam !

TABLE 4.1: Preprocessed samples from Yahoo dataset

if you were a character from a movie , who would it be and why ? it can be any movie , any movie
character . morgan _UNK in “ bruce almighty ” who does n’t want to be god ?

thanksgiving _UNK ? ? ? ? once the smell of a cooking turkey fills our house everyone keeps
trying to sneak into the kitchen for bites of whatever is being cookedwhat does your

family usually set out as _UNK & snacks (dont be afraid to share some recipes if you have any
plz ! ! !) while the meals being cooked and to keep them out of the kitchen lol fresh veggies
and dip is a favorite in my house , because it ’s not too filling and it ’s raw , which is a nice

contrast to the dinner .

TABLE 4.2: Preprocessed samples from Yelp dataset

14 Chapter 4. Experiments

4.2 Evaluation

We consider two main metrics for evaluating the performance of our model:

• ELBO as a characteristic of the model’s ability to match true data distribution
alongside with perplexity.

• Value of KL divergence to understand if the model faced posterior collapse
issue. However, how we’ll show, higher KL divergence values itself doesn’t
mean that decoder uses latent to generate samples, so further discussion is
needed.

4.3 Experiments Setup

We had the following set up for experiments:

• Embedding size of tokens - 512.

• Encoder - LSTM with hidden state size = 1024 and number of layers = 1.

• Decoder - LSTM with hidden state size = 1024 and number of layers = 1.

• Linear MLP to infer mean and std, latent size = 32.

• Latent z is used to initialize the hidden state of the decoder and also concate-
nated to word embeddings.

• 2 flow types - Planar and IAF with different number of steps (k=1,...,4). For
IAF, we used one-layer MADE.

• We used SGD optimizer and applied learning rate decay by a factor of two
each second epoch without loss improvement, and we used a batch size of 32
elements.

• For experiments with KL-annealing we used warm-up period before we started
to increase KL term weight, initial KL weight was set to 0.1

4.4 Discussion

As Lagging Inference showed the best result from all related work, we choose it as a
benchmark for our experimentation. Firstly, we reproduced results from this paper
and as we can see from the table 4.3, we got similar results. Also, we experimented
with annealing approach as it was useful in case of Lagging Inference.

Then we conducted experiments with planar flow. In (Bowman et al., 2015), au-
thors mentioned that they tried to apply flows too, and it didn’t help them, but they
didn’t specify which flow they used and didn’t provide any metrics. However, the
performance of a simple planar flow is too bad, and it doesn’t help at all, so we can
assume that they tried this type of flow. We can explain this model’s performance
by its nature: this flow contracts and expands variable around some hyperplane, so
its expressive power is limited.

Next, we experimented with IAF. We thought that its expressive power would be
sufficient to mitigate the posterior collapse problem; however, it helped only slightly
in terms of KL divergence. It can be hard to make sense from those values, so we’ll

4.4. Discussion 15

Yahoo Yelp
Model ELBO KL PPL ELBO KL PPL

VAE 329.0284 0.0031 61.5401 358.2366 0.0029 40.7037
VAE + Annealing 328.9191 0.0036 61.4559 358.5235 0.0058 40.8248
VAE + Lagging Inference 329.7644 5.673 62.1098 358.1073 3.7834 40.6493
VAE + Annealing + Lagging Inference 328.7168 6.2739 61.3004 359.0956 6.3059 41.0671
VAE + PF(k=1) 329.0186 0.0043 61.5325 358.5342 0.0048 40.8293
VAE + PF(k=2) 329.1406 0.0066 61.6266 359.0695 0.0052 41.056
VAE + PF(k=3) 329.0544 0.0057 61.5601 358.2151 0.0069 40.6947
VAE + PF(k=4) 329.0564 0.0081 61.5616 358.4898 0.0114 40.8105
VAE + IAF(k=1) 329.0461 0.0216 61.5537 358.5918 0.0163 40.8536
VAE + IAF(k=2) 329.1883 0.0285 61.6634 358.4321 0.0241 40.7862
VAE + IAF(k=3) 329.7845 0.0281 62.1254 359.0339 0.0194 41.0491
VAE + IAF(k=4) 329.9387 0.0293 62.2455 359.0856 0.0387 41.0629
VAE + IAF(4) + Annealing 333.983 0.019 65.4786 362.8214 0.0249 42.681
β-VAE (β=0.4) 329.5154 3.8941 61.9165 359.0339 2.4785 41.0408

TABLE 4.3: Experiments results

show how different values of KL divergence in different models affects the genera-
tional process to get more intuition about the performance of those models. In 4.5
we can see samples generated by plain VAE with collapsed posterior and VAE with
the planar flow and slightly better, but still collapsed posterior. We can see that sam-
ples generated by those models are completely similar for different z. It means that
the decoder ignores latent and deterministically generate sentences. But despite the
low KL divergence IAF model has more variation in generated samples. Of course,
it can’t compete with Lagging Inference model, but we also need to remember that
the Lagging model takes much more time to be trained. Also, we can see that KL
divergence gradually increases as we stack more steps of the flow. Alongside that,
ELBO stays the same. Taking into account slightly variable samples and ELBO sim-
ilar to plain VAE model, we can say that this KL divergence increase is explained by
better approximate posterior and not by insufficient optimization.

Then we checked samples from β-VAE to check our hypothesis that its high KL
divergence (comparable to SA-VAE or Lagging Inference model) is due to bad op-
timization and posterior doesn’t produce meaningful latent for the decoder. It ap-
pears that the quality of the samples produced by this model is awful. It shows that
we can’t rely solely on KL divergence values as they can be high because of bad
optimization.

As IAF is designed to be scalable for high dimensional spaces, we also tried to
increase the dimensionality of latent space. The results of those experiments can
be found at 4.4. We found that KL divergence value increases as well as ELBO.
Moreover, an increase in ELBO of the IAF model was more significant than in models
with the planar flow or simple VAE. We think that it can be due to optimization
problems as we use similar training procedures for every model, however high-
dimensional IAF is much more complex than another two models. Unfortunately,
we didn’t have an opportunity to change our training procedure and try to optimize
those models better to obtain more meaningful and comparable results, but it seems
rewarding to do so in the future.

To sum up, those results suggest that our hypothesis about restricted approxi-
mate posterior as a source of a posterior collapse problem isn’t correct. However,
we saw that flows could slightly improve the performance of plain VAE and make
latent drawn from posterior more informative for the decoder.

16 Chapter 4. Experiments

Yahoo Yelp
Model ELBO KL PPL ELBO KL PPL

VAE(64) 330.4803 0.0026 62.669 359.9444 0.0027 41.4293
VAE(128) 333.5550 0.0052 65.1287 362.7560 0.0030 42.6522
VAE(64) + PF(4) 332.7247 0.002 64.4551 362.3535 0.0045 42.4749
VAE(128) + PF(4) 333.7192 0.0176 65.2627 362.8921 0.0085 42.7122
VAE(64) + IAF(4) 336.0405 0.0451 67.1874 364.1399 0.0364 43.2673
VAE(128) + IAF(4) 336.3144 0.065 67.4182 366.3162 0.0862 44.2525

TABLE 4.4: Experiments results (bigger latent size)

VAE
<s>what is the best way to get rid of hiccups ? hiccups are a spasm of the
diaphragm . </s>
<s>what is the best way to get rid of hiccups ? hiccups are a spasm of the
diaphragm . </s>
<s>what is the best way to get rid of hiccups ? hiccups are a spasm of the
diaphragm . </s>
<s>what is the best way to get rid of hiccups ? hiccups are a spasm of the
diaphragm . </s>
<s>what is the best way to get rid of hiccups ? hiccups are a spasm of the
diaphragm . </s>

VAE + PF(4)
what is the best way to get rid of a headache ? i have a _UNK _UNK and i have
a _UNK _UNK and
what is the best way to get rid of a headache ? i have a _UNK _UNK and i have
a _UNK _UNK and
what is the best way to get rid of a headache ? i have a _UNK _UNK and i have
a _UNK _UNK and
what is the best way to get rid of a headache ? i have a _UNK _UNK and i have
a _UNK _UNK and
what is the best way to get rid of a headache ? i have a _UNK _UNK and i have
a _UNK _UNK and

VAE + IAF(4)
<s>what is the best way to get a girl to like you ? ? ? ? ? ? ? ? ? ? ? </s>
<s>what is the best way to get rid of a headache ? i have been coughing
for about 3 weeks now and i have been taking it for a while now . i have
been taking it for about 2 weeks now and i have n’t been able to get rid of it .
any suggestions ?
<s>what is the best way to get rid of hiccups ? hiccups are a spasm
of the diaphragm . the diaphragm is a spasm of the diaphragm . </s>
<s>what is the best way to get rid of hiccups ? hiccups are a spasm
of the diaphragm and the diaphragm . </s>
<s>what is the best way to get rid of hiccups ? hiccups are a spasm
of the diaphragm . the diaphragm is a spasm of the diaphragm . </s>

VAE + Lagging Inference

4.4. Discussion 17

<s>what is the best way to get a free credit report on my credit report ?
i need to know how to get a free credit report on my credit report , but i
do n’t know what to do . <s>what is the difference between a _UNK and
a _UNK ? a _UNK is a _UNK , a _UNK , and a _UNK . </s>
<s>what is the best way to get rid of hiccups ? i have a friend who is a _UNK and
i want to know if there is a way to get rid of it . i need to know how to get rid of it .
please help ! !
<s>does anyone know where i can get a copy of the song “ _UNK ”
by _UNK _UNK ? i think it ’s called “ _UNK ” . </s>
<s>what is the meaning of the word “ _UNK ” ? it means “ _UNK ” . </s>

β-VAE, β = 0.4
<s>what is the difference between a _UNK and a _UNK ? a _UNK is a
_UNK , _UNK , _UNK ,
<s>what is the difference between a _UNK and a _UNK ? a _UNK is a
_UNK (_UNK) , _UNK
<s>what is the difference between a _UNK and a _UNK ? a _UNK is a
_UNK , _UNK , _UNK ,
<s>what is the difference between a _UNK and a _UNK ? a _UNK is a
_UNK , _UNK , _UNK ,
<s>what is the best way to get rid of hiccups ? hiccups are a spasm of the
diaphragm and the diaphragm </s>

TABLE 4.5: Generated samples, Yahoo dataset

18

Chapter 5

Conclusions

5.1 Contribution

The main goal of this work was to address the posterior collapse issue with a better
approximate posterior modeled by Normalizing Flows. According to this goal, we
achieved the following results:

• We modeled variational posterior with two types of normalizing flows - planar
and IAF. To our best knowledge, it’s the first attempt to use IAF for text mod-
eling. We reported results of our experiments on two standard benchmarks
strictly following best practices in the field, so our results are comparable. We
were unable to achieve state-of-the-art results presented in other papers and
fully alleviate the posterior collapse problem, which suggests that restrictive
approximate posterior isn’t the main reason for the posterior collapse prob-
lem.

• However, we showed some evidence that a more flexible posterior can slightly
increase KL divergence and make latent space more useful for the decoder.
Also, we showed that KL divergence increases as a number of steps in a flow
increases, but ELBO stays the same, suggesting that we can try longer chains to
obtain even more flexible posteriors with higher KL divergence without harm
to reconstruction capabilities. This also means that we can try to use this ap-
proach as additional improvement to state-of-the-art models (e.g., Lagging In-
ference).

• As a side result of our experiments, we showed that KL divergence value it-
self isn’t a good metric, and models with high KL divergence values can face
similar issues as collapsed models.

5.2 Future Work

There are a lot of possible ways to continue working in this direction. Here some
possible minor improvements and more general ideas:

• Use additional metrics such as a number of active units and mutual informa-
tion between generated data sample x and latent z to get a better understand-
ing of model performance.

• Conduct experiments with longer chains of transformations. We saw that with
each added step of the flow, KL divergence value increased, but ELBO stayed
approximately the same. It suggests that we model can benefit from even more
complex posterior.

5.2. Future Work 19

• Combine approach based on approximated posterior by flows with Lagging
Inference. More flexible posterior can benefit from aggressive updates.

• Continue experiments with high-dimensional z by changing training proce-
dure to explore IAF capabilities in such scenario.

• Explore another type of flows. Flow-based approaches gained much attention
in recent times, and a lot of new transformations were proposed, so we can
experiment with them instead of IAF.

• Also, we can try to change encoder and decoder networks from LSTM to Transformer-
like models.

• Another interesting approach is to replace the autoregressive LSTM decoder
and use a purely flow model instead as it was used in (van den Oord et al.,
2017).

20

Bibliography

Bahdanau, Dzmitry, Kyunghyun Cho, and Yoshua Bengio (Sept. 2014). “Neural Ma-
chine Translation by Jointly Learning to Align and Translate”. In: arXiv e-prints,
arXiv:1409.0473, arXiv:1409.0473. arXiv: 1409.0473 [cs.CL].

Bowman, Samuel R. et al. (Nov. 2015). “Generating Sentences from a Continuous
Space”. In: arXiv e-prints, arXiv:1511.06349, arXiv:1511.06349. arXiv: 1511.06349
[cs.LG].

Cremer, Chris, Xuechen Li, and David Duvenaud (Jan. 2018). “Inference Suboptimal-
ity in Variational Autoencoders”. In: arXiv e-prints, arXiv:1801.03558, arXiv:1801.03558.
arXiv: 1801.03558 [cs.LG].

Devlin, Jacob et al. (Oct. 2018). “BERT: Pre-training of Deep Bidirectional Transform-
ers for Language Understanding”. In: arXiv e-prints, arXiv:1810.04805, arXiv:1810.04805.
arXiv: 1810.04805 [cs.CL].

Fang, Le et al. (Aug. 2019). “Implicit Deep Latent Variable Models for Text Gener-
ation”. In: arXiv e-prints, arXiv:1908.11527, arXiv:1908.11527. arXiv: 1908.11527
[cs.LG].

Germain, Mathieu et al. (Feb. 2015). “MADE: Masked Autoencoder for Distribution
Estimation”. In: arXiv e-prints, arXiv:1502.03509, arXiv:1502.03509. arXiv: 1502.
03509 [cs.LG].

He, Junxian et al. (Jan. 2019). “Lagging Inference Networks and Posterior Collapse in
Variational Autoencoders”. In: arXiv e-prints, arXiv:1901.05534, arXiv:1901.05534.
arXiv: 1901.05534 [cs.LG].

Higgins, Irina et al. (2017). “beta-VAE: Learning Basic Visual Concepts with a Con-
strained Variational Framework”. In: ICLR.

Jimenez Rezende, Danilo and Shakir Mohamed (May 2015). “Variational Inference
with Normalizing Flows”. In: arXiv e-prints, arXiv:1505.05770, arXiv:1505.05770.
arXiv: 1505.05770 [stat.ML].

Kingma, Diederik P and Max Welling (Dec. 2013). “Auto-Encoding Variational Bayes”.
In: arXiv e-prints, arXiv:1312.6114, arXiv:1312.6114. arXiv: 1312.6114 [stat.ML].

Kingma, Diederik P. et al. (June 2016). “Improving Variational Inference with Inverse
Autoregressive Flow”. In: arXiv e-prints, arXiv:1606.04934, arXiv:1606.04934. arXiv:
1606.04934 [cs.LG].

Ott, Myle et al. (Apr. 2019). “fairseq: A Fast, Extensible Toolkit for Sequence Mod-
eling”. In: arXiv e-prints, arXiv:1904.01038, arXiv:1904.01038. arXiv: 1904.01038
[cs.CL].

Sutskever, Ilya, Oriol Vinyals, and Quoc V. Le (Sept. 2014). “Sequence to Sequence
Learning with Neural Networks”. In: arXiv e-prints, arXiv:1409.3215, arXiv:1409.3215.
arXiv: 1409.3215 [cs.CL].

van den Oord, Aaron et al. (Nov. 2017). “Parallel WaveNet: Fast High-Fidelity Speech
Synthesis”. In: arXiv e-prints, arXiv:1711.10433, arXiv:1711.10433. arXiv: 1711 .
10433 [cs.LG].

Vaswani, Ashish et al. (June 2017). “Attention Is All You Need”. In: arXiv e-prints,
arXiv:1706.03762, arXiv:1706.03762. arXiv: 1706.03762 [cs.CL].

https://arxiv.org/abs/1409.0473
https://arxiv.org/abs/1511.06349
https://arxiv.org/abs/1511.06349
https://arxiv.org/abs/1801.03558
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1908.11527
https://arxiv.org/abs/1908.11527
https://arxiv.org/abs/1502.03509
https://arxiv.org/abs/1502.03509
https://arxiv.org/abs/1901.05534
https://arxiv.org/abs/1505.05770
https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/1606.04934
https://arxiv.org/abs/1904.01038
https://arxiv.org/abs/1904.01038
https://arxiv.org/abs/1409.3215
https://arxiv.org/abs/1711.10433
https://arxiv.org/abs/1711.10433
https://arxiv.org/abs/1706.03762

	Declaration of Authorship
	Abstract
	Acknowledgements
	Introduction
	Text Generation Overview
	Variational Autoencoders
	Posterior Collapse
	Thesis Structure

	Related Work
	KL-annealing & -VAE
	Word Dropout
	Lagging Inference
	Semi-Amortized VAE
	Implicit-VAE
	Comparison

	Normalizing Flows for Variational Inference
	Normalizing Flows
	Improve Approximate Posterior with NF
	Planar Flow
	Inverse Autoregressive Flow

	Experiments
	Datasets
	Evaluation
	Experiments Setup
	Discussion

	Conclusions
	Contribution
	Future Work

	Bibliography

