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Abstract

Novelty is an inherent part of innovations and discoveries. Such processes may
be considered as the appearance of new ideas or as the emergence of atypical connec-
tions between existing ones. The importance of such connections hints for investiga-
tion of innovations through network or graph representation in the space of ideas. In
such representation, a graph node corresponds to the relevant notion (idea), whereas
an edge between two nodes means that the corresponding notions have been used
in a common context. The question addressed in this research is the possibility to
identify the edges between existing concepts where the innovations may emerge.

To this end, a well-documented scientific knowledge landscape has been used.
Namely, we downloaded 1.2M arXiv.org manuscripts dated starting from April
2007 and until September 2019; and extracted relevant concepts for them using Sci-
enceWISE.info platform. Combining approaches developed in complex networks
science and graph embedding the predictability of edges (links) on the scientific
knowledge landscape where the innovations may appear is investigated. We argue
that the conclusions drawn from this analysis may be used not only to the scientific
knowledge analysis but are rather generic and may be applied to any domain that
involves creativity within.
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Chapter 1

Introduction

An idea of scientific analysis of science is not new. It is at least as old as the science
itself, see, e. g. [1] and references therein. Contemporary studies in this domain
share a common specific feature: besides traditional philosophical and culturolog-
ical context, such analysis attains quantitative character. The questions of interest
cover a wide spectrum, ranging from fundamental, such as: what is the structure of
science? How do its constituents interact? How does knowledge propagate? [2, 3] to
entirely practical ones: which fields of science deserve financial investments or how
to rate scientists in a particular domain? [4, 5]. All these and many more questions
constitute a subject of a science of science or logology [6].

The problem we consider in this thesis concerns an emergence of new scien-
tific knowledge or the so-called scientific innovation. Quantitative investigation and
modeling of innovations are not straightforward. On the one hand, one may think of
innovation as an emergence of a new idea, see, e. g. [7]. Another approach considers
innovation as an atypical combination of existing ideas, see, e. g. [8]. The goal of our
work is to suggest a way to quantify analysis of scientific innovations emergence;
and to propose an approach to identify edges on the graph of knowledge where in-
novations may emerge. We believe that such analysis, if successful, is useful both
from the fundamental point of view, explaining properties of knowledge formation,
as well as is of practical relevance, helping to detect innovation-rich fields.

To reach this goal, we will analyze a body of scientific publications (we take an
arXiv repository of research papers [9]) and analyze its dynamics with a span of
time. We will use a specially tailored software, ScienceWISE.info platform [10], to
extract a set of concepts from all publications on an annual basis. These are the
properties of this set of concepts that will serve us as a proxy of structural features
and dynamics of human knowledge. In particular, we will use complex network
theory [11–14] to track intrinsic connections between concepts that are contained in
different papers. Using several completing each other approaches we will construct
a complex network of concepts (as a proxy of a complex network of knowledge) and
we will calculate its main topological characteristics, paying particular attention to
the emergence of new links between existing concepts. This last may serve as a
signal about the emergence of atypical combinations between existing ideas, i. e.
about scientific innovations. We will refine our analysis by exploiting embedding
technique [15, 16] to quantify a proximity measure between different concepts and in
this way, we will establish a solid and falsifiable procedure to quantify an emergence
of possible scientific innovations in certain fields of science.

The set up of the thesis is as follows. In the next Chapter 2, we establish a back-
ground behind this investigation by describing the dataset used in the analysis and
by reviewing relevant literature. In Chapter 3, we represent the dataset as a network
and investigate its topological properties. In the following Chapter 4, we introduce
the concept embedding technique; and investigate the dynamics of link appearance

http://ScienceWISE.info


2 Chapter 1. Introduction

and describes an approach that may be used to detect the edges where scientific
innovations may emerge. The results are summarized in the last Chapter 5 that con-
tains conclusions and outlooks.
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Chapter 2

Review

In this chapter, we set up a background behind the performed investigation. We start
with the data needed to perform the analysis, the way the data have been collected,
and performed a quick overview of the methods used to perform the analysis.

2.1 Source of data: arXiv

To be able to answer the question of interest of the thesis, we are required to have
at hands a well-documented collection that represents scientific knowledge, at least
in a single domain of science. E-repository of preprints arXiv.org [9] is a good can-
didate for such source of data: at the moment of writing this thesis, there are about
1.6M manuscripts uploaded to the arXiv. Besides title, abstract, a list of authors
arXiv allows full-text access to all manuscripts. Such full-text access enables one to
extract scientific ideas/concepts from the text of manuscripts.

arXiv covers a variety of scientific fields such as physics, mathematics, computer
science, quantitative biology, quantitative finance, statistics, electrical engineering
and systems science, and economics. The average daily upload rate is 400 ≈ 12.5K
new manuscripts per month (every next year there are ≈ 5000 more articles than the
previous one, starting in 1991 - numbers are increasing, see Figure 2.1)

FIGURE 2.1: Monthly Submission Rates to arXiv.org for more than
25 year period: from 1991 till 2020. The number of submissions
tends to increase continuously. The total number of submitted
manuscripts is about 1.6M. The majority of the manuscripts have
been assigned Physics as their primary category. Source (as on Jan

2020): arxiv.org/stats/monthly_submissions

https:/arXiv.org
https:/arXiv.org
https://arxiv.org/stats/monthly_submissions
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Not every category is represented equally in the e-repository. arXiv has been
initially designed to serve a community in a specific domain of physics (theoretical
high-energy physics) but has grown significantly. Nowadays, the majority of papers
from the physics domain are initially submitted to arXiv, but in the other domains,
the coverage may be significantly smaller. Indeed, the combination of significant
coverage of research publications and full-text access to the manuscript makes arXiv
a proper source of data for our purpose.

As we have noted above, each paper submitted to the arXiv contains, besides the
full-text, different metadata such as authors, subject category (categories), journal
reference, and DOI (Digital Object Identifier, if any), submissions history with dates,
etc. For the purpose of our study, we need to extract from all papers their main
words, key terms, called concepts, that to some extent represent the content of the
paper, both with respect to the subject of research and methods applied. To this end,
we will use a ScienceWISE platform, specially tailored for such tasks. We describe it
in more detail in the next Section 2.2.

2.2 Concept extraction: ScienceWISE.info platform

To extract specific words or combination of words that carry a specific scientific
meaning (concepts) from each manuscript we use ScienceWISE.info platform [10,
17]. The platform has been built to support the daily activities of research scientists.
The goal of the platform is to ”understand” the interests of its users and to recom-
mend them relevant newly submitted manuscripts. For this purpose, arXiv serves
as one of the datasource of new submissions. In order to understand the research
interests of the users, the platform extracts scientific concepts from the texts of the
manuscripts and compares the concept vector of the manuscript and the correspond-
ing concept vector of the user’s research interest.

Concept extraction approach implemented into this platform has two phases: i)
automatic key phrase (concept candidate) extraction and ii) crowd-sourced valida-
tions of scientific concepts. During the first phase, each manuscript is scanned by
the KPEX algorithm [18]. The algorithm extracts key phrases from the text of the
manuscript, and these key phrases serve as concept candidates. Then, during the
second step, the concept candidates are reviewed by the registered users of the plat-
form who are permitted to validate the concepts. The described procedure arrived
at approximately 20,000 concepts as of the date when this thesis was written. About
500 of them have been marked as generic concepts assuming their generic meaning
(the ones like Energy, Mass or Temperature).

A user of the platform is allowed to navigate over all identified concepts within
each manuscript of the platform. To get the concepts for an arXiv manuscript a user
may find this manuscript on the arXiv.org webpage and then press on the Science-
WISE icon in the bookmark menu. The user will be redirected to the webpage on
ScienceWISE.info portal that corresponds to the given arXiv manuscript. This page,
besides metadata (title, abstract, authors, assigned categories, and subcategories),
contains a set of concepts identified within the manuscript together with the usage
count. Moreover, if the concept has been marked as generic in the dataset, the for-
matting allows us to unveil this information. In this thesis, we will make use of this
portal to extract available arXiv manuscript and the concepts extracted within. The
details of the resulting dataset follow below.

http://ScienceWISE.info
http://ScienceWISE.info
https:/arXiv.org
http://ScienceWISE.info
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2.3 Dataset

Navigating over ScienceWISE.info platform at the end of September of 2019, we
accessed a collection with near 1.2M arXiv manuscripts with metadata and concepts
list for each one (from April of 2007 till September of 2019). As data is publicly
available (anyone with access to the internet could get it), we scraped it to storage
on our side with a convenient structure for further manipulations. A detailed data
parsing approach could be found at GitHub repository 1. Similar dataset (can be
considered as a small subset of the described above) of 36386 Physics domain articles
have been previously investigated in [19–21].

Once the dataset is downloaded and prepared for the analysis, the first step of
our investigation is to analyze the topological properties of the resulting concept
network using the tools of Complex network theory. The next Section 2.4 describes
the basis of this theory.

2.4 Complex networks

Complex network theory, see e.g. [11, 12, 22–25], had evolved from the Graph theory
into a new field in the late 1990s when the WWW allowed access to the networks that
have not been available before and the computational resources allowed to analyze
data of the size that was impossible beforehand. As a result of such analysis it has
been found that properties of many networks like WWW, Internet, Public transport
networks, Power grids, etc. can not be explained by the existing models in graph
theory, especially by Erdös-Rényi random graph 2. Among these properties, one
may highlight scale-free feature (a special functional form of the node degree distri-
bution, defined in the following Chapter 3), the small-world property, tolerance to
random failures, and vulnerability to targeted attacks.

To understand the reasons behind such properties, network theory adopted me-
thodology from Complex System theory [26] and proposed a number of generative
models. Complex systems denote systems that are composed of many interacting
parts, often called agents, which display collective behavior that does not follow
trivially from the behaviors of the individual parts, see, e. g. [26]. Among the
models developed within network theory, one may mention Barabási-Albert model
3 that can reproduce scale-free networks and Watts-Strogatz model 4 of small-world
network.

In the first step of our analysis, we will represent a set of the manuscript and
related concepts as a network and investigate its topological features. The details
of the network representation and features to be analyzed will be found in Chapter
3. After performing an analysis of concept network, where the link between two
concepts indicates the relation between them and the weight of the link proxy the
strength of such connection, we will employ an alternative measure of the proximity
between scientific concepts, taken from embedding techniques.

1github.com/sergibro/concept-graphs
2en.wikipedia.org/wiki/Erdos-Renyi_model
3en.wikipedia.org/wiki/Barabási-Albert_model
4en.wikipedia.org/wiki/Watts-Strogatz_model

http://ScienceWISE.info
https://github.com/sergibro/concept-graphs
https://en.wikipedia.org/wiki/Erdos-Renyi_model
https://en.wikipedia.org/wiki/Barab�si-Albert_model
https://en.wikipedia.org/wiki/Watts-Strogatz_model
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2.5 Graph (concept) embeddings

When we talk about embedding, we mean a set of tools and techniques that allow to
embed members of multidimensional space into another space that usually consists
of a smaller number of dimensions, assuming that these new ”aggregate” dimen-
sions contain proper features combinations of old dimensions. Such dimensionality
reduction techniques include Singular vector decomposition (SVD) and Principal
component analysis (PCA).

To estimate the similarity between different concepts/nodes in our analysis, we
have decided to use the word2vec approach, see [15]. It has been specifically de-
signed to deal with texts and may be easily modified to used concepts instead of
words. Then, the list of concepts for articles will form ”sentences”. However, if we
have the graph representation, other approaches may be applied, which deal with
graphs directly, e. g. node2vec [27]. More specifically, we have selected PyTorch-
BigGraph tool implementation [16], which is available from the second quarter of
2019. It provides all necessary functionality to cover the part about building con-
cept embedding. Moreover, its implementation allows to use multi-core processors,
which implies high computational speed. This is essential with extended graph
sizes.

Once concepts have been embedded into multidimensional space, we may mea-
sure the proximity between them using, e. g. cosine similarity between the corre-
sponding vectors. The links between concepts within the network representation of
dataset and context similarity between the corresponding concepts are two alterna-
tive measures of the proximity between the considered pairs of concepts. Below we
will investigate how do the two measures affect the predictability of the emergence
of a connection between pairs of concepts.
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Chapter 3

Topological features of concept
networks

In this chapter, we will determine the main topological characteristics of the net-
work of concepts extracted from arXiv for the years 2013 and 2015. We will be inter-
ested in general network characteristics such as node degree distribution, shortest
path length, clustering coefficient, global transitivity, etc. Besides, we will define the
weights of graph links. They will serve us as a proxy for the link importance.

The chapter is organized as follows: In the first Section 3.1, we explain how to
represent sets of concepts extracted from different manuscripts in the form of a com-
plex network. Section 3.2 is about our approaches to chose statistically significant
links. Subsequently, in Section 3.3, we give definitions of typical network character-
istics and determine these characteristics for the complex networks of concepts.

3.1 Network construction

As mentioned in Chapter 2 by navigating over ScienceWISE.info platform we were
able to collect data for about 1.2M manuscripts submitted to arXiv between 2007
and 2019. For each manuscript, a set of concepts found within its text has been
recorded. The total number of unique extracted concepts is 19,446, and the number
of concepts per manuscript varies in range 0-1164. It has a bimodal distribution with
two maxima located around 4 and 32 concepts per article, see Figure 3.1 for details.

1 4 10 32 102 103
Number of concepts

0

5 103

104

1.5 104

Nu
m

be
r o

f a
rti

cle
s

FIGURE 3.1: The number of concepts identified within articles. The
distribution is bimodal indicating two maxima: around 4 and around

32 concepts identified within the texts of the manuscripts.

While the maxima around 32 concepts per article may really indicate mode for
the number of concepts identified within the text, 4 concepts per article are a quite
small number and may highlight parsing issues. In particular, problems with pars-
ing certain pdf documents. Some articles may contain as many as 1000 concepts.

http://ScienceWISE.info
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These may refer to review articles: besides being long (number of pages for review
articles is usually essentially larger than for the research ones), these articles should
cover a number of research questions that lead to a wide vocabulary of concepts
used. Indeed, the article for which the highest number of concepts (1164) have been
identified in our dataset is Astrophysics in 2006 by V. Trimble, M. J. Aschwanden,
and C. J. Hansen 1. This is a review article, as supposed many articles with a lot of
concepts.

3.1.1 Bipartite network

The above described dataset may be naturally represented as a bipartite network:
the network that consists of the nodes of two types, whereas links connect the nodes
of different types only. In our case, the two types of nodes represent manuscripts
and scientific concepts correspondingly. A link between a manuscript-node and
concept-node exists if the concept has been found within the text of the correspond-
ing manuscript. The illustration of the bipartite network reconstruction is shown in
panels a, b of Figure 3.2.

A
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2 4
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FIGURE 3.2: Illustration of the dataset and three network represen-
tations constructed from it. Squared nodes represent manuscripts
and circles represent concepts. Panel a illustrates a dataset of four
manuscripts and the concepts identified each of them. Panel b is
a bipartite network representation of the dataset. A link connects
a square and a circle if the corresponding concept has been iden-
tified within the text of the manuscript. Panels c and d illustrate
single-mode projections of the bipartite network to the manuscript
and concept spaces, correspondingly. The nodes on a panel c repre-
sent manuscripts that are connected to each other if the correspond-
ing manuscripts share common concepts. Nodes of panel d repre-
sent scientific concepts. Two concepts are connected to each other
if they have been identified within the text of at least one common

manuscript.

1V. Trimble, M. J. Aschwanden, and C. J. Hansen, Astrophysics in 2006, Space Science Reviews, 132,
1-182 (2007)

http://sciencewise.info/articles/0705.1730/
http://sciencewise.info/articles/0705.1730/
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Figure 3.2 also contains two complementary network representations of the data-
set that are the single-mode projections of the described above the bipartite network.
Manuscript-to-manuscript network (see Figure 3.2 c) consists of nodes that represent
manuscripts. The link connects two nodes if the corresponding manuscripts share at
least one concept in common. This representation has been previously analyzed in
[19], where its single year slices have been investigated. The analysis, in particular,
highlighted the power of network representation of the data, especially by inves-
tigating meaningful discrepancies between the resulting clustering structure of the
network and author-made categorical classification of the manuscripts.

3.1.2 Concept network

Another projection is a projection of the bipartite network to the concept space, see
Figure 3.2 d. In this representation, the nodes correspond to scientific concepts. A
link connects two nodes if the corresponding concepts have appeared together in the
text of at least one manuscript. Below we will be investigating topological features
of this network.

To proceed with the analysis, we will consider two slices of data. In the first slice,
we consider the manuscripts submitted during the 2013 year only, while in the sec-
ond subset, the manuscripts submitted only during the year 2015 will be considered.
Such a set-up will allow us, in particular, to compare some properties of a concept
network as they evolve in time. Thus the first subset (the year 2013) network consists
of 16,229 nodes, which is a naturally smaller number than the number of concepts
identified within the entire dataset covering 13 years of manuscript submissions.
Similarly, for the year 2015 we arrived at 16,660 nodes. 15,431 concept-nodes are
shared between representations across two subsets as their intersection.

Below we will consider topological features of both concept networks. However,
before starting such analysis, let us mention that topological features considered be-
low will not include information about the strength of each link. We will include this
information by considering two additional networks that will be constructed from
concept networks. Both these extra networks are subsets of the concept network.
The idea behind is that in the network, some links may be considered as statistically
significant, while the others may be considered as insignificant. Below we will use
two approaches to distinguish between significant and insignificant links and will
keep in the additional network only ”significant links”.

3.2 Choice of statistically significant links

3.2.1 Filtering by weight

As mentioned above, a link between two concept-nodes exists if the corresponding
concepts have been found together in the texts of at least one manuscript. Let us
assign a weight to the link wij such that it equals the number of manuscripts in the
dataset that contains concepts i and j simultaneously. Then the simplest way to filter
out insignificant links is to consider the hard threshold on the link weight. Below
we will consider threshold value ω = 10 and keep the links for which wij > ω
(≈ 16.5% of total links remain). If such procedure removes all links from a node, we
will remove this node as well, so there are no isolated nodes in the network. The
reduced number of links will be seen in the tables that summarize network topology
characteristics below.
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We are aware of the fact that such filtering approach is not the best possible way
of identifying significant links, but it will serve us as a starting point of network fil-
tering. A more sophisticated approach for identifying significant links is to consider
the disparity filter proposed in [28].

3.2.2 Filtering by disparity

The idea behind the disparity filter is to take into account network inhomogene-
ity. Indeed different nodes play different roles in the network: they have a different
number of links connected to them, these links have different weights, and it is not
fair to judge on the link significance taking into account link weight only. For exam-
ple, if node i has only one connection to node j and node j has only one connection
to node i and the weight of the corresponding connection wij = 5, it may be still
significant. However, a link between i and j with wij = 10 connecting two nodes i
and j with ki = k j = 100 connections each (below we will call the number of links
connected to node i as its degree ki) may be insignificant given the other links to
nodes i and j have significantly higher weights.

The key idea of the method is to calculate the probability that a given link has as
many connections as observed or more in a random setting. In this random setting
sum si = ∑j wij of weights of all links connected to node i is fixed. si will be referred
below as strength of the node i. However, this total weight si is distributed randomly
among all ki links (ki is fixed) connected to node i. This probability, known as p-value
reads

αij = 1− (ki − 1)
∫ pij

0
(1− x)ki−2dx (3.1)

where ki is degree of i-th node, and pij = wij/si is the normalized link weight. Then
one may set a threshold for p-value, and only the links will small enough p-value
are kept, meaning that a random process can not arrive at a link with such weight.

Note that the link between i and j may be considered significant if we look at it
from node i and insignificant if we stand at node j. In our analysis we set a threshold
for p-value ρ = 0.1, and keep a link between i and j if αij < ρ or αji < ρ, i. e. if it is
significant from at least on node standpoint. As a result of such procedure, ≈ 85%
of links will be removed as insignificant. The effect of removing these links on the
other network characteristics will be considered below and summarized in Table 3.1.

In the next Section 3.3, we define a set of topological properties that will be cal-
culated to characterize the topology of concept networks.

3.3 Network characteristics

In this Section, we will provide definitions for the main characteristics of a network.
Once these characteristics are calculated for the network of concepts, we will be able
to compare the topology of the network of concepts with the topology of the other
real-world networks and to say about the evolution of the network of concepts over
time (given different snapshots of the network over time).

Each network consists of nodes connected by links. The size of the network
may refer either to the number of nodes N or to the number of links L in the entire
network. Each node i is characterized by its degree ki defined as the number of links
connected to it. While ki describes individual nodes, its average value 〈k〉 is a global
characteristic defined as
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〈k〉 = 1
N

N

∑
i=1

ki (3.2)

where i runs over all N nodes in the network. Average node degree 〈k〉 and their
maximal value kmax for all networks considered in this thesis are summarized in
Table 3.1.

network N L,×106 ρ, % 〈k〉 kmax l lmax 〈c〉 C r
g-2013 16,229 11.1 8.46 1,373 15,345 1.92 3 0.77 0.37 -0.324
g-2015 16,660 12.7 9.12 1,520 15,935 1.91 4 0.77 0.38 -0.325
w-2013 9,999 1.8 3.69 369 8,856 2.00 4 0.89 0.28 -0.390
w-2015 10,770 2.2 3.84 414 9,661 2.00 4 0.89 0.28 -0.382
d-2013 13,358 1.6 1.84 246 11,665 2.01 4 0.90 0.14 -0.375
d-2015 13,969 1.9 1.92 268 12,367 2.00 5 0.89 0.14 -0.368

TABLE 3.1: Aggregated characteristics of concepts networks con-
structed by several criteria: g-2013 and g-2015 denote entire network
constructed from articles submitted to arXiv during years 2013 and
2015, correspondingly. w-2013 and w-2015 denote subgraphs of the
above networks where link of weight wij ≤ ω = 10 have been re-
moved and, afterwards, isolated nodes have been removed as well.
d-2013 and d-2015 denote the subgraphs of g-2013 and g-2015 net-
works, correspondingly, where links with p-value αij ≥ ρ = 0.1 have
been removed, subsequently removing isolated nodes. The table con-
tains the number of nodes N, the number of links L, density of links
ρ = 2L/N(N − 1), an average 〈k〉 and maximal kmax node degrees,
average l and maximal lmax shortest path lengths, average clustering
coefficient 〈c〉, global transitivity C, and assortativity mixing by de-

gree r.

The table also contains the number of nodes N, the number of links L and den-
sity of links ρ, i. e. the ratio 2L/N(N − 1) between the number L existing links in
the network and the total possible number of links N(N − 1)/2. Original networks
(before applying any filtering techniques) are denoted by a g- suffix followed by
the manuscript submission year. For example, g-2013 network indicates the con-
cept network constructed from a set of all manuscripts submitted to arXiv during
the year 2013. Prefix w- indicates that the concept has been generated from the cor-
responding g- network by removing links whose weight wij > ω. After removing
the low-weight link, some nodes could become isolated, i. e. without any links
connected to them. Such nodes will be removed from the network too. Similarly,
the network denoted by name with prefix d- indicate concept networks constructed
from the g- network by removing the links for which p-value αij ≥ ρ. Subsequently,
the resulting isolated nodes have been removed.

Table 3.1 indicates that the number of nodes (concepts) for original networks
constructed for years 2013 and 2015 is similar (16,229 versus 16,660). The number
of links L and density of links ρ is a bit higher for the network constructed for the
year 2015. After applying filtering techniques, about 15%− 35% of nodes become
isolated and are removed from the filtered networks. The density of links decreases
in about 2 - 4 times once the networks are filtered (2%− 4% in filtered networks vs
approximately 9% in the original ones).

Both original (not filtered) network are characterized by a similar value of an
average node degree 〈k〉 ≈ 1, 500. In both networks, 〈k〉 is about 10 times smaller
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than the maximal node degree kmax observed in the corresponding networks. Taking
into account that node degrees vary from their minimal value kmin ≈ 1 to kmax, such
significant difference between 〈k〉 and kmax may indicate skewed shape of the node
degree distribution. We will investigate this question below. An average degree 〈k〉
of the resulting networks and its maximal value kmax decreases after applying filters
on link weights. Note that the ratio between the two becomes more pronounced.
Instead of 10 times difference for the original networks, kmax exceeds 〈k〉 for filtered
networks in 20 - 50 times. This may indicate that filtered networks become even
more heterogeneous than the original ones.

To investigate network heterogeneity in more detail, let us plot the node degree
distribution P(k) for the original network and for its filtered version. P(k) is defined
as the probability that the randomly selected node has degree k for a network of in-
finite size. Figure 3.3 shows these unnormalized distributions (instead of probabili-
ties, the plots show the number of nodes) for the original network, and the network
filtered by link weight criterion for the 2013 year dataset.
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FIGURE 3.3: Unnormalized node degree distribution P(k) for 2013
year graphs (indicated by blue color). The top panel represents the
unfiltered network, while the bottom panel represents a network fil-
tered by the link weight criterion. Yellow color represents degree dis-
tribution for the Erdös-Rényi random graph with the same number
of nodes and links as the corresponding concept network. The dis-
tributions show that concept networks are much more heterogeneous

than one would expect by a random Erdös-Rényi like scenario.

The comparison of the plots in Figure 3.3 reveals a difference between the shapes
of distributions for unfiltered and filtered networks. While in the unfiltered network,
there is a tendency for P(k) to increase with a small k and then to decrease with large
values of k, P(k) has a continuous tendency to decrease for filtered networks. This
means that in the unfiltered network, the probability of finding a node with a small
k is relatively small while in the filtered network, on the opposite, this probability is
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quite high. Indeed, the nodes that have degree k = 1 in an unfiltered network repre-
sent the concepts that have co-occurred with one another concept only in the entire
dataset. Such cases, in particular, are quite rare due to the distribution in Figure 3.1.
Here the number of concepts per article set a minimum value for the node degree k.
Such restrictions lead to relatively small values of P(k = 1) for unfiltered networks.
In contrast, the number of concepts identified in the article does not strongly affect
node degrees for filtered networks. As a result, k = 1 is the most probable degree in
the filtered network.

Besides the degree distribution for the concept networks, Figure 3.3 shows the
degree distribution of the Erdös-Rényi random graphs with the same number of
nodes as the corresponding concept network. This random graph has been gener-
ated by creating N isolated nodes and connecting these nodes by L links such that
each link connects a pair of randomly selected nodes. The plots show that concept
networks are much more heterogeneous than Erdö-Rényi random graphs, meaning
that there is a much wider spread of node degrees than one would expect in a simple
random process.

Having defined node degrees, one may calculate assortativity mixing by degrees
r, defined as Pearson correlation coefficient between node degrees on both ends over
existing link [11, 12, 24]:

r =
∑ij ij(eij − qiqj)

∑ σ2
q

(3.3)

where σq is the standard deviation of the distribution qk. The networks with
r > 0 are referred to assortative networks with typical examples being social net-
works. In assortative networks, high-degree nodes are more likely to be connected
to other high-degree nodes, while low-degree nodes have a tendency to be connected
to other low-degree nodes more likely than one would expect by chance. Disassorta-
tive networks (for which r < 0) have an opposite tendency: high-degree nodes tend
to be connected to low-degree ones more often than one would expect by chance
and vice versa. Examples of disassortative networks are Internet and WWW, see e.
g. [11, 12, 24] and references therein. As indicated in Table 3.1 concept networks are
disassortative. Moreover, filtered networks look to be more disassortative than un-
filtered ones. The reasons behind the negative r may be explained if we assume that
generic (high degree) concepts and specific (low degree) ones have different func-
tions in the context of research publications. E. g. high-degree concepts glue pieces
of the research together.

While node degree ki characterize ”popularity” of node i, clustering coefficient
ci of node i describes the level of connectivity among i-th neighbours:

ci =
2mi

ki(ki − 1)
, ki > 1, (3.4)

where ki(ki − 1) is the doubled number of all possible connections between ki
neighbours of node i and mi is the number of existing connections among these ki
nodes. Mean value 〈c〉 of ci, averaged over all nodes in the network, characterizes
the local density of neighborhood links in the entire network

〈c〉 = 1
N

N

∑
i=1

ci, (3.5)

and will be referred below as an average clustering coefficient. The values of 〈c〉
for all networks are shown in Table 3.1. The values are quite high reaching about
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〈c〉 ≈ 77% for unfiltered networks and about 〈c〉 ≈ 89% for filtered ones. These
values are one order of magnitude higher than one would expect in an Erdös-Rényi
random graph for which 〈c〉 equals to the probability that any two nodes are con-
nected to each other. Indeed, given the same number of nodes and links, one arrives
at 〈c〉 = ρ: an average clustering coefficient equals the density of links in the corre-
sponding network, see Table 3.1. The other observation is that the average clustering
coefficient 〈c〉 for filtered networks is higher than 〈c〉 for unfiltered networks inde-
pendent of the submission year. This is quite natural, assuming that filtering proce-
dure cuts weak links between different communities. Such links may be important
for information spreading through the network, and they contribute negatively to
the value of the clustering coefficient.

The clustering coefficient serves to measure specific correlations present in the
network structure. Another alternative way to quantify such correlations for the
entire network is to define network global transitivity C. Instead of calculating the
average value of local measurements, C is defined as a ratio between the total num-
ber of connected triplets in the network and the number of all possible triangles:

C =
number of closed triplets (clique of 3 nodes)

number of all triplets
. (3.6)

Comparing the values of average clustering coefficient 〈c〉 and global transitivity
C for the considered networks, see Table 3.1, one observes that C is smaller than 〈c〉
for all networks considered. Such differences may indicate the community structure
of the concept networks. Indeed for the same reasons as described above, C for the
Erdös-Rényi graph (without community structure) equals 〈c〉. On the other side, if
we imagine a graph that consists of several large enough cliques (fully connected
subgraphs) connected by a few links, its average clustering coefficient will reach 1
or close value, while C will be significantly smaller due to the existence of open
triangles between cliques. Our results indicate that the difference between 〈c〉 and
C is more pronounced for filtered concept networks than for the original ones. This
means a more pronounced clustering (community) structure in filtered networks.

Figure 3.4 shows the dependence between the node clustering coefficient and
node degree for unfiltered and filtered concept networks.

Negative correlations between ki and ci indicate the hierarchical organization of
the concepts network. This is quite natural assuming that some concepts may have
related (children) sub-concepts like Friction Force or Electromagnetic Force for
Force concept.

For measuring the distances between two different nodes i and j the shortest
path length lij is used. It is defined as the minimal number of edges one has to pass
to reach node i starting at node j. For the entire network, one may calculate the
average shortest path length 〈l〉 defined as an average value of lij over all ij pairs for
which such path exists. 〈l〉 can tell how far different parts of the graph are located
within the network. The diameter of the network lmax is defined as the maximal
value of the shortest paths lij found in the network. The values of both 〈l〉 and
lmax for all networks considered here are shown in Table 3.1. First one may observe
that the lengths of shortest paths are quite small with average value 〈l〉 ≈ 2 and
lmax = 3÷ 5. So, concept networks are quite compact. Finally, comparing original
and filtered concept networks, one sees that the average shortest path length for
filtered networks are larger than for the original concept networks. This is expected
behavior if we assume that filtering procedure cuts weak links that bridge strongly
connected clusters of concepts. Then, there are fewer bridges in filtered networks
than in an original one, resulting in an increase in path lengths.



3.3. Network characteristics 15

0 2000 4000 6000 8000 10000 12000 14000 16000
k

0.00

0.25

0.50

0.75

1.00

C(
k)

Graph 2013
Erdös-Rényi

0 2000 4000 6000 8000
k

0.00

0.25

0.50

0.75

1.00

C(
k)

Graph 2013 (w > 10)
Erdös-Rényi

FIGURE 3.4: Node clustering coefficient ci as a function of node de-
gree ki for unfiltered concept network (top panel) and filtered one
using link weight criteria (bottom panel) for year 2013. Blue points
show the dependencies for concept network and orange points corre-

spond to the Erdös-Rényi random graphs of the same size.

To conclude, our analysis of the topology of the concept network indicates that
observed concept networks are heterogeneous graphs that obey internal clustering
(community structure) and hierarchical organization. These properties of the con-
cepts network are independent of the subset of data used (constructed from 2013
and 2015 year data). These features, however, are more pronounced once weak links
have been removed. As is follows from the comparison of data obtained for different
years and via different procedures of relevant link determination, cf. Table 3.1, com-
plex networks under consideration attain a range of universal features that do not
change with time and characterize the system of concepts as a whole. In particular,
they are the small world networks [11, 12, 22–25] characterized by a small size (mean
shortest path and maximal shortest path values) and large value of clustering coef-
ficient. The last also brings about the presence of strong correlations. Moreover, an
essential difference between the clustering coefficient and global transitivity serves
as evidence of possible community structure. In turn, the negative value of assorta-
tivity suggests that they are disassortative networks where a group of central nodes
(hubs) serves as common attraction points for nodes with lower degree values.
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Chapter 4

Scientific innovations and concept
embedding

In this chapter, we return to the main question of interest in this study: is it possible
to detect in advance fields where scientific innovations may emerge? In particular,
we are interested in the questions of the prediction power of concept embedding
(Section 2.5).

The Chapter is organized as follows. We start with our view on scientific in-
novations in Section 4.1, then in Section 4.2 we introduce embedding dimension to
our analysis and in Section 4.3, we finish this chapter with the investigation of the
predicting abilities of concept embedding.

4.1 Scientific innovations

Investigation of scientific innovation emergence is not straightforward. The simpli-
fication adopted in frames of this thesis considers innovations as the appearance of
a new statistically significant link between nodes that previously were not linked to
each other. In this way, the emergence of such a link is treated as a novelty intro-
duced into the graph of scientific concepts.

We proceed by considering a network of scientific concepts built upon manu-
scripts submitted to arXiv during the year 2013. Let us consider a pair of concepts
i and j. In terms of link existence, these concepts may be either connected by a link
or disconnected, meaning no link between i and j. The fraction of pairs connected
by links equal to the density of links in the corresponding concept network and has
a value ρ = 8.46%. Some of the links that carry low weight may be considered as
spurious links rather than statistically significant, meaning that they could arise as
a result of noise rather than a real coupling between the corresponding concepts.
In this thesis, we consider two alternative ways to filter out such spurious links: i)
naive filtering by setting up a link weight threshold and ii) disparity filtering that
employs statistical significance testing. By setting a link weight threshold ω = 10
(see Section 3.2.1 for details) we arrive at 1,844,453 significant links (i. e. only 1.4%
pairs of concepts are connected by significant links). Alternatively, using a disparity
filter with the p-value threshold ρ = 0.1 (see Section 3.2.2) the number of statistically
significant links equals to 1,642,958, covering 1.25% of all pairs of concepts.

Consequently, about 98.5% of pairs of nodes are either disconnected or are con-
nected by rather spurious links. Some of these pairs may become connected in the
future by statistically significant connections. The emergence of such connections
is referred in this thesis as scientific innovations. The questions we are asking in
this research are related to the predictability of such innovations. In particular, we
are interested in the power of concept embedding technique to distinguish between
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the pairs of concepts that will become connected vs the pairs that will stay discon-
nected in the future. In this chapter setting, by the present we mean a collection
of manuscripts submitted to arXiv during 2013 and by the future – the collection
submitted to arXiv during 2015 (corresponding graphs of concepts).

In the analysis below, we will have more than 100M potential connections be-
tween concepts. The tables 4.1, 4.2 below show how many of these pairs are con-
nected by strong links and how many of them are disconnected or are weakly con-
nected (Table 4.1); or are connected by statistically significant links / statistically
insignificant links or are disconnected (Table 4.2). Pairs of nodes i and j that are
either connected by a link with weight wij ≤ ω or are not connected by a link in net-
work will be referred below as weakly connected nodes and weak/missing link,
while pairs of nodes i and j that are connected by a link with weight wij > ω will be
referred below as strongly connected nodes and strong links, correspondingly.

Number Percentage
weak/missing links 129,837,653 98.6%
strong links 1,844,453 1.4%

TABLE 4.1: The numbers and percentages of pairs of concepts with
different link weight during year 2013. The table shows that majority
of the pairs are either loosely connected (w ≤ 10) or disconnected in

year 2013.

Similarly, a pair of nodes i and j that are either connected with p-value αij ≥
ρ or are not connected by a link in network will be referred below as statistically
insignificant link, while a pair of nodes i and j that are connected by a link with
p-value αij < ρ will be referred below as statistically significant links.

Number Percentage
insignificant links 130,039,148 98.75%
significant links 1,642,958 1.25%

TABLE 4.2: The numbers and percentages of pairs of concepts with
different p-value during year 2013. The table shows that majority of
the pairs are either statistically insignificant or disconnected in year

2013.

The tables show that the majority of the pairs are either disconnected or weakly/
insignificantly connected to each other. In what follows below, we will look for
an emergence of new links between these pairs: such links may be considered as
atypical combinations of existing ideas. Therefore one may expect innovations in
the papers where such pairs appear [8].

Thus the questions of our interest are related to forecasting the pairs where such
innovations may emerge given the number (fraction) of such connections is known.
These numbers (fractions) we calculate empirically comparing dataset of 2013 and
2015. The numbers are summarized in Tables 4.3 and 4.4.

Table 4.3 indicates that only 564,330 pairs (0.43%) became strongly connected
(wij > 10) in 2015 out of 129,837,653 weakly connected/disconnected pairs in 2013.
At the same time, it shows that 1,662,432 (90.13%) out of 1,844,453 strongly con-
nected pairs in 2013 remained strongly connected in 2015.

Disparity filter arrives at a similar picture as weight filtering did. Only 475,788
pairs (0.37%) became statistically significant in 2015 out of 130,039,148 insignifi-
cant/disconnected pairs in 2013. At the same time, 1,389,652 pairs (84.58%) out of
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Number of strong links in 2015
weak/missing links in 2013 564,330
strong links in 2013 1,662,432

TABLE 4.3: The numbers of strong links between nodes of 2015
year network, divided by weight of the links between them during
year 2013. The total number of links of weight wij > 10 in year 2015
equals 2,226,762 (after intersection with pairs from g-2013). The divi-
sion into two groups has been performed by choosing the link weight
threshold of wij = 10. The table shows that majority of the ”strongly
connected links” in year 2015 have been strongly connected in year

2013.

Number of significant links in 2015
insignificant links in 2013 475,788
significant links in 2013 1,389,652

TABLE 4.4: The numbers of statistically significant links (with αij <
0.1) between nodes of 2015 year network, divided by statistical signif-
icance of links between them during year 2013. The total number of
statistically significant links αij < 0.1 in year 2015 equals to 1,865,440
(after intersection with pairs from g-2013). The table shows that ma-
jority of the statistically significant links in year 2015 have been sta-

tistically significant in year 2013.

1,642,958 statistically significant links in 2013 remained statistically significant in the
year 2015.

To conclude, less than 0.5% of disconnected/weakly connected/statistically in-
significant links between concepts in 2013 became strong/significant in the year
2015. In the next section, we will analyze the ability of concept similarity obtained
using the embedding technique to discriminate between the pairs that will become
statistically significant vs remain insignificant in 2015.

4.2 Embedding similarity

The key assumption is that i) concepts that appear in a similar context will have
close enough vectors in embedded space and ii) that the concepts that carry similar
content are more likely to become connected in the future.

For this reason we use concept co-occurrence matrix for year 2013 and embed-
ded each concept vector in 100 dimensional space using PyTorch-BigGraph [16], see
Section 2.5. The whole detailed pipeline we used for described graphs and embed-
dings formulation could be found at GitHub repository 1. As a result, each concept
i becomes associated with a vector ~vi in the embedded space. The similarity sij be-
tween a pair of concepts i and j is then calculated as a cosine similarity 2 between
the corresponding vectors ~vi and ~vj. In general, one may expect positive correlations
between weight wij of the link between nodes i and j and the similarity sij between
the corresponding concept vectors. Indeed, such behavior is observed in Figure 4.1,
where concept embedding similarity sij between pairs of nodes i and j is shown as a
function of weight wij of a link between the corresponding nodes.

1github.com/sergibro/concept-graphs
2en.wikipedia.org/wiki/Cosine_similarity

https://github.com/sergibro/concept-graphs
https://en.wikipedia.org/wiki/Cosine_similarity
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FIGURE 4.1: Concept embedding similarity sij as a function of a
weight wij of a link connecting nodes i and j for corresponding con-
cepts. X-axis shows log(wij) for links with non-zero weights only.
2013 year data has been considered. The figure indicates positive
correlations between the two characteristics with a significant level
of fluctuations. The thresholds for both characteristics (ω = 10 and

ζ = 0.6) are shown by solid lines.

Even though for the majority of links, the actual weight equals 0 since the two
concepts have not appeared together in the same manuscripts, the similarity sij be-
tween their concept vectors in embedded space is expected to be non-zero. The
reason behind such behavior/expectation is the following: since we reduce the di-
mensionality in embedded space from about 15,000 to 100, each dimension of em-
bedded space may be considered as a combination of a number of concepts. Such
aggregation leads to a much higher likelihood that two unconnected concepts have
a non-zero similarity in an embedded space. Also, the chosen metric (cosine) play
the role here. Indeed, our expectations are confirmed in Figure 4.2.

0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8 1.0
embedding similarity sij

P(
s)

no link (zero weight)
link exists (weight > 0)

FIGURE 4.2: Histogram of embedding similarity for all possible pairs
of nodes for the unfiltered 2013 network. Two groups are shown:
pairs that are connected by a link (yellow bars) and pairs that are not
connected by a link (blue bars). The solid line shows the considered

threshold for embedding similarity (ζ = 0.6).

The histogram shows the number of concept pairs for which concept embedding
similarity falls into a corresponding bin, separately for pairs connected by a link (yel-
low bars) and for the pairs that are not connected by any link in the year 2013 (blue
bars). The figure shows that the distribution for the disconnected pairs of nodes is
shifted towards lower values of embedding similarities as compared to that for con-
nected pairs of nodes. At the same time, the Figure 4.2 shows that there are pairs of
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disconnected nodes that are characterized by strong enough embedding similarity.
There are pairs where one may expect the appearance of statistically significant links
in the future.

Once similarities sij between concept vectors in embedded space have been cal-
culated for each pair of concepts i and j, we divide all pairs of concepts into two
groups: i) Strong embedding similarity group; ii) Weak embedding similarity
group. To distribute pairs of nodes/concepts among the groups, we put an arbi-
trarily selected threshold of ζ = 0.6, see also Figures 4.1 and 4.2. The pairs of
concepts for which embedding similarity sij ≤ ζ are assigned to Weak embedding
similarity group, for convenience, we will refer to the corresponding pairs as
dissimilar concepts. Instead, if the embedding similarity between concepts i and
j sij > ζ, the corresponding pair is assigned to a Strong embedding similarity
group and will be referred below as similar concepts. We are aware of the fact
that the selection of the other value of ζ threshold could change the distribution of
concept pairs between the groups. However, we expect that such modification will
not change the qualitative results of our analysis. Especially, because pairs on both
extremes of embedding similarity will eventually be assigned to different groups.

The tables below show the number of concepts that fall into each of the defined
above embedding similarity groups.

dissimilar concepts similar concepts
weak link 128,263,658 1,573,995
strong links 1,424,215 420,238

TABLE 4.5: The number of pairs of concepts that fall into each em-
bedding similarity group for year 2013. In addition the pairs have
been divided into different link weight categories (wij > 10 – strong

links and wij ≤ 10 – weak link).

Table 4.5 shows the number of pairs of concepts that fall into Strong embedding
similarity group (similar concepts) and Weak embedding similarity group
(dissimilar concepts), separately for concept pairs that are strongly connected in
unfiltered network and for the pairs that are weakly connected. The table indicates
significant differences in the allocation of pairs of concepts among embedding sim-
ilarity groups for weakly and strongly connected pairs of nodes in the network.
While only 1.2% (1,573,995) of node pairs connected by weak link (or disconnected
pairs) in g-2013 falls into similar concepts group, this fraction for strongly con-
nected pairs of nodes reaches 22.8%. Thus, positive correlations between embed-
ding similarity grouping and strong link existence, one may expect that 1.2% of
mentioned above disconnected/weakly connected nodes are higher chances to be-
come connected in the future than the remaining 98.8%. Similar results have been
observed if one uses a disparity filter instead of link weight threshold filter, see Ta-
ble 4.6.

dissimilar concepts similar concepts
insignificant links 128,412,677 1,626,471
significant links 1,275,196 367,762

TABLE 4.6: The number of pairs of concepts that fall into each embed-
ding similarity group for year 2013, separately for statistically signif-

icant (αij < 0.1) and statistically insignificant links (αij ≥ 0.1).
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Thus, we expect that the grouping of pairs of nodes using embedding similarity
may give us a value in predicting the pairs of concepts where statistically significant
links will be established in the future. In the next Section 4.3, we will analyze the
forecasting abilities of the concept embedding similarity.

4.3 Forecasting power of embedding similarity

With the data about the concept network for the year 2013 at hand, let us now con-
sider the network of scientific concepts constructed from manuscripts submitted to
arXiv during the year 2015. Below we perform preliminary analysis rather than
propose a predictive model.

If we use link weight filtering, assuming that strong links are the ones with
wij > ω (ω = 10) we arrive at 2,227,384 (1.6%) strong links between N(2015) =
16660 nodes for year 2015. Table 4.7 shows how are these 2,227,384 links distributed
among link weight groups and concept embedding groups in year 2013. 622 (less
than 0.03%) pairs are not included as at least one of concept from them exists only
in ”future” g-2015 graph.

dissimilar concepts
in 2013

similar concepts
in 2013

weak links
in 2013 514,178 50,152

strong links
in 2013 1,265,962 396,470

TABLE 4.7: Allocation of strong links in 2015 year concept network
among two groups of corresponding concepts pairs in 2013: strong
versus weak link weight in 2013 and strong versus weak concept em-

bedding similarity group.

While the majority of concept pairs were either disconnected or connected by
a weak link in 2013, the majority of strongly connected concept pairs in 2015 were
connected by strong links in 2013 too.

Table 4.8 represents the numbers from Table 4.7 as the fractions of the number
of concept pairs that belong to the combination of categories in 2013, shown in Ta-
ble 4.5.

dissimilar concepts
during 2013

similar concepts
during 2013

weak links
during 2013 0.4% 3.19%

strong links
during 2013 88.89% 94.34%

TABLE 4.8: Percentage of concept pairs that belong to a specific com-
bination of link weight group and embedding similarity group in
2013 that either remained or became strong in 2015. For example,
3.19% in the table means that out of 1,573,995 pairs of nodes that were
either disconnected or connected by a weak link in 2013 and belonged
to Strong embedding similarity group (see Table 4.5), 50,152 be-

came strongly connected in year 2015, see Table 4.7.
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The table shows that about 90% of strong links in 2013 remained strong in the
year 2015. If we take into account grouping by concept embedding similarity, we
observe additional segregation: strong links with low embedding similarity in the
year 2013 remained strong in the year 2015 in almost 89% of cases, while strong
links with strong embedding similarity in the year 2013 remained strong in the year
2015 for more than 94% of cases. These results lead us to the following conclusions.
First, if a link between two concept-nodes exists and this is a strong link, then it
is likely that the link will exist in the future, and it will remain the strong one. In
other words, the strength of a link is a good predictor for a link to belonging to
the same category in the future. Second, strong links with high concept embedding
similarity have higher chances to remain strong in the future than strong links that
are characterized by low embedding similarity.

On the other side, weak links evolve to strong links quite rarely. Only 0.4% of
weak links in 2013 evolved to strong links in year 2015 (compare numbers in Ta-
bles 4.1 and 4.3). However, classification of concepts pairs by their embedding sim-
ilarity allowed us to identify a subgroup of these pairs for which the probability of
becoming strong connections raises to 3.19%, i. e. in about 8 times. Even though
the concept embedding similarity does not point the ”future” emergence of a new
strong link in the network exactly, the results of our analysis indicate its power as
one of the features to be used in such predictions.

Similar results have been obtained if we use classification of links between pairs
of concepts using statistical significance testing instead of link weight threshold, see
Table 4.9.

dissimilar concepts
during 2013

similar concepts
during 2013

insignificant links
during 2013 0.3% 3.01%

significant links
during 2013 82.71% 91.06%

TABLE 4.9: Percentage of concept pairs that belong to a specific com-
bination of link significance group and embedding similarity group

in 2013 that either remained or became strong in 2015.

Thus, independent of the method used to classify pairs of concepts, either using
link weight threshold or statistical significance testing, the results of our analysis
indicate the ability of concept embedding similarity in predicting scientific innova-
tions, i. e. the emergence of strong or statistically significant links in knowledge
graphs.
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Chapter 5

Conclusions and Outlooks

The goal of our work was to analyze the possibilities of innovation emergence in
the course of knowledge generation. To this end, we have investigated the struc-
ture and dynamics of connections between scientific concepts that constitute a body
of research papers, as recorded in the arXiv repository [9]. We have applied two
methods, concept embedding and network analysis, to quantify properties of sets of
concepts and to predict the emergence of new links (innovations) between different
concepts. We have shown that whereas each of the above methods is a powerful
tool to define certain features of a system of concepts, it is the combination of these
two methods that leads to a synergetic effect and allows to forecast dynamics of new
links creation and evolution of a system as a whole. The main results obtained in the
course of our analysis include the following:

• We have represented a system of concepts of scientific papers in the form of a
complex network. Different nodes in this network correspond to different con-
cepts, and a link between two nodes-concepts means that they were exploited
in the same paper. We have determined the quantitative characteristics of a
complex network of concepts and their evolution with time, and the data is
given in Table 3.1.

• We have used two complementary approaches to define the presence of a
strong link between two nodes, i. e. of a link that serves as evidence of a rele-
vant connection. In one approach, the criterion is given by a link weight. The
second method takes into account subtle information about network intrinsic
structure [28]. Corresponding data is shown in Table 3.1.

• As is follows from a comparison of data obtained for different years and via
different procedures of relevant link determination, see Table 3.1, complex net-
works under consideration attain a range of universal features that do not
change with time and characterize the system of concepts as a whole. In partic-
ular, they are the small world networks characterized by small size (mean the
shortest path and maximal shortest path values) and large value of the cluster-
ing coefficient. The last also brings about the presence of strong correlations.
Moreover, an essential difference between the clustering coefficient and global
transitivity serves as evidence of possible community structure. In turn, the
negative value of assortativity suggests that they are disassortative networks
where a group of central nodes (hubs) serves as common attraction points for
nodes with lower degree value.

• Concept embedding technique enabled us to find out proximity (by context,
by subject, or related in any other way) between different concepts. With a
measure of proximity at hand, we were in a position to compare it with the



24 Chapter 5. Conclusions and Outlooks

dynamics of new links emergence between different concepts. In turn, this
enables one to reveal groups of concepts (subsequently – fields of knowledge)
where innovations are probable to emerge. Corresponding statistical analysis
is summarized in Tables 4.8 and 4.9.

The results obtained in this study may be useful both from the fundamental point
of view, contributing to our understanding of how the knowledge is formed, as well
as they may have the practical implementation. In particular, the methodology elab-
orated in the course of our analysis can be used to detect fields where innovations
have a higher probability of appearing. A natural way to continue the analysis pre-
sented here is to evaluate practical outcomes (i. e. impact) of papers, where the
higher probability of innovation is predicted. With the scientometric data at hand,
such a task is not much time consuming and will be a subject of future work.

Another way to follow-up the analysis is to propose a model to predict the emer-
gence of statistically significant links between already existing concepts. The model
should take as input i) concept co-occurrence matrix, which will enable us to project
it to concept network and perform embedding analysis, and ii) the fraction of in-
significant links or disconnected concept pairs that will be connected in the future.
The model should identify the pairs of concepts that are about to receive a statisti-
cally significant connection in the future. In the scope of this thesis, we have shown
that concept embedding similarity is among the features to be used by the model. We
expect that combining concept embedding similarity with the network-based prox-
imity measure (link weight, a fraction of common neighbors, etc.), the model will be
able to establish a good baseline for predictability of the emergence of novelties in
concept networks.
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