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Abstract

Speaker classification is an essential task in the machine learning domain, with many
practical applications in identification and natural language processing. This work
concentrates on speaker classification as a subtask of general speaker diarization for
real-world conversation scenarios. We research the domain of modern speech pro-
cessing and present the original speaker classification approach based on the recent
developments in convolutional neural networks. Our method uses a spectrogram as
input to the CNN classifier model, allowing it to capture spatial information about
voice frequencies distribution. Presented results show beyond human ability per-
formance and give strong prospects for future development.
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Chapter 1

Introduction

1.1 Motivation

In the real-world scenarios, speech is not represented by well defined audio seg-
ments with a single-source speaker. This fact makes many practical applications
effectively not feasible without speaker diarization. General Speaker Diarization
problem could be defined as a task of speech categorization for unlabeled talk, with
no prior knowledge of speakers count. The output of this task is labeled speech
segments belonging to the particular speaker.

Speaker diarization is an integral part of many speech applications. In cases
where single sound source incorporates multiple voices, e.g., round table talk or
meeting room recording, distinguishing speakers is crucial for speech to text pro-
cessing and further general text understanding. Misclassification of a spoken person
decreases an automated understanding of conversation by a significant margin. For
example, doing a speech-to-text translation of the meeting recording with the goal
of extraction summary, action items, or other higher-level understanding would be
inefficient without knowing who said what.

In this work, we focus on a speaker classification task, which is a narrower ver-
sion of general diarization, where the count of speakers is known. The solution to
this problem can be used as a step of the end-to-end diarization system in future
work.

1.2 Research Goals

1. Provide an overview of the related work in the scientific field of the speaker
classification/diarization problem.

2. Explore existing solutions to the problem.

3. Propose and evaluate our original approach to the speaker classification.

1.3 Industry Related Goals

In this work, we focus on the speaker classification task. However, it is intended to be
a very first step in a journey of building a real-world diarization system suitable for
use in a product.
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1.4 Challenges and Limitations

The biggest challenge for us in this work was finding a relevant dataset of high
quality. Most datasets cited in related papers are proprietary or not freely available.
Since this work has no dedicating funding, we were limited to open-source options,
some of them have mediocre quality. We did our best to overcome this obstacle and
produce convincing results.
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Chapter 2

Background and Related Work

2.1 Speech Representation

2.1.1 Voice Sound

Humans have an incredible ability to separate and perceive voice information in a
mixed sound environment. Even though the research on the topic has been con-
ducted for many years, it is unknown how sound is represented on a biological level
inside the human brain. Most of the sound processing is concentrated within the hu-
man hearing range, which lies between 20 and 20kHz. In the speech understanding
field, there are several key concepts, and sound representation approaches worth
highlighting.

2.1.2 Fourier Transform (FT)

Fourier Transform is a cornerstone equation in the sound processing domain. In
general, any wave signal could be presented as a sum of sinusoidal signals. FT al-
lows us to find those signals and, therefore, decompose an incoming signal into fre-
quencies spectrum, Figure 2.1. This ability, combined with inverse operation, brings
many processing possibilities. For example, an incoming sound signal could be aug-
mented in a way that all frequencies typical for a human voice are amplified for a
better speech understanding. Alternatively, noise frequencies could be suppressed.
The frequency spectrum as sound representation is also crucial for practical machine
learning tasks.

2.1.3 Spectrogram

A spectrogram is a visual representation of the spectrum of frequencies of a signal
as it varies with time. When applied to an audio signal, spectrograms are some-
times called sonographs, voiceprints, or voicegrams [Spectrogram wikipedia]. When
the data is represented in a 3D plot, they may be called waterfalls. Spectrogram
can be generated using FT. The input signal is split into overlapping chunks. Then
FT is applied on each chunk, and resulting arrays are concatenated to produce a 3-
dimensional surface. A spectrogram is usually presented as a heatmap, where the
intensity of the color corresponds to the amplitude of the respective frequency, Fig-
ure 2.2. In our proposed method we used spectrogram as input into our model, see
chapter 4.

2.1.4 Mel Frequency Cepstral Coefficients (MFCC)

MFCC is a biologically inspired sound representation. It is based on the Mel scale
named by Stevens, Volkmann, and Newman, 1937, a perceptual log-like scale of
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FIGURE 2.1: Signal over time presented in frequency domain. [Image
1]

FIGURE 2.2: Waveform and spectrogram plots.[Spectrogram wikipedia]
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FIGURE 2.3: Pitch mel scale versus Hertz scale. [Mel scale]

pitches judged by listeners to be equal in distance from one another [Mel scale]. In
other words, it is a frequency scale adjusted to empirically observed human percep-
tion through logarithmic transformation, Figure 2.3.

The most common formula to convert hertz(f) into Mel scale:

Mel( f ) = 2595 log10(1 +
f

700
)

From a processing point of view calculation of the MFCC is done in several steps:

1. Break incoming signal into overlapping frames. It is a typical pattern in the
algorithms using Fourier Transform, as integration in practice is always done
on the specific time interval 2.4.

2. Apply Fast Fourier Transform(FFT) on each frame. FFT is essentially a compu-
tationally optimized Discrete Fourier Transform(DFT).

3. Compute the signal energy through a bank of filters adjusted to mel-scaled
frequencies 2.5. As a result, we obtain a binned set of energy values and take
the log of them.

4. Apply FFT on the previous step result, the top K (usually 12, but it can vary),
coefficients would be the MFCC 2.7.

In machine learning terminology, we can call MFCC calculation a low-level feature
extraction with hand-crafted parameters, like the mel scale filter bank. MFCC is very
popular method and used in many related works. On Figure 2.7 example is depicted
as a heatmap, where the color represents the intensity of each bin.

2.1.5 I-Vector

Identity vectors or i-vectors based models are often present in state-of-the-art in
speaker verification solutions [Guo et al., 2018; Huang, Wang, and Qian, 2018; Ro-
hdin et al., 2017]. The idea of the i-vector is to reduce high-dimensional sequential
input data to a low-dimensional fixed-length feature vector. The speaker-dependant
and channel-dependent factors are modeled using the total variability approach, as
follows:

s = µ + Tw



6 Chapter 2. Background and Related Work

FIGURE 2.4: Overlapping frames processing.[Image 2]

FIGURE 2.5: Mel-scale band-pass filtering.[Image 2]

FIGURE 2.6: Flowchart for MFCC calculation.[Image 3]
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FIGURE 2.7: MFCC heatmap.[Image 2]

FIGURE 2.8: Typical classification pipeline.[Ibrahim and Ramli, 2018]

where s is mean supervector, µ is the mean superverctor of a Universal Background
Model (UBM), T is a low-rank matrix, and w is the i-vector estimated using the Factor
Analysis method. [Dehak et al., 2011; Malykh and Kudashev, 2017] Comparing to
MFCC, I-Vector is a high-level representation of speech utterance. They are often
used together, see Figure 2.8.

2.1.6 D-Vector

D-vector is a representation of a speaker identity embedding acquired through the
deep neural network (DNN). In this approach, a feed-forward DNN is trained to
classify speakers at the frame-level, then the last classification layer is removed,
and d-vectors are obtained through averaging hidden layer activations [Variani et
al., 2014 2.9]. D-vector approach has attracted attention over the previous couple
years, as it utilizes neural networks for feature extraction. The idea has multiple
proposed implementations and extensions, like proposed by Snyder et al., 2018, X-
vector. These vectors are high-level generalized representations of the speaker voice
features.

2.2 Neural Networks in Audio Processing

The usage of Neural Networks(NN) has grown tremendously for the last decade.
NN showed their efficiency in sound data processing from the very beginning of
this rise. Especially significant boost of accuracy was achieved in speech recognition
[Hinton et al., 2012]. Since then, the research of NN based models in the sound pro-
cessing field is steadily growing. Most of the recent state-of-the-art papers include
some neural network in their model or pipeline.
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FIGURE 2.9: D-vector based model for speaker verification.Variani et
al., 2014

2.2.1 DNN

Deep Neural Network(DNN) is an artificial neural network with multiple layers be-
tween the input and output layer [DNN definition]. DNN propagates signal through
layers modeling non-linear relationships between input and output. The most straight-
forward deep neural network is a multilayer perceptron. In this architecture, all the
neurons of the previous layer are connected to each neuron of the next layer.( 2.10)
These layers are often called dense or fully-connected. Training of the neural network
consists of forward and backward passes. On forward pass, the input is propagated
through layers, and the error function is calculated. On the backward pass, each
weight is adjusted through the calculation of its impact on total error. This process is
repeated until the error converges to zero or training is stopped by other conditions.
DNNs allow modeling of sophisticated features from high-dimensional data, which

FIGURE 2.10: Multilayer Perceptron architecture. [Image 4]
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FIGURE 2.11: An unrolled RNN.[Image 5]

FIGURE 2.12: The repeating block in LSTM.[Image 5]

are hard to handcraft otherwise.

2.2.2 RNN and LSTM

Recurrent Neural Networks(RNN) address the problem of applying traditional DNN
design on sequenced data. In traditional DNN, each input is treated independently,
and the evaluation of one chunk of information has no impact on others 2.10. This
approach is counterproductive when applied to data, where parts are naturally de-
pendent or feed into the model as sequence, like text or speech. The main idea of
RNN of any implementation is to pass previously accumulated data in some form to
the next iteration 2.11. The early designs of RNN revealed the problem of long-term
dependencies. As the state signal passes through iterations, it tends to decrease in
power, in a sense the further dependency is, the lower is its impact in the present
evaluation. This trait has a crucial impact on models where highly connected data
points are split wide apart, e.g., language models.

Long Short Term Memory(LSTM) networks successfully approach this problem.
They were introduced by Hochreiter and Schmidhuber, 1997 and improved by many
contributions later on. The core idea of the LSTMs is to use a sophisticated neural
network repeating block of several layers, designed to capture long term dependen-
cies. The amount of "memory" information passed through this block depends on
the input, Figure 2.12. As per Karpathy, 2015, the RNNs are "unreasonably effective"
for a wide variety of tasks, and the LSTMs represent the majority of the successful
RNN applications, including speech processing.

2.2.3 TDNN

Time Delay Neural Networks(TDNN) is another multilayer NN architecture often
used for speech processing tasks. This architecture allows classifying patterns with
shift-invariance and model context on each layer. Shift-invariant classification for
speech means that TDNN does not need to define the beginning and end points
of sounds before classifying them [TDNN definition]. The core idea of the TDNN
is that sliding window with a fixed delay, generates overlapping input, and each
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FIGURE 2.13: Computation in TDNN.[Peddinti, Povey, and Khudan-
pur, 2015]

layer has a connection to the time range of outputs from the previous layer. Thus,
higher levels represent longer spans of speech. Shift-invariance is achieved during
the backpropagation step, where the network is copied for each time-shifted instance
and, then the error gradient is computed for all of these networks and averaged
before weights update, see Figure 2.13.

2.2.4 CNN

Convolutional Neural Networks(CNN) are artificial neural networks where at least
one layer is presented by convolution operations instead of traditional matrix mul-
tiplication. First introduced by Lecun et al., 1989, CNNs proved to be very efficient
in the field of computer vision. They are capable of capturing spatial features like
edges, lines, and corners of the image through local receptive fields. Through multi-
ple layers, these features are combined to detect higher-level features. (2.14)

FIGURE 2.14: Example of CNN, LeNet-5 architecture. [Lecun et al.,
1998]

As the speech utterance could be represented as a 2-dimensional data structure,
e.g., MFCC or Spectrogram, we have explored the possible use of CNNs for speaker
classification, see chapter 4.
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2.3 ML-based Speaker Diarization

ML-based Speaker Diarization papers first started to appear in 2006 [Kenny, 2006;
Kenny et al., 2007]. Early proposed solutions were based on Gaussian Mixture Mod-
els [Kenny et al., 2007], Hidden Markov Models [Kenny, 2006] or SVM(e.g. Kumar
and Britto, 2012). Around 2012 they developed into complex diarization systems
combining multiple models in the complex process but already with reasonable ac-
curacy [Galibert and Kahn, 2013]. One of the noticeable such systems is the LIUM
toolkit, an open-source tool that is developed and supported until today. [Meignier
and Merlin, 2010] Since 2015 new wave of papers were published that proposed dif-
ferent approaches based on neural networks. To support the ideas of our research,
we would split them into two categories:

• Papers presented successful usage of neural networks for Speaker Diarization

• Papers presented successful usage CNNs over spectrograms for other voice/sound
processing tasks

2.3.1 Neural Networks in Speaker Diarization domain

In this category, we can highlight these recent works:

• Speaker Diarization with LSTM, Wang et al., 2018 - succsessfully used LSTM and
D-vectors and achieved 12.0% diarization error rate, a state-of-the-art result.

• Speaker Diarization Using Deep Neural Network Embeddings, Garcia-Romero et
al., 2017 - proposed to use LSTM neural network to generate low dimensional
embeddings to represent voice utterances before clustering part. This approach
showed 12.6% error rate. We are keen to reproduce this approach with modi-
fication in our research and build embeddings representation based on convo-
lutional neural network.

• Fully Supervised Speaker Diarization, Zhang et al., 2019 - proposed new architec-
ture - ubounded interleaved state RNN(UIS-RNN), which claim outstanding
performance of 7.6% diarization error rate.

2.3.2 CNN over Spectrogram in voice and sound processing

Next works fall into this category:

• Complex Spectrogram Enhancement by Convolutional Neural Network with Multi-
Metrics Learning, Fu et al., 2017 – successfully enhanced speech through repre-
sentation of it as spectrogram and applying CNNs for denoising.

• SampleCNN: End-to-End Deep Convolutional Neural Networks Using Very Small
Filters for Music Classification, Lee et al., 2018 – proposed classification of the
music styles based on spectrogram patches, which is similar to our approach.

• and many others Huang et al., 2014; Mao et al., 2014; Sainath et al., 2014; Abdel-
Hamid et al., 2014; Ghahremani et al., 2016

Some interesting works combine multiple neural network architectures to improve
accuracy results. For example, Acoustic Scene Classification Using Parallel Combination
of LSTM and CNN [Hyun, Choi, and Soo, 2016] combined LSTM with CNN over
spectrogram to denoise sounds and improve results for a scene classification task.
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Speaker diarization as a research field is very active at the moment, with many
works published in recent years. It worth to mention that a 10% diarization error
rate is still not enough for many real-world applications, and accuracy is not the
only metric that shall be taken into account. Computational and time efficiency are
crucial for sound processing tasks. The field is advancing rapidly, and researchers
seem to be close to a general solution to the problem.
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Chapter 3

Datasets

Since our interest lies in speaker classification in the meeting room setting, one of the
challenges of this research was finding the proper dataset. There are a few datasets
often used in related works in the speaker classification domain, but most of them
are not free or freely available. Furthermore, those that are available have somewhat
questionable quality and require heavy preprocessing. This fact did not allow us to
compare some of our models with other researches directly. As a result, we have
used two datasets: LibriSpeech ASR and ICSI Meetings. The first one we used for
most of our experiments because of its labeling quality. And the second we used
as a reference to the real-life scenario, as we want to understand how our model
performs in a realistic setting.

3.1 LibriSpeech ASR Corpus

LibriSpeech is a corpus of approximately 1000 hours of 16kHz English speech de-
rived from audiobooks from the LibriVox project, prepared by Vassil Panayotov with
the assistance of Daniel Povey. The data has been segmented and aligned.[Panayotov
et al., 2015]. For the training purpose was used subset containing 100 hours of most
"clean" speech from 251 different speakers. This dataset was chosen because of its
overall quality and availability. Additionally, an important feature of this dataset
is that all speakers are clearly separated since only one speaker reads each book. It
allowed us to label all the data points with 100% precision and conduct clean exper-
iments.

3.2 ICSI Meeting Speech Corpus

Since this work is seen as the first step of building applicable to product level speaker
classification/diarization solution in a meeting setting, we used ICSI Meetings cor-
pus additionally. This dataset is similar to real-life meetings data. The corpus is a
collection of 75 meetings collected at the International Computer Science Institute
in Berkeley during the years 2000-2002. The speech files have a length from 17 to
103 minutes but generally run just under an hour each, and the collection includes
922 speech files, for a total of approximately 72 hours of meeting room speech, with
a total of 53 unique speakers in the corpus. The audio was collected at a 48 kHz
sample-rate, downsampled on the fly to 16 kHz. Meetings range from 3 to 10 partic-
ipants, with six on average.[Janin et al., 2003]

After several experiments and close examination of the dataset, we concluded
that labeling is often misaligned. Also, overlapping speech causes severe drops in
the accuracy of the models. For the training stage, all the overlapping speech was
removed. Also, for both evaluation and training stages, the speech was cleaned up
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using labels from VocalSounds and NonVocalSounds, representing non-speech sounds
from speakers and other noises, e.g., mic sounds.
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Chapter 4

Experiments

Based on the research described in ??, we conducted a series of experiments to find
out the best performing architecture for the speaker classification task. The general
idea of the experiments is to leverage the ability of convolutional neural networks
to capture patterns in the multidimensional structured data. With this approach,
we split the experimentation into two logical parts: front-end and back-end, and it
consisted of two stages. The back-end is a CNN with a 2-dimensional input and soft-
max layer as output. And the front-end is a range of different sound representations,
where each is processed through its separate pipeline. The output of the front-end
is input into the back-end. The goal of the first stage was to figure out the best per-
forming front-end on a fixed back-end. And the purpose of the second stage was
to fine-tune the CNN back-end for the chosen front-end and train the best possible
model for the task. For all the experiments the LibriSpeech dataset was used (3.1).

4.1 Data Preprocessing

We believe that the optimal length of speech for speaker classification lies between
0.5 and 2 seconds for the real-life scenario, where speakers can have dialog and
speech fragments are overlapping each other. Thus, for each of the 251 speakers,
sound files are split into chunks of lengths 0.5, 1, 2 seconds during preprocessing
step. Each chunk was cut with an overlap of 50% with the previous one to increase
the size of the training dataset.

4.2 First Stage Back-End

The back-end of our experimental setup consists of CNN with 3 convolutional layers
and 2 fully-connected layers. The size of the input layer varies from 512 x 128 to 16
x 16 and entirely depends on the respective front-end output pipeline (4.3). After
each convolutional layer, we apply 2x2 max-pooling. Thus the size of the filter on
the next layer is half size of previous for each dimension. The chosen dataset has 251
speakers. Therefore the very last fully-connected layer has a size of 1 x 251. After
initial experiments, it became clear that if we connect directly final convolutional
layer with the output layer, it creates a significant number of parameters that cause
severe overfitting on the training stage. For example, the convolutional layer of 32 x
32 x 32 with a 1 x 251 output will result in around 2 million parameters. We found
the original solution to this problem and added one narrow fully-connected layer
before the output, of size 1 x 16. This measure reduces the count of parameters for
the previous example to approx. 150 thousand and allows this model to generalize
better.(Figure 4.1)
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FIGURE 4.1: CNN architecture example for 128 x 128 input.

4.3 Front-End

For the front-end part of the research, we have chosen 3 audio representation op-
tions for testing: MFCC, Spectrogram, and Mel Spectrogram. Even though i-vectors
show high performance in many applications, we intentionally left them outside of
this research. We intend to train a neural network to extract high-level, complex fea-
tures from the data. On the contrary, I-vectors present already extracted high-level
features of a speech utterance. Also, i-vectors have 1 x D dimensionality that does
not allow us to apply CNN to their processing and requires other architectures to be
explored.

4.3.1 MFCC

MFCC were calculated as described in subsection 2.1.4 using LibROSA package. Two
options were tested with 16 and 32 coefficients. These inputs were chosen to pre-
serve as much information as possible from the original sound chunk. As it could
be seen on Figure 4.2 and Figure 4.3, last 16 coefficients in the 32 variation does not
contain much information, therefore we did not explore other options.

FIGURE 4.2: MFCC with 16 coefficients for 2 seconds audio.
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FIGURE 4.3: MFCC with 32 coefficients for 2 seconds audio.

4.3.2 Mel Spectrogram

Mel Spectrogram is obtained through the application of the bank of filters adjusted
to mel-scaled frequencies, see. subsection 2.1.4 and Figure 2.3. As a result, the val-
ues are binned according to mel-scale, and frequencies important to human hearing
perception are emphasized. Two option were tested with FFT sliding window of 512
(4.6) and 256 (4.5), and 128 filter bank applied. 128 filters were chosen in order to
keep frequencies resolution high. It could be seen on Figure 4.4, how a decrease in
filter quantity impacts the granularity in the frequencies domain. The 512 and 256
windows were chosen to keep the output tensor in a reasonable size for the back-end
input.

FIGURE 4.4: Mel-frequency spectrogram window size = 256, cepstral
coefficients = 16.
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FIGURE 4.5: Mel-frequency spectrogram window size = 256, cepstral
coefficients = 128.

FIGURE 4.6: Mel-frequency spectrogram window size = 512, cepstral
coefficients = 128.

4.3.3 Spectrogram

All spectrograms were calculated using FFT applied to the raw digital signal, with a
sliding window of different length and 50% overlapping. The length of the window
has a significant impact on spectrogram properties. With an increase in windows
size, the resolution on time axis is decreasing, and the resolution on the frequen-
cies axis is increasing and vice versa. From a practical point of view, it impacts the
amount of information preserved in each pixel and the size of the pipeline output.
The spectrogram of 1-second audio calculated with sliding window size 128 on Fig-
ure 4.7 has dimensions 64 x 256, while the audio fragment of the same length on
Figure 4.8 with sliding windows 256 have dimensions 128 x 128. We tested spectro-
grams with 3 window sizes: 128, 256, 512.
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FIGURE 4.7: Sprectrogam of 1 sec audio fragment, FFT window
length = 128.

FIGURE 4.8: Sprectrogam of 1 sec audio fragment, FFT window
length = 256.

4.3.4 Training Details

All the models were trained for 20 epochs and the best performing model is chosen
for each front-end. The models were built using Tensorflow package back-end with
Keras package as an interface. The training was conducted on NVIDIA GeForce GTX
1080 GPU.

4.3.5 Front-End Experiments Summary

The dataset is balanced, and false positive and false negatives have the same mean-
ing in this comparison. Thus, accuracy was chosen as the primary metric for the
models, see Table 4.1.
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Model
Accuracy

0.5 sec 1 sec 2 sec
MFCC 16 0.08 0.21 0.28
MFCC 32 0.13 0.25 0.24

Mel-Spectrogram 256 0.55 0.83 0.81
Mel-Spectrogram 512 0.32 0.61 0.80

Spectrogram 128 0.62 0.68 0.58
Spectrogram 256 0.49 0.78 0.74
Spectrogram 512 0.26 0.65 0.86

TABLE 4.1: Experimentation summary.

Summarizing obtained results:

• Spectrogram based model performed significantly better than MFCC ones. We
explain that MFCCs preserve fewer data from raw input, and the spatial rep-
resentation is lost in transformation, making it less beneficial to apply CNNs
for high-level feature extraction.

• Longer sound fragments show generally better accuracy. It is not surprising as
they contain much more data.

• The input with equal or closer to equal dimensions, generally performs better
than rectangular with a high ratio between dimensions. We think it is con-
nected with the form of the receptive field, as all the filters in CNN are square,
they perform weaker on rectangular input. We tried to address this issue in
final model, see section 4.4.

• Spectrogram 512 model showed the best performance of accuracy = 0.86, so it
was chosen as front-end for the final model.

4.4 Back-End Hyperparameters Tuning

After the the first stage our next task was to improve the result from baseline accu-
racy = 0.86 by tuning back-end part of the model. Each update was tested on short 10
epochs iterations, all positive changes were included into the next stages of testing.

4.4.1 Loss Function

Multi-Class Crossentropy is used as a loss function. Other losses like Kullback Leibler
Divergence loss and Hinge Loss did not show any significant difference in training
speed and model accuracy.

4.4.2 Overfitting

One of the encountered problems was overfitting. The accuracy of the model on
training data was significantly larger than on validation data. In addition to a shal-
low layer before output described in section 4.2 and batch normalization[Ioffe and
Szegedy, 2015], we applied L2 weights regularization for each layer and dropout
between last two dense layers, with positive outcomes.
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4.4.3 Convolutional Kernels

We learned from the first stage experiments that models with square inputs gener-
ally perform better, but our model has input 128 × 256. In order to mitigate this
issue, we came up with the original solution of using rectangular kernels in convo-
lutional layers, as we believe they have better receptive field coverage. In the final
architecture, we have three convolutional layers. For them, we have used rectangu-
lar kernels, 3× 6, 3× 6, 2× 4, resembling input dimensions.

4.4.4 Automated tuning

We used the automated hyperparameters tuner for finding the optimal CNN config-
uration [Keras tuner]. Optimizer was run against next parameters: C ∈ 2, 5 - convo-
lutional layers count, Fc ∈ 8, 64 - count of filters for each layer, and S ∈ 8, 64 - the
size of the narrow layer. As a result, the final model consists of 5 layers, with three
convolution layers having 16, 24, and 32 filters. The narrow layer has 14 neurons.

FIGURE 4.9: Final model architecture.

4.5 Model Evaluation

The model was evaluated against LibriSpeech ASR Corpus(3.1) and ICSI Meeting
Speech Corpus(3.2). Testing on LibriSpeech corpus allows us to understand the
full potential of the model since we know that labeling is 100% accurate, and speech
quality is high. On the other hand, testing on ICSI Meeting corpus shows us a model
performance on real-life data with a big amount of noise.(Table 4.2)

Dataset Accuracy
LibriSpeech corpus 0.94
ICSI Meeting corpus 0.83

TABLE 4.2: Evaluation summary.
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4.6 Conclusions

The proposed model showed performance comparable to state-of-the-art solutions.
Given an accuracy of 0.94 on the clean dataset, it gives strong promise for future re-
search. It worth to mention that the dataset was not cleaned from noise and silence
fragments, therefore there is still space for accuracy improvements. Another funda-
mental feature of the proposed approach is context independence. As the model
relies only on low-level features of the sound, it does not matter what kind of sound
is classified, and it is not limited to speech in general. In the speech domain, it means
that exact words or language do not impact model performance. The only condition
is that training and evaluation data come from the same distribution.

The performance of 0.83 on the similar to real-life data refers to the fact that data
quality matters. This dataset has a lot of overlapping speech and mediocre sound
quality, but the accuracy is still significantly high, given that it contains 53 unique
speakers. We came to the conclusion that any practical application should imple-
ment rigorous data preprocessing, including but not limited to denoising, removing
non-speech sounds, dealing with overlapping speech, etc.
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Chapter 5

Future Work

The presented model shows excellent potential, but the journey of building a prod-
uct grade state-of-the-art diarization system has only started. We envision two main
directions of development for this work.

5.1 Bridging the Diarization Gap

There is a gap between speaker classification and speaker diarization tasks. In our classi-
fication model, we assume that the number of speakers is known, and we knew each
speaker before. As we try to build a real-life applicable solution, we would like to go
to a solution where the speaker number is unknown. One of the possible solutions
is building an ensemble model where before classification is done, speaker count is
identified. Another possibility is to implement an end-2-end solution where both
aspects are solved, as described by Zhang et al., 2019.

5.2 Extended Research

Taking into account the broadness of the field and accelerated activity of the scientific
community, we can not claim that we explored all approaches to the problem. Some
experiments were not conducted due to tight time constraints, some due to a lack
of access to proprietary datasets. We believe that LSTMs (2.2.2) and TDNN(2.2.3),
have great potential to be applied to the problem. Another interesting approach is
to use CNN to extract the speaker’s identity low-dimensional representation, similar
to d-vectors (2.1.6). We plan to explore these possibilities in future works.
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