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Abstract

Language Modeling is one of the most important subfields of modern Natural Lan-
guage Processing (NLP). The objective of language modeling is to learn a probability
distribution over sequences of linguistic units pertaining to a language. As it pro-
duces a probability of the language unit that will follow, the language model can be
viewed as a form of grammar for the language, and it plays a key role in traditional
NLP tasks, such as speech recognition, machine translation, sentiment analysis, text
summarization, grammatical error correction, natural language generation. Much
work has been done for the English language in terms of developing both training
and evaluation approaches. However, there has not been as much progress for the
Ukrainian language. In this work, we are going to explore, extend, evaluate and
compare different language models for the Ukrainian language. The main objective
is to provide a balanced evaluation dataset and train a number of baseline models.
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Chapter 1

Introduction

1.1 Importance of Language Modeling

The objective of Language Modeling is to learn a probability distribution over se-
quences of linguistic units pertaining to a language. As linguistic units, we can
consider any natural units into which linguistic messages can be divided, for exam-
ple, characters, words or phrases. The linguistic units seen by the model compose
model’s dictionary U.

P(S) = P(u1, u2, . . . , un) (1.1)

where S- sequences of linguistic units and ui - i-th unit.
Typically, this is achieved by providing conditional probabilities p(u|c), where c

is the context of linguistic unit u. For example, the probability of a particular unit in
the sequence:

P(ui|ui−k1 , ui−k1+1, . . . , ui+k2−1, ui+k2) (1.2)

Most fixed-vocabulary language models employ a symbol < unk > that rep-
resents all units that are not presented in vocabulary U. These units are termed
out-of-vocabulary (OOV).

In this Master Thesis, we recall to LMs depending on the learned linguistic unit,
as word-level, subword-level and character-level LMs respectively.

As it produces a probability of the following language unit, the language model
(LM) can be viewed as a grammar of the language, and it plays a key role in tradi-
tional NLP tasks, such as automatic speech recognition (Mikolov et al., 2010, Arisoy
et al., 2012 ), machine translation (Schwenk, Rousseau, and Attik, 2012, Vaswani et
al., 2013), sentiment analysis (Hu et al., 2007), text summarization (Rush, Chopra,
and Weston, 2015, Filippova et al., 2015), grammatical error correction (Bryant and
Briscoe, 2018), natural language generation (Edunov, Baevski, and Auli, 2019).

1.2 Motivation

Language Modeling is one of the central tasks to Natural Language Processing and
Natural Language Understanding. Thus, in order to elaborate upon an NLP task for
the language, this language needs to have a well-designed high-quality language
model(LM).

To train and evaluate language models, it is required to have a well-composed
corpus (corpora). In linguistics and NLP, corpus refers to a collection of texts. In case
of language modeling, it is very important to evaluate and benchmark the models
on the data with balanced genres and topics.
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For the English Language, language modelling coherently evolves in time and
has already gone through multiple stages of elaboration. Much work has been done
in terms of collecting (building) corpora as well as developing both training and
evaluation approaches. Firstly, count-based approaches (based on statistics of N-
grams), such as Kneser-Ney smoothed N-gram models Kneser and Ney, 1995 were
a fairly strong baseline. In recent years, much progress has been made by neural
methods Bengio et al., 2003; Mikolov et al., 2010, character-aware Neural Language
Models Kim et al., 2015, based on LSTMs Jozefowicz et al., 2016, gated convolutional
networks N. Dauphin et al., 2017 and self-attentional networks Al-Rfou et al., 2018.

At the same time, there hasn’t been as much progress for the Ukrainian language.
Overall, building a baseline language model and a gold standard corpus for the
Ukrainian language is a crucial step in the evolution of Ukrainian NLP. This is the
main motivation for our work.

1.3 Goals of the master thesis

In this master thesis, we want to explore, extend, develop, evaluate and compare a
set of language models for the Ukrainian language. The main objective is to offer an
evaluation corpus and set a number of baselines.

1. To provide an overview of existing approaches to language modeling for other
languages.

2. To compose a data corpus sufficiently large for training neural language mod-
els for the Ukrainian language and conduct an appropriate preprocessing of
the gathered data.

3. To experiment with different linguistic units that can potentially better model
the sequential information in Ukrainian data.

4. To explore, reproduce and extend the set of main approaches that where con-
sidered effective for other languages.

5. To evaluate and compare language models trained for the Ukrainian language.
To offer an evaluation corpus and set a number of baselines.

1.4 Structure of the thesis

In Chapter 2, we provide an analytical summary of what has been done by the scien-
tific community for the English language in terms of language modeling. The chap-
ter comprises a review of related publications and the background theory, which
forms the basis of the work presented later in the thesis. In Chapter 3, we describe
the methodology we used to address language modeling for the Ukrainian language.
Here we describe the process of constructing training and evaluation corpora, the
experimental setup, the implementation details and the obtained results. Chapter 4
summarizes our contributions and set the directions for further research.
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Chapter 2

Literature Review

2.1 English Language Modeling

English is the most widely spoken language in the world, and, consequently, most
of the NLP research has been mainly evolving around it. Countless papers were
written, vast linguistic resources were collected, numerous benchmarks were set and
approaches tested. This way, it can be claimed that NLP for the English Language is
the most mature among the natural languages.

Hence, it is essential to start with a deep dive into the research that has been done
for English, including the relevant text corpora and models. So, the knowledge and
experience can be reapplied for the Ukrainian language.

2.1.1 Corpora

In this section, we will list and compare the most used general-specific English cor-
pora, which were used for evaluation of the sentence based LMs, similar to the ones
we are going to use.

A common evaluation corpora is Penn Treebank (Marcus, Marcinkiewicz, and
Santorini, 1993) – large annotated collection of texts. The material annotated in-
cludes such wide-ranging genres as IBM computer manuals, nursing notes, the Wall
Street Journal articles, and transcribed telephone conversations, etc. Its original ver-
sion consists of over 4.5 million words of American English. The PTB portion of
the Wall Street Journal corpus, preprocessed by Mikolov et al., 2011a has been used
by numerous researchers. The dataset consists of three partitions: training (929k to-
kens), validation (73k tokens), and the test partition (82k tokens). As part of the pre-
processing, the corpus was stripped of any punctuation, words were lower-cased,
numbers were replaced with N, newlines were replaced with <eos>. The vocabu-
lary is limited to 10k most frequent words and the rest of the tokens being discarded
and replaced with a special token, <unk> .

The One-Billion Word benchmark introduced by Chelba et al., 2013 is a larger
benchmark corpus extracted from a news-commentary site. The dataset consists of
829,250,940 tokens with a vocabulary of 793,471 words. All words with a frequency
below 3 were replaced by the <unk> token. The sentences in this model are shuffled,
hence only sentence-level models can be trained and evaluated on the corpus.

The WikiText dataset was proposed as a more realistic benchmark by Merity et
al., 2016. Overall, the corpus consists of around 103 million words derived from
knowledgeable and featured Wikipedia articles with punctuation, original casing,
and numbers. That allows for capturing and utilization of longer-term dependencies
within longer text spans. The dataset is available in two different sizes: WikiText-2
and WikiText-103.
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A comparison of the four described datasets is provided in Table 3.2. The values
for the PTB, WikiText-2 and WikiText-103 are taken from Merity et al., 2016: "The
out-of-vocabulary (OOV) rate notes what percentage of tokens have been replaced
by an < unk > token. The token count includes newlines which add to the structure
of the WikiText datasets". The values for the One Billion Word are computed from
the Description of the Benchmark Data in Chelba et al., 2013. 829, 250, 940 is the size
of the whole dataset, counting sentence boundary markers < S >, < /S >. Then,
sentence order was randomized, and the data was split into 100 disjoint partitions.
One such partition was split again into 50 disjoint partitions, one of them is used as
a test set and amounts to 159, 658 words without counting the sentence beginning
marker < S >. Then, training part contains 829, 250, 940− 1% and validation data
approximately contains 159, 658 ∗ 49 word-level tokens.

Penn Treebank 1 Billion Word WikiText-2 WikiText-103
Tokens 929,590 829,250,940 - 1% 2,088,628 103,227,021 Train

73,761 ≈ 7, 823, 242 217,646 217,646 Valid
82,431 159,658 245,569 245,569 Test

Articles - - 600 28,475 Train
- - 60 60 Valid
- - 60 60 Test

Vocab
size

10,000 793,471 33,278 267,735

OOV
rate

4.8% 0.28% 2.6% 0.4%

TABLE 2.1: Statistics and comparison of the Penn Treebank, 1 Billion
Word, WikiText-2, and WikiText-103.

Zipf’s law was popularized as a rather good approximation to the word prob-
abilities in many different languages (Zipf, 1935, Zipf, 1949 ). According to it, the
frequency of any word is inversely proportional to its rank order in the frequency
list sorted from the most common to the less common words. Thus, the probabil-
ity p(wi) that in a random sample we find the i-th most common word wi can be
calculated with Z ≈ 1 and K the normalization constant, i.e., K−1 = ∑i≤n

1
iZ

p(wi) =
K
iZ (2.1)

Word frequencies for any language corpora could be approximated with a Zip-
fian distribution. This statement is mostly used by plotting the data on a log(rank
order) - log(frequency) graph. Zipfian plot over the training partition in Penn Tree-
bank and WikiText-2 datasets are shown on the 2.1. For the PTB corpus, the curve
abruptly stops when hitting the 10k rank, because it is the size of its vocabulary.
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FIGURE 2.1: Zipfian plot over the training partitions from Penn Tree-
bank and WikiText-2 datasets. Source: (Merity et al., 2016)

2.1.2 Models

N-gram models

N-gram models is a widely used type of language models. They are very straightfor-
ward to construct except for the smoothing techniques developed to estimate prob-
abilities of out-of-vocabulary words or, in general, when there is insufficient data.

The generic equation for computing probability of a sentence, using n-gram
model is:

p(s) =
l+1

∏
i=1

p(ui|ui−1
i−n+1) (2.2)

where n is the order of the model and uj
i denotes the units ui · · · uj. Also, ad-

ditional units u0 =< BOS > and ul+1 =< EOS > are initiated. To estimate the
probabilities:

p(ui|ui−1
i−n+1) =

c(ui
i−n+1)

∑ui
c(ui

i−n+1)
(2.3)

where c(ui
i−n+1) denotes the number of times the n-gram ui...ui−n+1 occurs in the

given corpus. The units ui−1
i−n+1 preceding the current unit ui are called the history.

The sum ∑ui
c(ui

i−n+1) is equal to the count of the history c(ui−1
i−n+1).

Smoothing is a technique used to adapt the maximum likelihood estimate of
probabilities and to make distribution more uniform, by adjusting low probabilities
such as zero probabilities upward and high probabilities downward. At the same
time, smoothing methods are designed to prevent zero probabilities.

While sparse data is one of the central issues in language modeling with n-grams,
a large variety of techniques has been proposed for "smoothing" n-gram models.
Chen and Goodman (1998) carried out an extensive empirical comparison of the
most widely used smoothing techniques, including those described by Jelinek and
Mercer (1980), Katz (1987), Bell, Witten, and Cleary (1990), Ney, Essen, and Kneser
(1994) and Kneser and Ney (1995). They introduced methodologies for analyzing
smoothing algorithm performance in detail, and, using these techniques, they mo-
tivate a novel variation of Kneser-Ney smoothing that consistently outperforms all
other algorithms evaluated.
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This backoff-smoothed model estimates the probability based on the observed
entry with longest matching where the probability p(ui|ui−1

f ) and back-off penalties
b(ui−1

n ) are provided by the already-estimated model.

p(ui|ui−1
1 ) = p(ui|ui−1

f )
f−1

∏
n=1

b(ui−1
n ) (2.4)

Open-source KenLM library proposed by Heafield (2011) efficiently uses two
data structures (PROBING and TRIE) to query n-gram language model with mod-
ified Kneser-Ney smoothing, reducing both time and memory costs.

Neural Language models

First feed-forward neural language model (NLM) was proposed by Bengio et al.,
2003. Distributed word representations ("feature vectors") were processed by a sin-
gle hidden layer with hyperbolic tangent activation and then a softmax output layer.
This simple architecture for learning of both word feature vectors and the parame-
ters of joint probability function of word sequences simultaneously was a break-
through solution for dealing with a fundamental problem of N-gram language mod-
elling, "the curse of dimensionality". Also, leveraging the fact that each word was
associated with a point in a vector space, NLM was able to take into account the
"similarity" (distance) between words.

Their experiments have shown perplexity reduction between 20% and 35% com-
pared to, at that time state-of-the-art, a smoothed trigram model.

Bengio et al., also introduced so-called "cycling architecture", that was a glance
into the future of the Recurrent Neural Networks described further.

Recurrent Neural Network

Recurrent Neural Network (RNN) is a type of Artificial Neural Network used in
NLP. RNN is designed to be able to exhibit sequential data inputs. By introducing
architecture with hidden state h(t) and loops, this type of neural networks allows the
previously processed information to persist. A general visualization of such a model
is presented in Figure 2.2

FIGURE 2.2: The repeating module in a standard RNN.
Source: Olah, 2015

Assuming that the RNN is used to predict words or characters, and the output is
discrete, the mathematical formulation of forward propagation at each time step of
a Vanilla RNN is as follows (Goodfellow, Bengio, and Courville, 2016):
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a(t) = b + Wh(t−1) + Ux(t) (2.5)

h(t) = tanh(a(t)) (2.6)

o(t) = c + Vh(t) (2.7)

ŷ(t) = so f tmax(o(t)) (2.8)

Where x(t) is an input vector, ŷ(t) is an output vector representing probability
distribution over the vocabulary at time step t. The bias vectors b and c and the
weight matrices U, V and W are the model parameters. Hidden state h(0) is initial-
ized at first iteration. Matrices U, V and W respectively, compute input-to-hidden,
hidden-to-output and hidden-to-hidden connections.

The main advantage over N-gram LMs, where only a finite context size window
would be considered, is the RNN’s capability of conditioning the model on all pre-
vious words in the sentence.

Even though the preliminary results on small corpora were promising, Mikolov
et al., 2010 observed that it is impossible for a vanilla RNN trained with gradient
descent to capture long context information.

When training very deep recurrent neural networks two common problems that
arise are the vanishing and exploding gradients. Due to the process of backpropa-
gation, which in essence is the application of the chain rule, the gradient from the
latest layers is multiplied by matrices in order to be propagated to the beginning of
the network. If the largest eigenvalues of these matrices are less than one, then the
value of the gradient will go to zero if the network has many layers, which is called
the vanishing gradients problem. On the other hand, if the largest eigenvalues are
greater than one, then the gradients will go to infinity — the exploding gradients
problem.

Long Short Term Memory networks

Long Short Term Memory (LSTM) network is a gated RNN, designed by Hochreiter
and Schmidhuber, 1997 to mitigate the problems of vanishing and exploding gradi-
ents for long-term dependencies during the back-propagation phase. The memory
cell, which replaces the hidden unit in vanilla RNNs, integrates four main elements:
input gate, f orget gate, output gate and sel f recurrent connection.

FIGURE 2.3: Four interacting layers in LSTM repeating module
(memory cell).

Source: Olah, 2015
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The following equations define a forward propagation for each time step t:

i(t) = σ(W(i)x(t) + U(i)h(t−1) + b(i)) Input gate(2.9)

f (t) = σ(W( f )x(t) + U( f )h(t−1) + b( f )) Forget gate(2.10)

o(t) = σ(W(o)x(t) + U(o)h(t−1) + b(o)) Output gate(2.11)

ĉ(t) = tanh(W(c)x(t) + U(c)h(t−1) + b(c)) New memory(2.12)

c(t) = tanh( f (t) ◦ c(t−1) + i(t) ◦ ĉ(t)) Final memory cell(2.13)

h(t) = o(t) ◦ tanh(c(t)) Updated hidden state(2.14)

Where x(t) is an input vector, ĥ(t) is an updated hidden state at time step t. The
bias vectors b(i), b( f ), b(o) and b(c) and the weight matrices U(i), U( f ), U(o), U(c), W(i),
W( f ), W(o) and W(c) are the model parameters. σ is the non-linearity function.

LSTMs are at the core of language modeling evolution. Even though they solve
the vanishing gradient problem, the exploding gradients problem still prevails. In
spite of the introduction of such techniques as gradient clipping Pascanu, Mikolov,
and Bengio, 2013 and dropout-regularization Zaremba, Sutskever, and Vinyals, 2014
might not be sufficient to adequately address this issue. Many variants of basic
LSTM have been proposed in terms of language modeling. In particular, experi-
ments with gates (Melis, Kočiský, and Blunsom, 2020) and incorporation of multiple
cells – Multi-cell LSTM (Cherian, Badola, and Padmanabhan, 2018).

Currently, the best perplexity 2.20 score on PTB and WikiText-2 benchmarks
where achieved by the Mogrifier LSTM modification (Melis, Kočiský, and Blunsom,
2020). So, even after the introduction of Transformers, venerable LSTMs can still be
considered state-of-the-art.

Gated Recurrent Unit

Gated Recurrent Unit (GRU) is a simpler version of LSTM introduced by Cho et al.,
2014. GRU has only two gates (reset and update) and does not have the memory cell.
The equations 2.15 to 2.18 describe how a GRU cell is updated at every time-step t.

z(t) = σ(W(z)x(t) + U(z)h(t−1) + b(z)) Update gate(2.15)

r(t) = σ(W(r)x(t) + U(r)h(t−1) + b(r)) Reset gate(2.16)

ĥ(t) = tanh(r(t) ◦U(h)h(t−1) + W(h)x(t) + b(h))New memory(2.17)

h(t) = (1− z(t)) ◦ ĥ(t) + z(t) ◦ h(t−1) Hidden cell(2.18)

The bias vectors b(z), b(r), b(h) and the weight matrices U(z), U(r), U(h), W(z), W(r)

and W(h) are the model parameters. σ is the non-linearity function.
GRU is less famous then LSTM, but having fewer parameters shows compara-

tively good results on speech recognition LMs Irie et al., 2016 and sequential data
generation Chung et al., 2014.

2.1.3 Evaluation

Perplexity

Traditionally, LM performance is measured by such intrinsic metrics as perplexity,
cross-entropy, and bits-per-character (BPC). All three of them are highly correlated,
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FIGURE 2.4: GRU repeating module.
Source: Olah, 2015

but it is not always reasonable to compare them between LMs with different vocabu-
lary sizes, language units and OOV words handling. The theory comes from estima-
tion of the "entropy" of an English language, proposed by Shannon, 1948 Shannon,
1951, measuring the average amount of information conveyed in a message.

A language model aims to learn the unknown distribution of language units in
a language from the sample text. Thus, minimizing the cross-entropy H(P, Q) of
learned distribution Q with respect to the empirical distribution P of the language.

H(P, Q) = −
n

∑
i=1

P(ui)logQ(ui) (2.19)

In terms of LM objective defined in 1.1, a better model for a text sequence is the
one that assigns a higher probability to the word that actually occurs. The metric
perplexity is often used to compare word-level LMs. It is computed as the inverse
probability of the text, normalized by the number of words:

PP(S) = N

√
1

P(w1w2...wN)
(2.20)

Where N stands for the number of words.
After applying a chain rule, the formula can be written as:

PP(S) = N

√√√√ N

∏
i=1

1
P(wi|w1w2...wi−1)

(2.21)

Usually, in order to minimize the computational complexity, a logarithm of the
perplexity is computed by normalizing the sum over the negative logarithms of pre-
dicted probabilities:

log2(PP(S)) =
1
N

N

∑
i=1

(−log2(P(wi|w1w2 . . . wi−1)) (2.22)

PP(S) = 2−
1
N ∑N

i=1 log2(P(wi |w1w2...wi−1)) (2.23)

By minimizing perplexity, the probability is maximized. Therefore, a better LM
is the one that has a lower perplexity value.

Character-level LMs are usually compared with Bits Per Character (bpc) metric.

BPC(S) = − 1
T

T

∑
i=1

log2(P(ci|c1c2...ci−1)) (2.24)
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Where T is the number of characters.
Al-Rfou et al., 2018 proposed to compare character-level models with word-level

using the approximation:

PP(S) = 2BPC T
N (2.25)

Comprehensive evaluations

Commercial attractiveness of English has given rise to different NLP tasks. Promi-
nent minds from both industry and science cooperated together to solve those issues
with reasonable efforts, time and computational resources. By now, most LMs are
designed for a specific task and struggle with out-of-domain data.

However, due to expensiveness of the computational resources, it is highly de-
sirable to train the LMs that are able to perform reasonably well independently of
the context in which they are used, in order to easily be used as pretrained models
for some extrinsic NLP tasks. In other words, LMs should have enough flexibility
to represent complex distributions and to be capable of dealing with various pecu-
liarities of human languages. In an attempt to achieve this goal, Wang et al., 2018
introduced the General Language Understanding Evaluation (GLUE) benchmark, a
collection of tools for evaluating the performance of models across a diverse set of
existing tasks.

2.1.4 Tokenization levels

LMs typically operate with a fixed vocabulary of language units. During the training
process, the model learns the distribution of the units, their similarities and relations.
Subject to the tokenization level of the linguistic message, the model would also
encounter challenges like size of the vocabulary, treating unknown words (open or
closed vocabulary), number of parameters in order to be able to model relations
over long distances, the length of the input sequence and the number of required
computations.

Word level

Most statistical LMs use words as their atomic units. This architecture approach
is the most intuitive, as the model is supposed to learn word similarities and de-
pendencies. Word-level models are closed-vocabulary and usually, introduce an
< unk > token to represent OOV words. The number of parameters highly depends
on the size of the vocabulary.

Character level

Character-level models (Mikolov et al., 2011a, Jozefowicz et al., 2016, Al-Rfou et al.,
2018, Krause et al., 2016, Kim et al., 2015) operate over vocabularies comprised of
distinct characters seen in the training corpus. This type of LM must learn a large vo-
cabulary of words “from scratch”. Also, character sequences and dependencies are
longer, thus require significantly more steps of computation. The main advantage
is the ability of the model to generate new, unseen before words. Thus, a character-
level NLM, which provides comparatively good results, should be deep and with a
huge amount of trainable parameters.
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Subword level

Subword tokenization is widely used in machine translation models (Sennrich, Had-
dow, and Birch, 2016, Kudo, 2018, Mikolov et al., 2011b). In general, subword-level
LMs perform better for inflectional and agglutinative languages, because they are
able to separate the meaningful morphological units and learn to construct new
words that were not seen at training time. This models advantage both configurable
size of vocabulary and being open-vocabulary simultaneously. Subword-level LMs
typically follow a common template: 1) A segmentation algorithm is applied to train
corpora in order to form a subword vocabulary. 2) Train and test data is tokenized
with respect to formed vocabulary. 3) The output of the model is detokenized.

In this work, we consider the most used word separation algorithm — Byte Pair
Encoding (BPE).

Byte Pair Encoding

BPE was initially introduced as a data compression technique (Gage, 1994) and then
adapted to languages by Sennrich, Haddow, and Birch, 2016. The algorithm incre-
mentally finds a set of symbols such that the size of the dictionary for encoding the
text is minimized.

The algorithm (Sennrich, Haddow, and Birch, 2016) (the hyperparameter N -
number of merge operations):

• Step 0: The vocabulary is initialized with the character vocabulary. Each word
is represented as a sequence of characters, plus a special end-of-word symbol.

• Step 1: All symbol pairs frequencies occurrences are counted.

• Step 2: The most frequent pair (‘A’, ‘B’) is merged and replaced with a new
symbol ‘AB’. A new token is added to the initial vocabulary.

Repeat step 1 and step 2 N times. The final vocabulary size equals to the size of the
vocabulary initialized on Step 0, plus the number of merges (Step 2).

Another frequently used dictionary substitution encoder is the unigram language
model Kudo, 2018. Its data compression principle is to minimize the total code length
for the text. The unigram language model encodes sentence into not unique sub-
word sequence, thus imposing spurious ambiguity. Subword regularization tech-
nique (Kudo, 2018) trains the model on different data inputs randomly sampled
from the original input sequences and can be regarded as a variant of ensemble
training.

Bags of character n-grams

This word representation, introduced by Bojanowski et al., 2017, takes into account
word’s internal structure.The dictionary of n-grams of size G is generated and each
word w is represented as a bag of character n-gram wi ⊂ {1, . . . G} appearing in
w. Word feature vector is computed as a sum of the feature vectors of its n-gram
components. As a result, embedding could be generated even for unknown words.
Bojanowski et al., 2017 observed that using word representations trained with sub-
word information outperforms the plain word-level model and " . . . this improve-
ment is most significant for morphologically rich Slavic languages such as Czech
(8% reduction of perplexity ) and Russian (13% reduction)."
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2.2 What has been done for the Ukrainian Language

Sazhok and Robeiko, 2013 concerns the development of real-time speech recogni-
tion system for the Ukrainian language. In terms of language modeling part of the
speech-to-text system structure, they compare word-based (Hsu and Glass, 2008)
and class-based (Martin, Liermann, and Ney, 1998) statistical language models. Ac-
cording to their experimental set-up, class-based LMs occupy less space and poten-
tially outperform a 3-gram word-based model. Also, implemented class-based LM
automatically obtains classes for Ukrainian, that in general correspond to syntactic,
semantic and phonetic features.

Maučec, Rotovnik, and Zemljak Jontes, 2003 also tackled the task of building
an automatic speech recognition system but for the languages of the same group
as Ukrainian – Slavic languages. They used a data-driven language-independent
tokenization technique to separate stems and endings as new basic units. They also
suggest, that the proposed technique can be applied to other highly inflected Slavic
languages. Their approach resulted in the reduction of both OOV rate (by 64%)
and vocabulary size, compared to word-level N-gram model, and the recognition
accuracy was improved by 4.34%.

Lang-uk 1 open community computed Ukrainian word embeddings (Word2Vec
and GloVe) based on the collected corpora of newswire, articles, fiction and juridical
texts. At the moment, their GloVe-like embeddings show the best scores on the test
sets for quality evaluation of vector representations developed by Tetiana Kodliuk 2.

1Lang-uk open community: https://lang.org.ua/en/models/#anchor4
2Test set for valuation of embeddings: https://github.com/lang-uk/vecs

https://lang.org.ua/en/models/#anchor4
https://github.com/lang-uk/vecs


13

Chapter 3

Methodology

Having all the mentioned above work done for the English language, it’s predictable
that the approaches which show good results there would perform comparatively
good for other languages. Indeed, as pointed out by Cotterell et al. (2018) "Most
methods are portable in the following sense: Given appropriately annotated data,
they should, in principle, be trainable on any language. However, despite this crude
cross-linguistic compatibility, it is unlikely that all languages are equally easy, or that
our methods are equally good at all languages."

There are three important differences between Ukrainian and English consider-
ing statistical language modeling.

Firstly, Ukrainian is a Slavic language and is famous for its rich inflections. It
is noted by Pavliuk (2018), that the number of inflections in Ukrainian by far ex-
ceeds their number in English since every notional part of speech has a variety of
endings. Those endings express case and gender of nominal parts of speech (nouns,
adjectives, numerals, pronouns) and tense, aspect, person, number, voice and mood
forms of verbs. Also, in the Ukrainian language, many part of speech may form
diminutive forms of the word, while in English only nouns have this possibility.

Secondly, in most agreement word-combinations (when the form of a headword
determines the form of a dependent word) in English, there is no concord. In con-
trast, in Ukrainian, dependent words agree in number, gender and case, if the head-
word is a noun and adjunct words are adjectives and pronouns.

Thirdly, Ukrainian words often exhibit clearer morphological patterns than can
be found in English words. A simplified model of a word can be determined as the
stem responsible for the lexical meaning and an inflection appended to the stem. In
an idealised example of Ukrainian words, stem is basically a constituent combina-
tion of three main parts: a root which is responsible for the main lexical meaning of
the word, attached to which may be zero or more derivational prefix(es) and zero
or more suffix(es). The presence of these affixes usually makes a contribution to the
change in lexical meaning of the root.

Forth, English imposes strict constraints on the relative order of words in a sen-
tence. On the contrary, in Ukrainian, the subject and object of the sentence can be
determined not only by the order of the words themselves but also by the word’s
inflection and by its agreement with the verb.

These differences strongly influenced our research problem formulating and fur-
ther decision making regarding the selection of the set of experiments.
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3.1 Data

As pointed out by Jozefowicz et al., 2016: "Models that can accurately place distri-
butions over sentences encode not only complexities of the language such as gram-
matical structures, but also distil a fair amount of information about the knowledge
that a corpora may contain".

Thus, it was very important for our research to compose a corpus comparable
with the ones presented for the English language, a corpus that would well represent
Ukrainian vocabulary and grammatical patterns.

As a rule, for data-science tasks, the available data is split into training, valida-
tion and test partitions according to the proportion of 90%, 5% and 5% respectively.
In order for other researchers to easier compare their results with ours, we decided
to pick an open-source well-balanced Ukrainian Brown corpus as a baseline test set.
As for the training partition we couldn’t meet the same restrictions and requirements
in terms of diversity and being a well-composed and proofread data set for the lack
of such data.

3.1.1 Training data

Korrespondent

This is a 2.1Gb dataset downloaded from the Korrespondent news source 1. The ar-
ticles represent social, national, political, science, sport, lifestyle&fashion, business,
showbiz and other news. Other then prose texts, it also contains weather forecasts,
sport news, cinema and theatre programs including tables, comparisons, lists of met-
rics and indices.

We preprocessed (described later in this article) this dataset manually and com-
posed a corpus sufficient as the train set for our experiments.

After the preprocessing it consists of 8 640 598 sentences separated by the Tok-
enize Text tool from API NLP UK2.

Collection of Ukrainian fiction

This collection is an 846Mb dataset of Ukrainian literature (prose and poems) kindly
shared by Dmytrii Chaplynskyi.

Unfortunately, it is common for the Ukrainian literature texts to contain original
pieces of Russian texts, dialogues and citations.

We preprocessed (described later in this article) this dataset manually and com-
posed a corpus of the size sufficient for a training set for our experiments.

After the preprocessing it consists of 5 746 840 sentences separated by Tokenize
Text tool from API NLP UK3.

3.1.2 Evaluation set

BrUk

As a gold standard test corpus for all the experiments in this master thesis, we chose
Ukrainian Brown Corpus (BrUk) 4. BrUk is a well balanced and proofread collec-
tion of original Ukrainian texts from different regions of Ukraine. These texts were

1Korrespondent: https://korrespondent.net
2API NLP UK: https://github.com/brown-uk/nlp_uk
3API NLP UK: https://github.com/brown-uk/nlp_uk
4Ukrainian Brown Corpus (BrUk): https://github.com/brown-uk/corpus

https://korrespondent.net
https://github.com/brown-uk/nlp_uk
https://github.com/brown-uk/nlp_uk
https://github.com/brown-uk/corpus
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published between 2010 and 2018 years. BrUk contains only prose texts that do not
belong to any specific dialectic group and contains data from such domains as 1)
news media; 2) religious media; 3) professional literature; 4) aesthetic-informative
literature; 5) administrative documents; 6) popular science; 7) science literature; 8)
educational literature; 9) fiction writing.

We conducted a descriptive analysis 5 of "Good" (proofread fragments without
mistakes) and "So-so" (proofread fragments with some minor mistakes) parts of this
corpus before the preprocessing. It consists of 924 texts, of length from 80 to 2195
words (not tokens). Overall, it comprises 600810 words and 38728 unique lemmas
3.1 (the lemmatization was done with Language Tool API NLP UK 6 ).

Domain Percentage
out of all
corpus

Number
of
words

Number
of
Sentences

Number
of unique
lemmas

news media 24.0% 144276 9333 18293
religious media 3.3% 19548 1220 4710
professional literature 5.3% 32160 2393 7356
aesthetic-informative literature 7.9% 47491 2820 10858
administrative documents 2.0% 11974 563 2272
popular science 5.4% 32545 2137 7404
science literature 11.3% 67690 3114 9252
educational literature 13.5% 81245 4913 11010
fiction writing 27.3% 163891 13527 21405

TABLE 3.1: The Ukrainian Brown Corpus (BrUk) composition.

3.1.3 Data preprocessing and preparation

We spent a substantial amount of time on data preprocessing and preparation, es-
pecially while forming the training set. Firstly, we removed a large number of Rus-
sian and other language citations, dialogues and poems or replaced them with the
_# f oreign_ token where they were only a part of the sentence. For the non-Cyrillic
languages, we also replaced separate foreign words with this token. It was harder
to do so with Cyrillic characters, so our train data still contains some small non-
Ukrainian language insertions.

Secondly, we ponder the question of replacement of the digits. To represent a sta-
tistical distribution over words in a language, usually, digits are replaced with some
token and not included in the vocabulary separately. For example, Penn Treebank
corpus described in 2.1.1 . As a news-media source text, the "Korrespondent" part of
our corpus contains a lot of digits denoting some table values, lists of metrics and in-
dices. We decided to replace digits that mark years, dates, time with _#year_, _#date_
and _#time_ tags respectively. In the written language, digits are sometimes written
instead of the numerals and, as a part of the sentence, may perform the same func-
tion as the noun (cardinal and collective numerals), adjectives (ordinal and multi-
plier numerals) and adverbs (multiplicative numerals and distributive numerals).
Numerals that belong to a declinable class of words in collocations with other parts
of speech change morphological endings. In the Ukrainian language, numerals have

5Git-Hub : https://github.com/Anastasiia-Khab/LMForTheUkrainianLanguage/blob/master/
UkrBrownCorpusAnalysis_good%26soso.ipynb

6API NLP UK: https://github.com/brown-uk/nlp_uk

https://github.com/Anastasiia-Khab/LMForTheUkrainianLanguage/blob/master/UkrBrownCorpusAnalysis_good%26soso.ipynb
https://github.com/Anastasiia-Khab/LMForTheUkrainianLanguage/blob/master/UkrBrownCorpusAnalysis_good%26soso.ipynb
https://github.com/brown-uk/nlp_uk
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number, case and partly gender categories. The cardinal numerals "one" and "two"
have three gender distinctions, while others have a common form for masculine
and feminine genders and an individual form of the neuter gender. Also, in gov-
ernment type of word-combinations with nouns, numerals "two", "three" and "four"
assumes a certain grammatical form of the modified word (noun), exceptional from
the scheme of cases governed by numerals "five" and higher. That is why, we de-
cided to replace the digits 1, 2, 3 and 4 where it was appropriate with a relevant
word in a right grammatical form. All remaining digits we replaced with the tokens
_#number_ (non-split digits were replaced by one token) and _# f loat_ respectively.
Almost all Roman numerals were also replaced by the _#number_ token.

The "Korrespondent" part of corpus contained lots of references to other media
sources. We replaced 70 most common of them to the _#media_ token.

As in any other text preprocessing, we also polished the training and test cor-
pora by removing noisy unknown symbols, special characters and HTML tags, and
converting punctuation mark to a single scheme 3.2 .

Punctuation mark sign Punctuation mark name
" quotation marks
’ apostrophe
- hyphen
– dash
() parentheses (open and close)

TABLE 3.2: Punctuation marks standard scheme.

Examples of the sentences from the training and test corpus
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(A) (B)

FIGURE 3.1: Zipfian plots over (A) Korrespondent+Ukrainian fiction
training corpus and over (B) Brown Ukrainian corpus.

Training and testing corpora

In the next Figure 3.1, we reproduced Zipfian plot over Korrespondent+Ukrainian
fiction training corpus and over Brown Ukrainian corpus. Here the axes are log(rank
order in frequency table) and log (token frequency) and sentences are tokenized as de-
scribed before. Thus, separate tokens include words, punctuation marks and special
tokens. Also, we removed sentences longer than 60 tokens (112 119 sentences), with
the purpose of training neural network LMs with complex architectures on future
steps.

Overall number of unique tokens in train corpus is 2189477. As it is claimed by
Zipf’s Law and it can be observed from the plot, there are few very high-frequency
tokens that account for most of the tokens in text (" ", "_#start_", "—", "i" etc.) and
many low-frequency words (surnames, words with mistakes, and other extraordi-
nary words). It would be computation impossible with our resources to train a neu-
ral network over all the words, that occur at least once, thus we decided to reduce
the vocabulary to the size of 300000 the most frequent tokens. Our vocabulary is
larger than it is usually formed for the English language. Thus, all the tokens from
the tail after the red line on the Figure 3.1 (A) were replaced with _#unknown_ token.
After this transformation, the least frequent tokens in our vocabulary are the ones,
that occurred 17 times.

Statistics 3.3 of Brown Ukrainian Corpus (Test) and Korrespondent + Ukrainian
Fiction collection (Train and Validation). The numbers were obtained after adding
_#start_ and _#end_ tokens (at the beginning and end of each sentence) and after
removing all sentences longer than 60 tokens, including the special tokens.

BrUk Korrespondent
+Ukr.fiction

Tokens 779,001 262,598,163
Sentences 39,900 14,335,495
Vocab size 300,000 300,000
OOV rate 3.84% 1.96%

TABLE 3.3: Statistics of the Brown Ukrainian Corpus (Test) and Kor-
respondent + Ukrainian Fiction collection (Training and Validation).
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3.2 Methods

3.2.1 KenLM

Kneser-Ney LM was computed as a benchmark for father comparison of more com-
plicated LMs. The main advantage of the modified N-gram LM is that with compar-
atively small amount of time it estimates a statistical distribution over all the n-gram
occurrences in the training text.

Using open-source KenLM library 7 and bin/lmplz command we estimated the
ARPA file on the training corpus. ARPA file represents a model and contains n-
grams and their statistics. Then we queried the model with command bin/query
Model.arpa < BrUk.txt on the BrUk test data, to calculate perplexity.

KenLM library automatically includes tokens < s >, < /s >, and < unk >,
thus we didn’t add _#start_ and _#end_ tokens to our sentences manually. Also, the
model does not struggle to estimate longer sentences, so sentences longer than 60
tokens where not deleted before this set of experiments.

Pruning is a technique used to reduce the size of the ARPA file, without sig-
nificantly degrading the model. It is the parameter of the estimation command in
KenLM library. By setting pruning = 0 0 1 1 1 1 we specify estimator to remove
singletons of order 3 and higher and by setting pruning = 0 0 0 0 0 1 only singletons
of order 6 are deleted.

We experimented with different N-grams and different pruning (Table 3.4). Tak-
ing into account a trade-off between size of build ARPA files and the perplexity on
the test set, we propose to consider 6-gram KenLM with pruning = 0 0 0 0 1 1 as a
baseline LM for BrUk corpus.

Kenlm
N-gram

Pruning Training
time
(minutes)

Size of
ARPA file

Perplexity
including
OOV

Perplexity
excluding
OOV

3-gram - 03m:55 6.4G 814.93 697.82
6-gram 0 1 1 1 1 1 07m:24 5.0G 871.97 749.91
6-gram 0 0 1 1 1 1 08m:45 6.0G 800.39 686.53
6-gram 0 0 0 0 1 1 11m:51 18.2G 748.81 641.11
6-gram 0 0 0 0 0 1 23m:25 29.4G 742.42 635.54
6-gram - 40m:05 41.1G 736.83 630.69

TABLE 3.4: Results for KenLM trained on Korrespondent+Ukrainian
fiction corpus, with different pruning values. Perplexity computed

on the BruK corpus.

3.2.2 RNNLM (GRU, LSTM)

Our Recurrent neural network LMs follow a common template:

1. Sentence is represented as a sequence of integers, where a token ui is identified
by its index in vocabulary V. (ui ∈ {1, ...N}, N = vocabulary size)

2. An embedding layer encodes N integers into N unique feature vectors of
embedding size.

7KenLM library: https://kheafield.com/code/kenlm/

https://kheafield.com/code/kenlm/
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3. Each token is propagated sequentially through the RNN layers described pre-
viously 2.1.2 - 2.1.2.

4. A fully connected layer applies a linear transformation in order to gain a result
vector in dimension, which equals to the size of the vocabulary. A softmax
function is computed over the result vector, assigning probabilities for each
token in vocabulary to be the next token in the sequence.

5. The loss function is computed with the same function as perplexity.

All the models were trained with PyTorch (1.3.1 version) machine learning library.

Word-level models

The following Table A.2 represents training parameters, and results of word-level
trained LMs. The models were trained on Korrespondent+Ukrainian Fiction corpus
formed in 3.1.3 with vocabulary size 300000 and pruned sentences longer the 60
tokens. Sentences were processed into the model in batches of size 40 packed with
torch.nn.utils.rnn.pack_sequence. Before each epoch, the sentences were randomly
shuffled, and the validation set (of 4%) was selected.

It would be enormously time-consuming to grid-search through different sets of
hyperparameters of the models. Thus, we firstly chose hyperparameters randomly,
then based on the previous results. Except for the models shown in Table A.2, we
also held a number of experiments with SimpleRNN models and different param-
eters of clipping, dropout and learning rate. Many of the experiments soared with
perplexity in f on the train and validation set as in the first model from Table A.2 be-
cause of either vanishing or exploding gradients 2.1.2. Also, the architecture of the
preferred model was highly restricted by the available computational and memory
resources.

FastText pretrained vectors

Motivated by Bojanowski et al., 2017 and their results on language modeling for
Slavic languages, we had the aim to evaluate the performance of bags of character
n-grams 2.1.4 on the Ukrainian language.

FastText 8 pretrained 300 dimensional word embeddings for 157 languages (in-
cluding Ukrainian) were received and made public by Facebook AI Research in 2018
Grave et al., 2018. The model was trained using CBOW (Mikolov et al., 2013) with
position-weights and bags of character n-grams 2.1.4.

The FasText public vocabulary includes 2M tokens. Unfortunately, there were
several mistakes in tokenization of Ukrainian texts (for example lots of words are
not separated at all; apostrophes are considered as separation symbols etc.) Over-
all, 763578 unique tokens from our train corpus were presented in FastText vocab-
ulary. Although, FastText embedding vectors are the sum of character n-gram rep-
resentations and vectors for out-of-vocabulary words can be easily obtained using
FastText tools, for this experiment we decided to use only vocabulary size of 300K
most frequent FastText pretrained embeddings. We replaced all OOV tokens with
_#unknown_ token and calculated its embedding as the mean of all vectors not used
in our vocabulary. Also, we calculated embedding for _#number_ token as the mean
of all numerical tokens in FastText vocabulary.

8FastText vectors for 157 languages: https://fasttext.cc/docs/en/crawl-vectors.html

https://fasttext.cc/docs/en/crawl-vectors.html
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Further, we used 300K pretrained FastText vectors instead of the embedding
layer in our LSTM LM and froze it. With this approach, we can approximately
compare gained results with the results of the previously trained models, as both
support the exact same set of tokens.

3.2.3 BPE

BPE incrementally substitutes a dictionary with a set of tokens such that the total
number of tokens for encoding the text is minimized. We computed segmentation
with the varying number of BPE merges (Step 2: 2.1.4) in order to see how the size
of the encoded corpus depends on the number of BPE merge steps (Figure 3.2). The
vocabulary size formulated by BPE encoding equals to the number of unique char-
acters in the text plus the number of merge operations.

FIGURE 3.2: Dependence of the total number of tokens for encoding
the text on the number of BPE merges.

For our task, not only the number of tokens for encoding the text and the vocab-
ulary size is important, but also the significance of the morphological information
encoded in individual separated tokens. In this experiment, we wanted to observe
the influence of cutting words into the sequence of root , affixes and ending. In gen-
eral, BPE is not invented specifically for this. It just gives a good balance between
vocabulary size and decoding efficiency. But usually, frequently occurring parts of
the word turn out to be affixes. Thus, out of gained vocabularies, we manually se-
lected the one where not too many entire words were already selected, but a large
portion of the vocabulary consists of small parts of words. Then we round the size
of this vocabulary up to 20K tokens.

We implemented segmentation using Google’s SentencePiece library 9, which
is also the official code of Kudo and Richardson, 2018 paper. SentencePiece spec-
ifies the final size of vocabulary as an input parameter for BPE tokenization al-
gorithm (we selected 20K). Also, the tool reserves vocabulary ids for special meta
symbols, that were easily changed to our corresponding tokens (unknown symbol
_#unknown_, beginnning of sentence _#start_ and end of sentence _#end_). Another
great feature of SentencePiece is its ability to handle user-defined symbols as one

9Sentencepiece library: https://github.com/google/sentencepiece

https://github.com/google/sentencepiece
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piece in any context. We specified our special tokens (_# f oreign_, _#year_, _#date_,
_#time_, _#media_, _#number_, _# f loat_) as user-defined symbols.

Then, we just encoded our text with the series of ids corresponding to the unique
tokens in a generated vocabulary and feed packed sequence to the RNN as it was
done for the word-level (3.2.2).

We decided to compute perplexity for the subword-level LM normalizing not by
the number of tokens in predicted sequence, but by the number of words as it was
proposed in 2.25.

Table A.1 depicts the results of training RNNs with BPE-formulated vocabulary
of 20K tokens and different hyperparameter set-ups. Overall, compared to word-
level RNNs the size of the model, number of trainable parameters and, as a result,
computational resources requirements substantially decrease. Even though the nu-
merical values of the perplexity metric are higher, we don’t consider this as an indi-
cation that the results are worse. Mainly, because of two important reasons:

1) The subword-level model is open-vocabulary, and it tries to predict from the
whole theoretically possible set of words. Thus, it spreads its probability mass thin
over a near-infinite number of cases, in contrast to the comparably small size of
word-level vocabulary (300K).

2) If the word-level model correctly predicts that it hasn’t seen an _#unknown_
token before, its perplexity decreases, while the subword- level model does not have
such a possibility because its _#unknown_ token represents just individual symbols
that never occurred in training corpus. But with well composed corpora such sym-
bols shouldn’t exist.

For the reasons mentioned above and the performance of pretrained FastText
vectors described in 3.2.2, we believe that subword-level approaches have a strong
potential for language modeling of highly inflectional languages, such as Ukrainian.
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Chapter 4

Conclusions

4.1 Contribution

In this work, we considered the task of Language Modeling for the Ukrainian lan-
guage. During the work, we made the following contributions:

1. We conducted a comprehensive scientific literature review on language mod-
eling for the English Language and for Slavic languages of the same language
group as Ukrainian, explored the main benchmarks and most promising ap-
proaches. This all gave a good understanding of the field for further reapply-
ing the acquired knowledge to the Ukrainian language.

2. We composed, preprocessed and described a dataset (262M tokens, 14M sen-
tences) sufficient for training neural LMs for the Ukrainian language. The Ko-
rrespondent news-commentary corpus and a collection of Ukrainian literature
served as the primary source here. As a baseline for training word-level LMs
with a limited vocabulary, we propose to use a vocabulary of 300K words. This
general-purpose training corpus makes it possible for researchers to reproduce
our experiments and train new LMs.

3. As a benchmark evaluation corpus, we propose to use publicly available Brown
Ukrainian corpus (BrUk) (779K tokens, 39K sentences). As a baseline language
model, we consider modified Kneser-Ney 6-gram model with the pruning of
n-grams (n>4) occurred less than 2 times trained on our training corpus, which
estimated on BrUk gives a perplexity 748.81, and the model file of size 18.2G.

4. We ran a number of experiments using two types of neural architectures: GRU
and LSTM. We explored different hyperparameters and applied two types of
text tokenization: word-level and subword-level. Out of all the models trained
from scratch the best perplexity (268.5) on BrUk test corpus was achieved with
a three-layered LSTM word-level model (with the hidden size of 500).

5. When using BPE as a word separation technique, we formed a vocabulary of
20K subword units and trained a three-layered LSTM model (hidden size of
2048). The perplexity calculated on the BrUk corpus was 393.6. However, tak-
ing into account the fact that this approach generates open-vocabulary models,
at the same time, takes up less memory and consumes less computation time,
we consider the obtained results promising for the morphologically rich and
highly inflectional Ukrainian language.

6. We used 300K pretrained FastText vectors (300 dimensions) as a "frozen" em-
bedding layer in a word-level LSTM with two hidden layers of size 500. This
approach provided the best result from the very first epoch, compared to the
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same model architecture trained independently. (Perplexity on BrUk test cor-
pus 235.7).

7. Also, we contributed some improvements to the BrUk GitHub project and,
currently, we are in the process of making our preprocessed train set publicly
available on the LangUk page.

4.2 Future work

1. Due to the time restriction, we couldn’t explore all of the known data sources.
For example, as an immediate next step, it makes sense to incorporate data
from the Ukrainian Web Corpus 1 from the TenTen corpus family. This is a
corpus made up of texts collected from the Web.

2. The Mogrifier LSTM extension (Melis, Kočiský, and Blunsom, 2020) in the
form of mutual gating of the current input and the previous output. Currently
achieves state-of-the-art 2 language modelling results on PTB and WikiText-2
benchmarks. The paper was published on September 4th and we should con-
sider experimenting with it on our data.

3. Perplexity is a relatively easy way to evaluate language models, but it has
its limitations. As we learned during this research, perplexity doesn’t allow
proper evaluation of certain neural architectures or comparison of all vari-
eties of LMs in a fair way. Hence, we believe that creating extrinsic evalua-
tion toolkit similar to GLUE is paramount for Ukrainian language modeling.
Measuring language model’s performance against a diverse hand-crafted set
of linguistic tasks can make the evaluation more objective and motivate the
Ukrainian NLP community for contributions. At the same time, we realize
that such an undertaking requires dedicated efforts from experts and goes well
beyond the scope of our research goals here.

1SketchEngine: www.sketchengine.eu/corpora-and-languages/ukrainian-text-corpora/
2NLP-progress: http://nlpprogress.com/english/language_modeling.html

www.sketchengine.eu/corpora-and-languages/ukrainian-text-corpora/
http://nlpprogress.com/english/language_modeling.html
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Appendix A

Tables of experiments with GRU
and LSTM LMs

All the models were trained on Korrespondent+Ukrainian corpus and tested on
Brown Ukrainian corpus 3.1.1. The experimental setup for Tables A.1, A.2 are de-
scribed in sections 3.2.3 and 3.2.2 respectively.

Model type LSTM
BPE vocabulary 20 000 sub-word tokens
Embedding 300 500
Layers 1: 300

2: 300
1: 1024
2: 300

1: 1024
2: 512

1: 1024
2: 1024
3: 1024

1: 2048
2: 2048
3: 2048

Number of
parameters

13 464 800 19 042 496 29 660 320 53 544 096 139 011 232

Size 155Mb 218Mb 340Mb 613Mb 1591Mb
Learning rate lr(epoch1)=0.001
lr(epochn)= lrn−1 ∗ 0.8 lrn−1 ∗ 0.8 lrn−1 ∗ 0.8 lrn−1 ∗ 0.85 lrn−1 ∗ 0.85

Test perplexity for each epoch
Epoch 1 927.2 782.7 742.5 620.9 529.3
Epoch 2 840.5 700.9 657.6 547.1 460.8
Epoch 3 796.2 652.8 618.9 512.4 426.8
Epoch 4 770.2 620.6 580.9 487.0 408.0
Epoch 5 748.6 604.8 558.5 470.1 393.6
Epoch 6 745.1 588.2 543.6 458.5 -
Epoch 7 730.2 575.9 533.0 445.6 -
Epoch 8 723.6 567.4 523.9 438.8 -
Epoch 9 712.8 563.2 518.8 433.3 -
Epoch 10 704.3 559.9 516.3 426.2 -
Epoch 11 698.9 - - - -
Epoch 12 692.2 - - - -
Epoch 13 690.9 - - - -
Comput.engine GeForce RTX 2080 Ti (11GB RAM)
Approximate
training time of
one epoch

02h:05 02h:50 03h:30 06h:30 17h:00

TABLE A.1: Results of sub-word-level (BPE) LSTM
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Model
parameters

Training parameters Model size Test PP for each epoch

GRU
Embed.: 300
Layers:

1: 300

Clipping: -
Dropout: -
Optimizer: RMSProp
lr = 0.001
Compute engine: 1

Size: 1380Mb
NParams:
180 841 800
Time1epoch:
≈ 7h : 40

1: 1123.3
2: 878.8
3: 835.6
4: 793.2

5: 666.9
6: 676.1
7: 682.5
8: inf

GRU
Embed.: 300
Layers:

1: 300
2: 300

Clipping: 0.2
Dropout: 0.2
Optimizer: RMSProp
lr = 0.001
Compute engine: 1

Size: 1384Mb
NParams:
181 383 600
Time1epoch:
≈ 13h : 15

1: 796.2
2: 730.2
3: 716.7
4: 723.9

-
-
-
-

GRU
Embed.: 300
Layers:

1: 300
2: 300

Clipping: 0.2
Dropout: 0.2
Optimizer: Adam
lr(epoch)= lrn−1 ∗ 0.1
Compute engine: 1

Size: 2076Mb
NParams:
181 383 600
Time1epoch:
≈ 18h : 35

1: 426.6
2: 373.7
3: 372.5
4: 372.1

-
-
-
-

GRU
Embed.: 300
Layers:

1: 300
2: 300
3: 300

Clipping: 0.2
Dropout: 0.4
Optimizer: Adam
lr(epoch)= lrn−1 ∗ 0.75
Compute engine: 2

Size: 2082Mb
NParams:
181 925 400
Time1epoch:
≈ 20h : 55

1: 505.6
2: 467.2
3: 438.7
4: 416.9

5: 401.0
-
-
-

LSTM
Embed.: 300
Layers:

1: 300
2: 300

Clipping: 0.2
Dropout: 0.2
Optimizer: Adam
lr(epoch)= lrn−1 ∗ 0.25
Compute engine: 2

Size: 2080Mb
NParams:
181 744 800
Time1epoch:
≈ 19h : 10

1: 354.7
2: 315.6
3: 305.9
4: 298.4

5: 296.2
6: 294.1
7: 293.1
-

LSTM
Embed.: 300
Layers:

1: 500
2: 500

Clipping: 0.2
Dropout: 0.2
Optimizer: Adam
lr(epoch)= lrn−1 ∗ 0.85
Compute engine: 2

Size: 2792Mb
NParams:
243 908 000
Time1epoch:
≈ 23h : 50

1: 334.5
2: 324.1
3: 305.8
4: 299.2

-
-
-
-

LSTM
Embed.: 300
Layers:

1: 500
2: 500
3: 500

Clipping: 0.2
Dropout: 0.2
Optimizer: Adam
lr(epoch)= lrn−1 ∗ 0.85
Compute engine: 2

Size: 2815Mb
NParams:
245 912 000
Time1epoch:
≈ 25h : 30

1: 331.5
2: 298.2
3: 287.4
4: 279.2

5: 269.4
6: 268.5
-
-

LSTM
FastText
Embed.: 300
freezed
Layers:

1: 500
2: 500

Clipping: 0.2
Dropout: 0.2
Optimizer: Adam
lr(epoch)= lrn−1 ∗ 0.85
Compute engine: 1

Size: 2105Mb
NParams:
153 908 000
Time1epoch:
≈ 16h : 20

1: 266.9
2: 250.1
3: 243.6
4: 235.7

-
-
-
-

TABLE A.2: Results of word-level GRU, LSTM. Vocabulary size
300K. Perplexity computed for BrUk corpus. Computation engines 1:
GeForce RTX 2080 Ti (11GB RAM) ; 2: TITAN X(Pascal) (12GB RAM)
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