
UKRAINIAN CATHOLIC UNIVERSITY

MASTER THESIS

Reinforcement Learning for Voltage
Control-based Ancillary Service using

Thermostatically Controlled Loads

Author:
Oleh LUKIANYKHIN

Supervisor:
Dr. Tetiana BOGODOROVA

A thesis submitted in fulfillment of the requirements
for the degree of Master of Science

in the

Department of Computer Sciences
Faculty of Applied Sciences

Lviv 2020

http://www.ucu.edu.ua
https://apps.ucu.edu.ua/personal/oleh-lukianykhin/
https://apps.ucu.edu.ua/personal/tetiana-bogodorova/
https://apps.ucu.edu.ua/en/mllab/
https://apps.ucu.edu.ua/en/

ii

Declaration of Authorship
I, Oleh LUKIANYKHIN, declare that this thesis titled, “Reinforcement Learning for
Voltage Control-based Ancillary Service using Thermostatically Controlled Loads”
and the work presented in it are my own. I confirm that:

• This work was done wholly or mainly while in candidature for a research
degree at this University.

• Where any part of this thesis has previously been submitted for a degree or
any other qualification at this University or any other institution, this has been
clearly stated.

• Where I have consulted the published work of others, this is always clearly
attributed.

• Where I have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have
made clear exactly what was done by others and what I have contributed
myself.

Signed:

Date:

iii

UKRAINIAN CATHOLIC UNIVERSITY

Faculty of Applied Sciences

Master of Science

Reinforcement Learning for Voltage Control-based Ancillary Service using
Thermostatically Controlled Loads

by Oleh LUKIANYKHIN

Abstract

Advances in the demand response for energy imbalance management (EIM)
ancillary services can change the future power systems. These changes are subject
for research in academia and industry. Although an important/promising part of
this research is the application of Machine Learning methods to shape future power
systems domain, the domain has not fully benefited from this application yet. Thus,
the main objective of the presented project is to investigate and assess opportunities
for applying reinforcement learning (RL) to achieve such advances by developing an
intelligent voltage control-based ancillary service that uses thermostatically controlled
loads (TCLs).

Two stages of the project are presented: a proof of concept (PoC) and extensions.
The PoC includes modelling and training of a voltage controller utilising Q-learning,
chosen due to its efficiency that is achieved without unnecessary sophistication.
Simplest relevant for demand response power system of 20 TCLs is considered in the
experiments to provide ancillary service. The power system model is developed with
Modelica tools.

Extensions aim to exceed PoC performance by applying advanced RL methods: Q-
learning modification that uses a window of environment states as an input (WIQL),
smart discretisation strategies for environment’s continuous state space and a deep Q-
network (DQN) with experience replay. To investigate particularities of the developed
controller , modifications in an experimental setup such as controller testing longer
than training, different simulation start time are considered.

The improvement of 4% in median performance is achieved compared to the
competing analytical approach - optimal constant control chosen using whole time
interval simulation for the same voltage controller design. The presented results
and corresponding discussions can be useful for both further work on the RL-driven
voltage controllers for EIM and other applications of RL in power system domain
using Modelica models1.

Reinforcement Learning, Ancillary Service, Q-learning, DQN, Modelica, Demand
Response, TCL

1Experiment pipeline, procedure, full results, visualisations and analysis are available at https:
//github.com/OlehLuk/rl-power-control

HTTP://WWW.UCU.EDU.UA
https://apps.ucu.edu.ua/en/
https://github.com/OlehLuk/rl-power-control
https://github.com/OlehLuk/rl-power-control

iv

Acknowledgements
I would like to thank my supervisor Tetiana Bogodorova for great help during this
project and great support during my work in the Machine Learning Lab at Ukrainian
Catholic University.

I would like to thank the Eleks company for funding our research and covering my
tuition fee, as a significant part of presented project was done during my fellowship
as a Research Engineer in the Machine Learning Lab,

Special thanks to Oleksii Molchanovskyi and Yaroslav Prytula for the Data Science
Master program and Research Fellowship in the Machine Learning Lab that were the
pivoting point in my professional life.

Last but not least, I would like to share an appreciation to all people who sup-
ported me during my study but can not be listed here because a comprehensive list
would be too long.

v

Contents

Declaration of Authorship ii

Abstract iii

Acknowledgements iv

1 Introduction 1
1.1 Background and Domain Overview . 1
1.2 Motivation . 2
1.3 Problem Formulation and Research Objectives 2
1.4 Thesis Structure . 3

2 Related Work 4
2.1 Energy Imbalance Management Ancillary Services 4
2.2 Reinforcement Learning in Power Systems 5

3 Approach to Solution 7
3.1 High-level Overview . 7
3.2 Model . 8
3.3 Experiments Pipeline . 9
3.4 Reinforcement Learning . 10

3.4.1 Exploration-exploitation trade-off 10
3.4.2 Smart discretization strategies 11
3.4.3 Q-learning . 12
3.4.4 Window-input Q-learning . 12
3.4.5 Experience replay and DQN . 13

4 Proof of Concept 14
4.1 Baseline and Competitors . 14

4.1.1 Deterministic case . 15
4.1.2 Stochastic case . 15

4.2 Q-learning . 16
4.2.1 Deterministic case . 16
4.2.2 Stochastic case . 17

4.3 Summary . 20

5 Extensions 22
5.1 Smart Discretization Strategies . 22

5.1.1 Equal-width interval . 23
5.1.2 Optimal bin width detection . 23
5.1.3 Quantiles of historic data . 24
5.1.4 Accounting for problem formulation 24
5.1.5 Transferring results to skipping transition process case 25

5.2 Window-input Q-learning (WIQL) . 26

vi

5.2.1 WIQL for the initial experimental setup 26
5.2.2 WIQL for the skipping transition experiment 27

5.3 Experience Replay and DQN . 27
5.4 Summary . 28

6 Conclusions 31
6.1 Results Summary . 31
6.2 Future Work . 32

A Tables 33

B Figures 37

Bibliography 42

vii

List of Figures

1.1 Schematic picture of the considered power system configuration and
controller to be developed . 3

3.1 High-level overview of the pipeline built for experiment (from Lukianykhin
and Bogodorova, 2019) . 10

4.1 Diagram of Q-learning experiments in PoC 14
4.2 Diagram of Q-learning experiments in PoC 16
4.3 Average smoothed MSE at the end of training episode for Q-learning

optimal hyperparameters experiment 17
4.4 Distribution of controller and competing approach performance (DC-

CAP) for constant RPL of 1.2 . 18
4.5 Example of system behaviour before (a) and after (b) controller training 18
4.6 DCCAP for Q-learning depending on constant RPL 19
4.7 DCCAP for Q-learning, skipping transition (time interval 175-375 sec-

onds), depending on RPL . 20

5.1 Diagram of extensions experiments . 22
5.2 DCCAP for Q-learning, different number of bins in interval [0.9; 1.7] . 23
5.3 DCCAP for Q-learning, different smart discretization strategies 24
5.4 DCCAP for Q-learning , 100 and 200 episodes of training, 10 bins with

RPL as a bin’s edge . 25
5.5 DCCAP for Q-learning, smart dicretization strategies, skipping transition 26
5.6 DCCAP for WIQL, different hop window sizes 27
5.7 DCCAP for WIQL, skipping transition 28
5.8 DCCAP for WIQL, skipping transition, long test 29
5.9 DCCAP for best DQN-driven controllers 29

B.1 Average smoothed MSE at the end of training episode for Q-learning,
exploration parameters change experiment 37

B.2 Average smoothed MSE at the end of training episode for Q-learning,
optimal hyperparameters experiment 38

B.3 Voltage controller diagram in OpenModelica 38
B.4 OpenModelica diagram of a simulated power system (20 TCLs) 39
B.5 DCCAP for Q-learning, step down in RPL, different training time . . . 39
B.6 DCCAP for Q-learning, state space discretization using different APL

intervals and numbers of bins . 40
B.7 DCCAP for Q-learning, 100 and 200 episodes of training, optimal bin

width detected with histogram-based approach 40
B.8 DCCAP for Q-learning, smart dicretization strategies, skipping transi-

tion, historic data from 0-200s interval 41
B.9 DCCAP for WIQL, longer training hypothesis testing 41

viii

List of Tables

4.1 Performance summary (median, mean, std) for the baseline (no control)
and the competing approach (optimal constant control) for stochastic
TCLs parameters initialization, 1s control change, constant RPL of 1.2
(best results in bold) . 15

4.2 Performance summary (median, mean, std) for best PoC results 21

5.1 Performance summary (median, mean, std) for best extensions results 30

A.1 Performance of the optimal constant control for deterministic TCL
parameters initialization case (best results in bold) 33

A.2 Performance summary (median, mean, std) for the baseline (no control)
and the competing approach (optimal constant control) for stochastic
TCLs parameters initialization, 5s control change, constant RPL of 1.2
(best results in bold) . 33

A.3 Optimal hyperparameters for the Q-learning 34
A.4 Performance summary (median, mean, std) for Q-learning utilizing

smart discretization strategies) . 34
A.5 Performance summary (median, mean, std) for Q-learning utilizing

smart discretization strategies, skipping transition) 35
A.6 Performance summary (median, mean, std) for WIQL experiments) . . 35
A.7 Performance summary (median, mean, std) for WIQL experiments,

skipping transition) . 36
A.8 Optimal hyperparameters for DQN . 36

ix

List of Abbreviations

TCL Thermostatically Controlled Loads
RL Reinforcement Learning
MSE Mean Squared Error
EIM Energy Imbalance Management
MLP Multi Layer Perceptron
RQ Research Question
RPL Reference Power Level
APL Actual Power Level
DCCAP Distribution (of) Controller (and the) Competing Approach Performance
WIQL Window Input Q-Learning
DQN Deep Q-Network
PoC Proof of Concept

x

Dedicated to a curiosity that helped humanity to survive

1

Chapter 1

Introduction

This chapter contains problem background description and domain overview, motiva-
tion to consider this particular problem, problem formulation along with formulated
research questions. It is finished with a thesis structure description.

1.1 Background and Domain Overview

Power System domain is often viewed as a mature field that accumulated a significant
amount of expertise to solve existing problems in a classical power grid. The problems
in power system modelling are connected with the complex and nonlinear nature
of power systems. The analytical representations of power systems are based on
physical laws. However, power consumption is stochastic in its nature, as it heavily
depends on non-deterministic people behaviour. Thus, power system models have
stochastic components, when modelling loads in the system, as well. These models
of a classical grid are successfully utilized to develop demand response solutions.
Houwing, Negenborn, and De Schutter, 2010 achieved 1-14% decrease in variable
costs for households using model-predictive control and analytical models. Another
example by Tindemans, Trovato, and Strbac, 2015 shows that by applying analytic-
based controller one can achieve modulation of the power consumption according to
a reference power profile.

Nowadays one of the challenging tasks in power systems is a development of
ancillary services: means that ensure that electricity will be efficiently and reliably
provided to customers. These services can be supported by an appropriate demand
response. It focuses on management of peak loads and emergency load relief, as well
as price responsive demand [Bogodorova, Vanfretti, and Turitsyn, 2016].

Ancillary services are powerful as usually they involve a relatively small amount
of energy to influence the system, but their impact is significant, as their quick and
reliable response facilitates for maintaining energy demand-supply balance [Ma,
2013]. Classic approaches were successfully utilized to develop efficient ancillary
services at a large-scale [Rebours et al., 2007a; Rebours et al., 2007b]. State of the art
techniques are heavily based on the analytical modelling approach, as can be drawn
from the overview for demand response of thermostatic loads by Totu, 2015.

Despite the successful application in the past, classic methods and solutions in
Power Systems domain are not capable to handle all new issues listed further. Recent
changes in the grid structure and hardware introduced changes to the power grid
as a whole. In particular, but not limited to, stability margins have decreased, while
renewable energy sources have to be integrated properly [Begovic et al., 2001], as
their generation profile is highly stochastic due to the underlying physical nature of
energy sources. In addition, the rise of IoT-related technologies contributed to the
appearance of distributed and smart grid [Ipakchi and Albuyeh, 2009].

2 Chapter 1. Introduction

1.2 Motivation

While there is a need in new solutions to tackle recently appeared problems, Power
System domain has not fully benefited from recent advances in Data Science yet.
Thus, an application of machine learning methods to the development of ancillary
services is in the spotlight of the project.

Energy imbalance management (EIM) is one of the main goals in ancillary service
development and is also mentioned as load following. Load following is respon-
sible for ensuring of balance between energy demand and supply [Heffner, 2008].
Furthermore, load following is crucial for the proper functioning of an electricity
market. These aspects are essential and thus EIM solutions are of great practical value.
Advances in such ancillary services development are beneficial for both research and
industry. Thus, having a high potential impact, it is the focus of the project.

Ancillary services can be provided by certain types of loads [Kirby and Hirst,
1999; Heffner, 2008], while thermostatically controlled loads have high potential and
are the best fit for this purpose [Meyn et al., 2015; Zhang et al., 2012]. Thus, being the
most common type of load in the distribution grid, thermostatically controlled loads
can serve as means to provide an ancillary service in this project.

Last but not least, a solution to the considered problem requires learning of a
certain control strategy. The most natural fit among machine learning approaches to
this problem is reinforcement learning. It allows finding a required optimal control
strategy by learning from the interaction of a controller (agent) with a system (envi-
ronment). It has demonstrated high potential in solving complex control problems
recently, so is chosen for this project as well.

Besides the justification to consider the particular problem formulated in the next
section, facts listed above also emphasize possible benefits from the successful project
completion - its potential impact.

1.3 Problem Formulation and Research Objectives

Taking into account the information previously discussed in project motivation, the
project’s goal can be summarized as follows: to investigate and assess possibilities
of development a voltage control-based ancillary service responsible for EIM using
TCLs applying reinforcement learning.

More specifically, given a grid with multiple TCLs, a voltage controller (see
Figure 1.1) should be developed to introduce EIM to the system. It is placed in the
point of common coupling of TCLs and controls the voltage at the substation. The
control goal is to approach actual power level (APL) to reference power level (RPL).
This way sufficient load change can be achieved by varying voltage in a small range
when satisfying power grid constraints [Bogodorova, Vanfretti, and Turitsyn, 2016].

In this context, the following research questions rise:

1. Is it possible to apply reinforcement learning to successfully develop such a
controller?

2. What are particularities of such controller development and training?

3. What RL algorithm is the most suitable for this problem?

4. Is it possible to generalize developed approach for utilization it in a new settings
of the grid considering number and/or configuration parameters of TCLs?

1.4. Thesis Structure 3

FIGURE 1.1: Schematic picture of the considered power system config-
uration and controller to be developed

These research questions (RQ) are numbered in a natural order and referenced
appropriately further in the text, e.g. RQ 1 or RQ 3. Hypotheses related to these
questions are discussed in Chapter 2.

Answers to these questions, as well as a developed ancillary service has the
potential to be highly beneficial for applied research and industrial purposes.

1.4 Thesis Structure

The remainder of this thesis is structured as follows:

• Chapter 2 contains an overview of the related work for EIM in Power Systems
and Reinforcement Learning application in it.

• Chapter 3 describes the approach to the solution, including power system
model, reinforcement learning methods and experiments pipeline that are
utilized.

• Chapter 4 is dedicated to the development of the Proof of Concept (PoC) and
analysis of the related experiment results.

• Chapter 5 that discusses solution extension experiments and corresponding
results.

• Chapter 6 contains short summary of the project results and directions for future
work.

4

Chapter 2

Related Work

This chapter aims to inform a curious reader about previous research work in the
considered direction. Development of voltage controllers employing RL methods is
discussed in just a couple of recent papers. These papers present solutions aiming
other optimization goals or introducing control at other places in a power system
structure. Both this particularities differentiate previous research projects from the
presented one. E.g. Diao et al., 2019 applied Deep RL to finding optimal voltage
control, but this control is applied to the generating facilities and aims to keep voltage
in normal operation zone.

At the same time, parts of the considered approach were considered in numerous
researches, e.g. voltage based ancillary services were investigated and developed,
as well as Reinforcement Learning was utilized for solution of some other optimal
control tasks in power systems. Thus, these works are considered as related and are
discussed in this chapter. Moreover, the presented literature review help to formulate
hypotheses to answer the considered research questions.

2.1 Energy Imbalance Management Ancillary Services

Heffner, 2008 considered several types of ancillary services, including EIM of short
and long response time, 1 minute and 10+ minutes respectively. This was totally
reasonable as the scale of a whole power grid and its big parts were considered. In
addition, it was shown, that TCLs are the most suitable kind of loads for this purpose,
because of thermal storage capacity. Some of the mentioned methods to ensure
generation-consumption balance were of market nature - financial incentives, while
others applied automatic control to a generator. The first option does not guarantee
desired system behaviour, while the latter causes faster use of the generators lifespan
resource.

This led to an idea that it may be beneficial to develop an ancillary service for
EIM, that acts at a smaller scale, but changes control more frequently than once per
minute. If available, it may be cheaper and can reduce wearing out of generation
facilities.

Tindemans, Trovato, and Strbac, 2015 showed that an analytical approach to the
controller development can be successful in demand response of thermostatic loads.
One can achieve modulation of the power consumption of a heterogeneous set of
TCLs according to a reference power profile.

Finally, voltage control-based ancillary service was successfully developed for
EIM by Bogodorova, Vanfretti, and Turitsyn, 2016. It was demonstrated that voltage
control-based ancillary services can be utilized for efficient EIM: using TCLs thermal
capacity when regulating the power consumption using voltage signal, it is possible
to achieve the goal of approaching demand-supply balance. However, the chosen

2.2. Reinforcement Learning in Power Systems 5

constant control, utilized in this project, served as a proof of concept and more
sophisticated control was mentioned as future development.

Therefore, to expand this successful research, it was decided to reuse the controller
design and introduce an improvement by applying more complicated robust control
policy. To find the required optimal voltage-based control policy, Reinforcement
Learning methods may be applied. These are discussed further.

2.2 Reinforcement Learning in Power Systems

Reinforcement learning methods are known for successful applications in various
domains, e.g. winning complex games [Silver et al., 2016; Vinyals et al., 2019], pre-
training robots for performing complex tasks [Riedmiller et al., 2009]. This naturally
induces application attempts in other domains. Power Systems domain is not an ex-
ception: there were several successful application of reinforcement learning methods
for solving optimal control problems in the grid.

Moriyama et al., 2018 achieved 22% improvement in energy consumption com-
pared to a model-based control of the data centre cooling model. S.Mottahedi, 2019
applied Deep Reinforcement Learning to learn optimal energy control for a building
equipped with battery storage and photovoltaics. In these cases, a reinforcement
learning agent was not trained and tested in the real environment but used power
system model simulation. Utilization of certain forms of simulations for reinforce-
ment learning agent training is one of the main particularities of RL application in
the power system domain.

Reinforcement Learning methods were successfully applied at a different scale.
Ruelens et al., 2016 succeeded to reduce total cost of energy consumption of the single
electric water heater by 15% in a 40-days experiment. In addition, the authors empha-
sized the importance of a proper state space discretization, while using autoencoder
for this purpose.

Ernst et al., 2008 have shown on an electrical power oscillations damping problem
that RL can be competitive with classic model-based methods, even when a good
analytical model of the considered system is available. This lets to be optimistic about
RL application to the considered problem.

At the same time, Claessens et al., 2018 applied fitted Q-iteration RL method
to obtain a performance within 65% of a theoretical lower bound on the cost for a
district heating network. In this case, a set of 100 TCLs was under control. This
allows being optimistic about RL application to optimisation of control that is applied
to TCLs using other constraints, i.e. aiming demand-supply balance, not the cost
optimization.

Moreover, reinforcement learning was also successfully utilized for demand re-
sponse. As summarized in the review by Vázquez-Canteli and Nagy, 2019, mostly
single-agent methods and simplest algorithms, e.g. Q-learning, are utilized. It is
pointed out, that although these applications are claimed successful, more sophis-
ticated RL methods, as well as multi-agent approaches, may lead to significant
improvements. The authors also detected a tendency to expect better results, when
clever solutions to action-state discretization and dimensionality reduction of action-
state representations are applied or prior knowledge about the controlled system is
incorporated. It has to be pointed out that rewarding strategies utilized in reviewed
papers were mostly straightforward, e.g. to reduce cost, an agent was penalized
for expensive consumption somehow proportional to the cost. Although authors
investigated around 150 works, many of which applied control to TCLs (including

6 Chapter 2. Related Work

Heating, Ventilation and Air Condition - HVACs), the control goal was mainly in cost
reduction and considered from the customer/electricity consumer point of view.

All these research results lead to an educated guess - the hypothesis that reinforce-
ment learning agent is capable to solve complex control problems in the considered
problem setup. So, it can be utilized to control voltage for ensuring electricity genera-
tion and consumption balance by voltage control-based ancillary services. According
to the reviewed research results, even simple algorithms have proven their capability
to be helpful in pretty similar tasks. Furthermore, these works give valuable insights
on the directions of the required controller development.

However, it is important to emphasize differences from the presented project.
Aiming to reduce cost/consumption, along with positioning the problem using
customers point of view, are key features of the most related works that make them
different from the presented project. Although a lot of knowledge can be transferred
to the required solution development process, each such a transfer should be tested
appropriately, as the considered problem is formulated from the electricity supplier
point of view and aims to approach electricity demand-supply balance reducing
impact on customer instead of focusing on local cost or consumption decrease.

7

Chapter 3

Approach to Solution

This chapter aims to give a helicopter view of the presented solution. In addition, it
describes the model utilized in experiments and experiments pipeline built for this
project. Finally, it gives a short overview of the Reinforcement Learning algorithms
and methods utilized in this project.

3.1 High-level Overview

As the aim of the project is to investigate and assess opportunities for a voltage
controller development using reinforcement learning, the solution is developed in
an iterative manner. Specifically, the project is developed in two big stages: PoC and
extensions. The first one starts from the simplest setup and proves the possibility
of such a controller development with hyperparameters tuning and setup changes
required only for investigation purposes. The second one is mostly dedicated to
increasing the performance and developing better solution in terms of efficiency,
generalization or any other mentioned in the corresponding chapters. Besides, these
stages are developed in an iterative manner as well, i.e. any complication of the
model, algorithm or any configuration is done only after a previous, simpler version
has been investigated properly.

The PoC stage is started with the simplest relevant model. Baselines are defined as
the performance in a system without a controller. The competing approach is an opti-
mal constant control action applied to the system with the same controller. Baseline
and competing approach are discussed in Chapter 4. Then, the simplest applicable
RL algorithm is applied. Following insights on where to start and particularities of
the RL methods application are drawn from the related research review:

• Q-learning algorithm should be tried as a first option.

• To handle continuous state and action spaces, discretization techniques should
be utilized, starting from the simplest one - binning.

• Straightforward rewarding strategy is a good first option, e.g. negative squared
error for the considered problem.

Mean squared error (MSE) is chosen as a control performance quality metric. This
choice aimed to encourage control policies that avoid big differences between actual
and reference power levels (APL and RPL respectively). Time step for sampling APL
and RPL is a hyperparameter of the experiment. The control action is changed at
the same time points of the considered time interval. Length of the considered time
interval is a hyperparameter of an experiment as well. By default in all experiments
considered, time interval length is equal to 200 seconds. Unless otherwise specified,
this should be assumed.

8 Chapter 3. Approach to Solution

When initial setup is investigated to the desired extend in Chapter 4, changes in
experiment setup and algorithm are done to develop better performing and more
general solution. Chapter 5 describes this extensions in a stepwise order. In particular,
smart continuous state space discretization strategies, as well as window-input modi-
fication of a Q-learning algorithm. Last but not least, experience replay approach is
utilized along with DQN.

3.2 Model

As it has been emphasized in Chapter 2 one of the main particularities of the RL
application in the power system domain is a vast utilization of the simulations for
RL-agents training. Main reasons for this are high cost and often impossibility to train
an agent in the environment of a real power system, in particular, because of security
reasons. Along with this, as power system domain strongly relies on the analytical
modelling for decades, an impressive amount of knowledge has been accumulated
and analytically described models of many power system and their configurations
are available.

Thus, to allow learning of the optimal control policy, in this project the behaviour
of a real power system is simulated. To reuse knowledge and results provided by
power system domain experts: engineers and researchers, models developed in
Dymola environment following Modelica language as an open access standard are
utilized. Description of the model and its variations considered in the project is
provided below in order of increasing complexity of the setup. Particularities of
model integration and usage in experiments are discussed in Section 3.3.

A proof of concept stage of the development is started with the simplest relevant
model (see Figure B.4). Thus, it is decided to consider control over 20 TCLs. Each TCL
has the same thermal resistance R = 200◦C/kW, power consumption P = 0.14 p.u,
θa = 32◦C, switching temperature range of [19.75..20.25]◦C. TCLs differ in value of a
parameter C and first derivative of θ. Value of the parameter C for i-th TCL is the i-th
value in the array [2.0, 2.2286, 2.4571, 2.6857, 2.9143, 3.1429, 3.3714, 3.6, 3.8286, 4.0571,
4.2857, 4.5143, 4.7429, 4.9714, 5.2, 5.4286, 5.6571, 5.8857, 6.1143, 6.3429]. θ is an internal
parameter of a thermostat and is a proxy for temperature change velocity. It can be
initialized both deterministically (Equation 3.1) or stochastically (Equation 3.2).

For the deterministic case:

dθ

dt
=
−θa + θ + R · P

R · C , (3.1)

For the stochastic case:

dθ

dt
=

−θa + θ + R · P
R · C + R · u · range

, (3.2)

where u is a random number in [0; 1], range = 4.5. Half of the TCLs are off at the
beginning of the simulation: TCLs 1-10 are on, TCLs 11-20 are off. Because of that, a
transition process appears at the beginning of a simulation time interval. It is a one
large amplitude oscillation in the APL: simulation starts with a rapid growth in APL
followed by a sharp decrease. Afterwards, such a big oscillations are not observed.

A proportional controller (see Figure B.3) is placed in the point of loads com-
mon coupling. Detailed controller design description can be found in the paper
by Bogodorova, Vanfretti, and Turitsyn, 2016 presenting this design. As described
in the problem formulation, controller proportionally changes voltage, taking into

3.3. Experiments Pipeline 9

account values of APL and RPL. The output voltage is constrained by minimum and
maximum voltage levels. The model has one input - proportional coefficient k in the
controller, and two output parameters - APL and RPL at the current step.

To ensure iterative complication of a development process, several relevant exper-
iment configurations are considered. The first one - deterministic TCLs parameters
initialization, constant RPL is used as a basic easy-to-start option for PoC devel-
opment (see Chapter 4). Case with stochastic TCLs’ parameters initialization and
constant RPL is an iterative complication of an experimental setup and is considered
afterwards in more details (Chapters 4, 5).

In addition, several extensions of a basic setup are considered to investigate the
scalability of the solution and the controller’s ability to generalize. These include:
step down in RPL in the middle of the considered time interval; controller testing
longer than training; different simulation start time. The last one is to investigate the
influence of a transition process on a controller training and its performance. The
choice to consider a step down in RPL in the middle of the considered time interval
is motivated by application domain knowledge.

Although several extensions of basic model configuration are considered, most
experiments focus on the case with constant RPL and stochastic TCLs’ parameters ini-
tialization, e.g. application of advanced algorithms and other extensions in Chapter 5.
This choice is motivated by a possibility to scale a solution developed for this case to
other model configurations (e.g. changes in RPL) while avoiding overcomplication at
the early stage of the project.

3.3 Experiments Pipeline

To apply any RL algorithm, there should be an environment available for agent
training. A simulation is preferred to the real physical system for this purpose,
because of need in a controllable experiment and collecting enough data, resources
constraints and limited time frame. At the same time, modelling and simulation
should be precise enough to guarantee the relevance of the received results to the real
power system.

Modelica open standard is a good fit for this purpose, as it provides an opportu-
nity to describe complex systems analytically, provides an interface for simulation.
This fact makes it widely used by engineers and enterprises, e.g. Volvo. In partic-
ular, language standard defines Functional Mock-up Interface 2019 (FMI). It is a tool
independent standard for exchange and co-simulation of dynamical systems’ models.
Objects created according to it are called Functional Mock-up Units (FMU’s). FMU is
an ideal candidate for simulation of a Power System model in our experiment, as it
provides a convenient and reliable option for RL environment simulation.

At the other end of a pipeline, there should be a common interface for RL al-
gorithms. OpenAI Gym [Brockman et al., 2016] is chosen, as it defines common
Application Programming Interface (API) for agent interaction with an environment.
Consequently, a custom RL agent can be easily connected to interact with any suitable
environment. This way, testing of RL applications is done according to the plug
and play concept [Lukianykhin and Bogodorova, 2019]. Thus, this approach allows
consistent, comparable and reproducible results while developing and testing of the
RL applications.

A connection between FMU object, simulation the considered power system
model and OpenAI Gym API has to be established. PyFMI library [Andersson,
Åkesson, and Führer, 2016] partially enables it by supporting loading and execution

10 Chapter 3. Approach to Solution

of models that are compliant with the FMI standard in Python, while ModelicaGym
toolbox completes the pipeline by facilitating the integration of PyFMI and OpenAI
Gym interfaces [Lukianykhin and Bogodorova, 2019].

The received experiment pipeline (see Figure 3.1) has been already validated on
solving the classic cart-pole control problem with reinforcement learning methods.

FIGURE 3.1: High-level overview of the pipeline built for experiment
(from Lukianykhin and Bogodorova, 2019)

Its additional advantage is that different power system models can be connected for
RL methods according to the plug and play concept1. This helps to find an answer for
the RQ 4 by gradually increasing complexity and generalizing the considered model.

3.4 Reinforcement Learning

In an RL context a considered problem is described as an interaction of an agent
(voltage controller) and an environment (power system). Agent interacts with the
environment by executing actions (voltage change). The environment responds to
those actions, therefore, as an output we receive observations (actual consumption).
As a response to each performed action, agent receives reward (or penalty) based on
the observations.

Actions are chosen by the agent from the action space according to a policy. To
learn the appropriate policy, RL algorithm interacts with the environment and updates
its belief about the optimal policy.

3.4.1 Exploration-exploitation trade-off

During the learning process, an agent has to choose between currently optimal actions
(exploitation) and those that have not been explored before (exploration). This problem
is called exploration-exploitation trade-off and can be solved in numerous ways.

In this project ε-greedy policy is utilized, as its application in a number of re-
searches and applied task evidences: although it is quite straightforward, its popu-
larity is based not on ease of application, but rather on good results received. This
approach to solving an exploration-exploitation trade-off can be summarized as fol-
lows: at each step, the agent chooses currently optimal action with probability 1− ε,
while the remaining probability ε corresponds to random choice among all available
actions.

1This pipeline allows to make use of previous research achievements, and thus some code from
OpenAI Baselines, ModelicaGym and other projects was utilized during the development process. All
necessary references are available in code (see https://github.com/OlehLuk/rl-power-control/).

https://github.com/OlehLuk/rl-power-control/

3.4. Reinforcement Learning 11

To allow agent’s flexibility on the early stages of training and more conservative
behaviour in mature phase adaptive change of parameter ε can be used. In this
project two options are considered: unbounded ε-decay that results in ε vanishing to
0 and ε-decay that stops at a certain small value of the parameter, e.g. ε = 0.05.

3.4.2 Smart discretization strategies

Historically first Reinforcement Learning algorithms were considering discrete en-
vironment states and actions available to an agent. Thus, even nowadays most RL
algorithms are doing this as well. On the contrary, real-world applications usually
lead to consideration of tasks with continuous domains. Thus, there is a strong need
in converting continuous spaces to reasonable discrete representation. The approach
used for this purpose is called a discretization strategy.

Related particularity of development applied RL solutions is that state and action
spaces are often very high-dimensional. This leads to many negative side-effects, e.g.
slower convergence, higher computational and memory requirements. Thus, there
exist a quite wide variety of techniques for preprocessing raw information about
environment state and actions applied. Some of them, like the application of deep
learning techniques, are more focused on the dimensionality reduction part. Thus,
taking into account project goals and Occam’s razor principle, it is decided to focus
on the application of classic discretization strategy - binning.

The main idea of binning is to divide continuous space into numbered intervals
(bins) and encode data by an index of the bin corresponding to the data point. De-
spite the straightforward logic under the hood of this approach, there is a room for
configuration when it is applied. In particular, one can apply different strategies for
choosing bins edges. As a first direction to extend PoC results, it is decided to focus
on this task.

In this project several strategies for choosing discretization bins are tested:

1. basic equal-width interval splitting;

2. using optimal width detection methods (analogy with histograms);

3. using historic data quantiles as bin edges;

4. accounting for the RPL, when choosing bin edges;

5. different combinations of the above approaches.

A basic approach to discretization of a continuous variable using bins is to split
the space of possible values in bins of equal width. To account for values outside
the interval, the most left bin can be half-opened from the left, the most right one
can be half-opened from the right. The number of bins is a hyperparameter of this
discretization strategy. Width of a bin is found by dividing the length of the interval
of possible values by the number of bins.

However, in this case, an optimal number of bins should be found somehow.
To tackle this problem, optimal width detection methods can be transferred from
the somehow analogous problem of building a histogram. In case of choosing bins
width for a histogram. Freedman-Diaconis estimator [Diaconis and Freedman, 1981]
can be utilized as it shows robustly reasonable results for large datasets. Besides,
to apply this approach some historic data should be available. These can be gained
from baselines experiments or from early stages of the same experiment with another
discretization policy when exploration is high.

12 Chapter 3. Approach to Solution

When having historic data for the considered case on hand, it is possible to apply
one more approach to choosing bins: use data quantiles as bin edges. IN this case, bins
are not of equal width and thus, less attention can be paid to parts of the space where
low number of data points is observed while having detailed enough representation
for regions with high concentration of observations.

Last but not least, accounting for the RPL can be useful, taking into account
problem formulation. As it is required to approach the APL to the RPL, it sounds
sensible to make RPL an edge of a bin. This way, all values higher than the RPL will
be encoded differently from values lower it. Thus, possible RL agent confusion can
be avoided during training. Other bin edges than can be chosen by accounting for
observed historic data to define the interval of possible values and its equal-width
splitting afterwards.

It is important to emphasize, it is possible that with a high number of bins -
the very first straightforward discretization approach - leads to reasonable results.
However, a bigger number of bins slows down training and leads to inefficiency, as in
this case some parts of Q-table will be updated extremely rarely. Optimal use of time
and computational resources is always aimed when developing applied RL solutions.
That is why in this project search for an optimal binning strategy is performed.

3.4.3 Q-learning

Q-learning is one of the most popular techniques, because of it’s relative simplicity
and efficiency. The idea of this method is that RL-agent stores Q-table - representation
of the agent’s belief about the utility of each action-state pair, and consequently, a
belief about the optimal policy. It updates Q-values for action-state pairs consider-
ing a feedback of the environment. In every state, the optimal action is chosen as
corresponding to the optimal Q-value for the given state. Thus, the update rule for
Q-values (Equation 3.3) is the following:

Q(s, a)←− Q(s, a) + α[r(s, a) + γ ·maxaQ(s′, a)−Q(s, a)], (3.3)

where α is a learning rate, γ is a discount factor, s - a starting state, s′ - a resulting
state, a - an action that led from s to s′, r(s, a) - a reward received by the agent in the
state s after performing the action s′, Q(s, a), Q(s′, a) - the Q-values for the action a
and the starting or resulting state correspondingly.

This method is sensitive to the order in which learning examples are retrieved.
Although convergence is proven, it becomes very slow with the growth of state-action
space dimensionality. Moreover, in such high dimensional spaces, available data is
sparse and don’t allow us to learn efficiently. Thus, there is a need in having more
advanced approaches in hand.

3.4.4 Window-input Q-learning

As the first option of extension of the algorithm applied window-input Q-learning
can be considered. It uses the same Q-table concept under the hood along with the
same update rule, thus implying the proved convergence properties. But introduces
an extension by taking into account several previous values (window) of the en-
vironment state for estimation of the Q-values. The underlying hypothesis is that
by providing a wider context to a reinforcement learning agent, it is possible to let
it learn more precise policy. The number of values taken into account is window
size, while the shift between two consecutive windows is called a step size. So the
algorithm can be used in hopping or sliding window manner.

3.4. Reinforcement Learning 13

However, as for the same state space dimensionality Q-table grows exponentially
relative to the window size (O(nk), where n - state space dimensionality, k - window
size), learning and convergence may require more time. Moreover, as additional
hyperparameters - window size, step size - appear, there is a need in bigger search
for optimal hyperparameters.

3.4.5 Experience replay and DQN

One more particularity of the window-input Q-learning that such approach increases
the correlation between training samples passed to the agent. This, to some extent,
harms i.i.d. training data assumption common for most machine learning methods.
To tackle this problem, experience replay can be utilized.

The core idea of this approach is as follows: during an agent’s training process
at each training step, training sample or batch of samples is randomly drawn from
a buffer. This buffer of a certain size is stored all along with training process and
contains previously seen training samples. The buffer is updated at each agent’s step
in the environment as a queue: new observation is added, while the oldest one is
removed. Buffer size m is a hyperparameter of the algorithm.

This way, experience gained during the training is used more efficiently, as train-
ing samples may be used several times. This approach is especially powerful when a
batch of training samples is used at each training step. For example, Mnih et al., 2015
showed how experience replay is efficiently used in the training process when DQN
is applied. One of the reasons of the algorithm’s high performance may be that by
sampling batches from a buffer, the agent is provided with less correlated training
data. The latter is helpful for algorithm convergence.

At its turn, DQN alone has shown excellent results in solving sophisticated
applied RL tasks, such as video games. DQN stands for deep Q-network meaning
that the core concept of the approach is in estimating of Q-value (already discussed
concept) with a neural network. Although estimating Q-values with a function is
not something genuinely new, application of neural networks for this task allows to
naturally handle environment state and action space encoding. The neural network
that estimates Q-values encodes environment state and handles the agent’s action
automatically. Moreover, proper encoding is learnt during the training process. The
encoding is tuned if knowledge transfer is applied, e.g. pretrained vision model is
taken. This is one of the big advantages introduced by DQN. As in the considered
problem state and action spaces are not very high-dimensional, there is no need in
using sophisticated CNN or RNN, i.e. a simple MLP should be capable to do the job.

This chapter covered a short description of the proposed approach to the solution,
including applied algorithms, considered model and experiment pipeline. Experi-
ments of a Q-learning-driven controller training and testing on the basic model are
discussed in Chapter 4. Extensions of this solution are presented in Chapter 5

14

Chapter 4

Proof of Concept

This section describes experiments conducted during the voltage controller (see
Section 3.1) development in frame of PoC project stage. First, the definition of
baseline and competitive approach for the considered setup is determined. Second,
experiments with Q-learning for finding optimal control policy are discussed along
with received results. TCL parameters are set from a realistic range of parameter
values to reproduce loads behavior and receive their output as close as possible to
real measurements of the grid. Deterministic TCL parameters initialization case is
taken as a basic example to start with, while stochastic initialization case has practical
value.

4.1 Baseline and Competitors

First of all, the performance of the baseline and competing approaches are determined
to have a reference for a sensible comparison of the developed controller performance.

For the cases described in Section 3.2, baselines are calculated, as an MSE between
APL and RPL for a system without a controller.

The competing approach is an optimal constant control action applied to the
system. For measuring competitor performance, all available control parameter
values are tested and the best one is chosen.

Two different intervals between change of control action are considered: control
applied every 1 or 5 seconds. This way, influence of the time interval on the controller
performance can be investigated.

Baseline	&	Competing
approach

Deterministic
initialization:

constant RPL
step down in RPL

Stochastic	
initialization:

constant RPL

Simulation	interval
0-200s

FIGURE 4.1: Diagram of Q-learning experiments in PoC

For the deterministic case, two experimental setups are considered: constant RPL
and step down in RPL. For the stochastic parameters initialization case measurements

4.1. Baseline and Competitors 15

are provided only for constant RPL, as another option is not discussed in details
further. Besides, a short description of some results for non-constant RPL is still
given in this chapter. See diagram in Figure 4.1 for experiments structure. Different
parameters initialization and RPL options are described in Section 3.2 in more details.

4.1.1 Deterministic case

As for the deterministic TCLs initialization case (see Section 3.2 for detailed descrip-
tion), system behaviour is the same under the same control, there is no need in
repeated sampling of trajectories and MSE between RPL and APL as a performance
metric. Results for constant RPL and step down in RPL subcase and both time steps
are given in Table A.1.

For this particular case, constant control with control parameter value k = 0.5
seems like the best choice. However, this case represents only one sample from the
possible system realization space. Thus, a more generalized stochastic case should be
considered.

In addition, an interesting phenomenon that was observed in the experiments
is that MSE is higher for the non-constant RPL case study when compared to the
constant one. It can be explained by the fact that applying constant control action is
not the best strategy when RPL is changing during an experiment.

4.1.2 Stochastic case

For the stochastic TCLs parameters initialization (see Section 3.2 for detailed descrip-
tion) system behaviour slightly changes when the same control action is applied.
Thus, trajectories and MSE between RPL and APL are sampled 50 times for each case.
Performance summary for the baseline and the competing approach for the case with
constant RPL and 1s time step are given in Table 4.1. Measurements for constant RLP
and 5s time step are given in Table A.2.

TABLE 4.1: Performance summary (median, mean, std) for the baseline
(no control) and the competing approach (optimal constant control) for
stochastic TCLs parameters initialization, 1s control change, constant

RPL of 1.2 (best results in bold)

Value of
a control parameter k Median Mean Std

Baseline 0.0546 0.0613 0.0196
0.5 0.0396 0.0421 0.0085
1 0.0427 0.0424 0.0094
2 0.444 0.0447 0.0098
3 0.0366 0.0379 0.0077
4 0.0263 0.0269 0.0053
5 0.0198 0.0208 0.0041
6 0.0154 0.0159 0.004
7 0.0126 0.013 0.0043

It is observed, that best performing constant actions also correspond to the lowest
variance of the measured performance. As in the deterministic case, higher values
of the error metric for non-constant RPL, compared to the constant RPL case, are
observed.

16 Chapter 4. Proof of Concept

During the controller development process, received performance is compared
with the best constant control performance for the corresponding case. Distribution
of performances, as well as its descriptive statistics, such as variance and median
values, are taken into account during comparison for stochastic initialization cases.

4.2 Q-learning

The utilized Q-learning procedure as an application of classic Q-learning algorithm
to a RL environment simulated with the Modelica model is described in details in
paper by Lukianykhin and Bogodorova, 2019. It is parameterized by the following
hyperparameters: the number of episodes of training and testing, learning rate,
exploration rate, exploration rate decay, discount factor, available actions and number
of steps that is proxy for the length of the considered time interval. One more
hyperparameter is a chosen rewarding strategy. Unless otherwise specified, here and
further, the number of training episodes is 100.

All experiments are repeated to receive more generalized results. Unless otherwise
specified, the number of experiment repeats equals 5. Performance of the trained
controller is estimated by repeated exploitation experiment as well.

Q-learning

Deterministic
initialization.
Constant	RPL

Simulation	interval
0-200s

Stochastic
initialization

Simulation
interval
0-200s

Constant	RPLStep	down	in
RPL

Simulation	interval:
0-200s
175-375s
175-575s

FIGURE 4.2: Diagram of Q-learning experiments in PoC

Q-learning application experiments are conducted for both constant RPL and step
down in RPL. However, the first option is discussed more and investigated deeper
being of greater interest for this project. See Figure 4.2 for experiments structure.

4.2.1 Deterministic case

As a first step, Q-learning application experiments are conducted on the deterministi-
cally initialized model. Optimal hyperparameters search is done for this case. This
parameter set is used as a default one for all further experiments.

Optimal hyperparameters search is done by fixing all parameter values, but
changing one or several parameters that are tuned. In some cases influence of a
parameter change is clear, while in others it is not that obvious. For example, such
case is shown in exploration parameters change experiment (see Figure B.1) dedicated
to research of the influence of exploration parameter change on controller training. In

4.2. Q-learning 17

this case that small exploration rate combined with slow exploration rate decay is
an obstacle for training to converge to an optimal control strategy. At the same time,
distinguishing between two other parameters configuration is hard, as the training
process looks almost the same, the difference in the performance of the controller
during testing is not significant.

After the choice of the optimal hyperparameters that are listed in Table A.3, to test
if longer training can improve performance, the experiment is run for 200 episodes. In
Figure 4.3 it can be observed that for 1-second control change interval longer training
with the given parameters is not leading to better results. The latter is correct for the
5-second case too. It can be concluded that RL agent converges to certain control
policy in 100 episodes so that the longer training doesn’t improve the already learnt
policy.

The controller’s performance, measured as MSE between APL and RPL, is worse
than for a constant control action k = 0.5. This can be caused by particularities of the
system realization, as it is deterministically initialized and is a single realization from
the space of all possible system realizations. At the same time, the capability of an
agent to learn a (sub)optimal control policy for the considered problem is evidenced
by received results (see Figure 4.3).

25 50 75 100 125 150 175 200
of episode

0.090

0.092

0.094

0.096

0.098

Av
er
ag
e
sm

oo
th
ed
 M
SE

Average smoothed last episode MSE vs training time. Different training time
t=1 (200 ep.)
t=1 (100 ep.)
Avg exploit performance

FIGURE 4.3: Average smoothed MSE at the end of training episode for
Q-learning optimal hyperparameters experiment

PoC aims generalization of controller application, while effective agent’s learn-
ing is observed. To improve the generalization, experiments are continued on the
stochastic case.

4.2.2 Stochastic case

As the first step of application to a stochastic initialisation case, Q-learning experi-
ments are conducted for the constant RPL. Second, step down in the RPL is introduced
at the half of the considered time interval.

18 Chapter 4. Proof of Concept

In both cases, experiments are conducted with the Q-learning utilizing optimal
hyperparameters chosen on the deterministic case. It is chosen as a first inference
about optimal hyperparameters for the stochastic case. Results of training can be
found in Figure B.2.

As it can be observed, training converges to some policy. Comparison of the
controller and competing approach performance distribution (DCCAP) is given in
Figure 4.4. For RPL of 1.2 RL-driven controller is performing slightly better than the
competing approach in median performance.

0.00 0.02 0.04 0.06 0.08
Performance (MSE)

0
20
40
60
80

100
120
140

RL-driven controller: median=0.0122, mean=0.0132, std=0.0052
 Optimal constant control: median=0.0126, mean=0.0130, std=0.0043

RL-driven controller
Optimal constant control

FIGURE 4.4: Distribution of controller and competing approach per-
formance (DCCAP) for constant RPL of 1.2

Figure 4.5 shows an example of system behaviour before and after controller
training. After training the APL is approaching RPL and oscillations are much
smaller.

0 25 50 75 100 125 150 175 200
0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6
(a) Training step #0. MSE=0.0324

Actual power level
Reference power level

0 25 50 75 100 125 150 175 200
0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6
(b) Last training step. MSE=0.009

FIGURE 4.5: Example of system behaviour before (a) and after (b)
controller training

To investigate the dependence of performance on the RPL experiments are re-
peated with other values of the RPL. Corresponding results along with a comparison
with the competing approach can be found in Figure 4.6.

It is observed, that for other constant RPLs the competing approach is slightly
better performing than the developed controller. In addition, performance distribu-
tions for RL-driven controller are skewed, i.e. a long right tail is present - outliers
with high MSE are observed. To check if longer training can improve results, the
agent is trained on the same setup twice longer - for 200 episodes instead of 100.
Longer training did not show the capability to significantly improve exploitation
performance of a trained controller while being efficient for reducing the variance of
controller exploitation performance. Seems like during training RL agent reaches a
plateau and converges to some (sub)optimal policy in 100 episodes.

As hyperparameters have been chosen based on the experiments for the determin-
istic initialization case and received results are not strongly superior to the competing

4.2. Q-learning 19

1.05 1.15 1.2 1.25 1.35
Reference power level

0.02

0.04

0.06

0.08

0.10

Pe
rfo

rm
an

ce
 (M

SE
)

Control type
RL-driven controller
Optimal constant control

FIGURE 4.6: DCCAP for Q-learning depending on constant RPL

approach, an attempt to find better hyperparameters combination is for the stochastic
case is made. However, no parameters changes led to significant improvements in
the performance measures, while some led to a decrease in the performance. In par-
ticular, different rewarding strategies are tested. Squared local error scaled by −1000
is chosen. Thus, previously found hyperparameters combination (see Table A.3) is
considered as the optimal one for stochastic initialization case.

However, learnt policy can be good in the long run, while the better performance
of the competing approach may be explained by particularities of the chosen perfor-
mance metric and transition process observed in the system at the beginning of the
considered time interval. I.e. as MSE puts stronger emphasize on big differences,
big local differences between RPL and APL have a significant influence on the final
performance measure.

To test this hypothesis, the experiment is conducted on the time interval after the
transition process - 175− 375 seconds. Results are in Figure 4.7. It is observed, that
there are no outliers in controller performance anymore. However, the performance of
the controller is still comparable but not strongly superior to the competing approach.

Q-learning application experiment is done for the stochastic initialization case
with step down in RPL. In this case, to make a decision about a control action
controller takes into account both APL and RPL. It is observed that longer training
did an improved performance for 1-second control interval, but didn’t - for 5 seconds
control interval. Thus, first case is considered in more details (see Figure B.5 for
results). It is observed that longer training may improve average performance to a
certain extent. However, at some point, an increase in training time does not lead to
improvements in average performance anymore but reduces the variance of it.

Results indicate, that even simple reinforcement learning methods are capable
to learn control that is comparable with the one chosen using the simulation of the
whole considered time interval. At the same time, it is not strongly superior to the
competing approach in sense of performance, while can be more useful from the
point of view of generalization.

20 Chapter 4. Proof of Concept

1.05 1.15 1.2 1.25 1.35
Reference power level

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Pe
rfo

rm
an
ce
 (M

SE
)

Control type
RL-driven controller
Optimal constant control

FIGURE 4.7: DCCAP for Q-learning, skipping transition (time interval
175-375 seconds), depending on RPL

To test a hypothesis about generalization capability of an RL-driven controller,
training on a 200-second interval with testing on 400 seconds interval is considered.
RL-driven controller When combined with skipping the transition process (175 s),
intervals of 175-375s and 175-575s are used for training and testing respectively. In
this case, optimal constant control action chosen based on the training period is not
the optimal one for the testing period. At the same time, RL-driven controller’s
generalization ability allows it keep performing well enough.

In addition, several experiments with 5s control step are conducted. They em-
ployed the optimal hyperparameters set determined before. Performance measures
are in Table 4.2.

4.3 Summary

Results of PoC development are summarized in Table 4.2. Performance measures
for RL-driven controller are compared with baseline (no-control) and competing
approach (optimal constant control chosen using full-interval simulation). The obsta-
cle to beat the performance of the competing approach may be in the convergence
of an agent to a suboptimal policy instead of the optimal one. However, this has
to be investigated further. Another option is that RL-agent takes into account only
values of APL and RPL at one time point, and thus it may be impossible for an agent
to capture all the dynamics in the system. I.e. the learnt policy may be optimal in
making locally optimal decisions, but it does not lead to the best performance over
the whole time interval. Thus, more complicated methods and wider decision making
context should be applied to test these hypotheses.

4.3. Summary 21

TABLE 4.2: Performance summary (median, mean, std) for best PoC
results

Experiment name Median Mean Std

No skipping transition (0-200s) 1s control

Baseline 0.0546 0.0613 0.0196

Competing approach (k=7) 0.0126 0.013 0.0043

Q-learning with optimal parameters 0.0122 0.0132 0.0052

Skipping transition (175-375s) 1s control

Baseline 0.0221 0.0349 0.0348

Competing approach (k=2) 0.0079 0.008 0.0027

Q-learning with optimal parameters 0.0085 0.0087 0.0026

No skipping transition (0-200s) 5s control

Baseline 0.0549 0.061 0.0191

Competing approach (k=7) 0.0136 0.0149 0.0047

Q-learning with optimal parameters,
200 episodes training 0.0145 0.0152 0.0034

Skipping transition (175-375s) 5s control

Baseline 0.0226 0.0349 0.0345

Competing approach (k=6) 0.0075 0.0081 0.0028

Q-learning 0.0084 0.0087 0.0027

22

Chapter 5

Extensions

This chapter aims to summarize efforts that are made in direction of exceeding a PoC
performance. Considered extension approaches include the application of different
continuous state space discretization strategies, window input approach to Q-learning
and experience replay with DQN. These are discussed in the corresponding sections.
Each of these sections is dedicated to the investigation of the considered process,
corresponding insights and received results. Diagram describing experiments is
given in Figure 5.1.

Extensions

Discretization
strategiesWIQL

Stochastic	initialization.
Constant	RPL

DQN

Simulation	interval:
0-200s - initial experimental setup
175-375s - skipping transition
175-575s - skipping transition and long test

FIGURE 5.1: Diagram of extensions experiments

5.1 Smart Discretization Strategies

This section is dedicated to a search process for the best discretization strategy for
this problem.

5.1. Smart Discretization Strategies 23

5.1.1 Equal-width interval

First of all, the dependency of performance on a number of bins for the fixed interval
is investigated. Interval [0.9; 1.7] for RPL is considered. Such a choice is motivated
empirically, in particular by observed experiments data. Comparison is in Figure 5.2.

10 bins 25 bins 50 bins 100 bins
N bins for [0.9;1.7] interval for APL

0.00

0.02

0.04

0.06

0.08

0.10

Pe
rfo

rm
an

ce
 (M

SE
)

Control type
RL-driven controller
Optimal constant control

FIGURE 5.2: DCCAP for Q-learning, different number of bins in inter-
val [0.9; 1.7]

It can be observed that in all four cases training converges to almost the same
level of average performance. However, with a bigger number of bins variance of the
performance is bigger as well. This is due to higher state space dimensionality for the
RL agent, that makes convergence slower.

In addition, other intervals for equal-width binning are considered, e.g. [0.1; 1.7].
Results comparison is in Figure B.6. In this case, it is observed that performance is
slightly better than for more narrow interval, most likely because bins are smaller in
the region where most observations appear, but convergence is not too slow as bins
in other regions are not influencing it.

Performance summary - median, mean and standard deviation of measured
performance - is summarized in Table A.4.

5.1.2 Optimal bin width detection

As a next step, to tackle the problem of search for an optimal number of bins,
Freedman-Diaconis estimator is applied to detect the optimal width of the inter-
val. This approach requires historic data, so two options are considered: baselines
experiment and early stages of the same experiment with another discretization
policy. The latter case provides quite representative behaviour of a system because
at early stages of RL agent training exploration is high and learnt policy is close to
random. An empirical difference between two options can be summarized as follows:
baseline experiments provide less extreme values as control is more robust, while
another option leads to more diverse results.

24 Chapter 5. Extensions

Results for experiments are in Figure 5.3 and summarized in Table A.4.

Histogram
binning (a)

Histogram
binning (b)

Quantile bins (a) Quantile bins (b) RPL as bin edge (a),
10 bins

RPL as bin edge (b),
10 bins

100 bins, [0.1;1.7]
interval for APL

(a) Competing approach historic data, (b) Q-learning historic data

0.00

0.02

0.04

0.06

0.08

Pe
rfo

rm
an

ce
 (M

SE
)

Control type
RL-driven controller
Optimal constant control

FIGURE 5.3: DCCAP for Q-learning, different smart discretization
strategies

It is observed that both options for collecting historic data are working fine and
almost with the same results. Estimated number of bins is around 60. Because of
that longer training may be required to achieve good performance. Thus longer
training is tested in the next experiments. Results are in Table A.4 as well. Figure B.7
provides comparison for results with 100 and 200 episodes training. As expected,
longer training is very efficient in improving performance on average and reducing
variance.

5.1.3 Quantiles of historic data

However, histogram-based binning maybe not optimal, as this approach does not
account for historic data distribution. I.e. there are bins with a high number of
data points, as well as bins with a very low one. To take into account historic data
distribution, non-equal width bins can be considered. In this project data quantiles as
bin edges are considered. This approach allows having bins with the same number
of historic observation. This way, parts of the space where a low number of data
points is observed, obtain less attention, while regions with a high concentration of
observations are detailed.

10%-quantiles are considered. Results are in Table A.4 and Figure 5.3

5.1.4 Accounting for problem formulation

Last but not least, it is decided to take into account the particularities of problem
formulation when choosing bins. The control goal of an agent is taken into account -
approach APL to the RPL - to formulate the following hypothesis: it may be essential
for an agent to distinguish APL below and above the RPL. Naturally, this induces
that RPL should be an edge of some bin.

5.1. Smart Discretization Strategies 25

As a small number of bins showed comparable results, this hypothesis is tested
by splitting the interval of possible power level values in just ten bins (see Figure 5.3).
Interval of possible values is defined using minimum and maximum values from the
available historic data, the same as for the histogram binning case.

As the number of bins is small, longer training is not expected to improve average
performance, may slightly decrease its variance. To test this hypothesis, 200 episodes
of training for 10 bins with RPL as a bin’s edge are performed. Results in Figure B.7
evidence that hypothesis is valid. Moreover, in one of experiment repeats agent has
converged to not an optimal policy with much higher average performance than in
other cases (see Figure 5.4). It is the only example of such a phenomenon during the
whole project development.

0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040 0.045
Performance (MSE)

0
20
40
60
80

100
120
140 Optimal constant control

RPL as bin edge Agent#2
RPL as bin edge (200 ep.) Agent#2

FIGURE 5.4: DCCAP for Q-learning , 100 and 200 episodes of training,
10 bins with RPL as a bin’s edge

5.1.5 Transferring results to skipping transition process case

Investigation results are transferred to experiments with skipping transition process
at the beginning of the simulation time interval. First, methods using historic data
utilized before (without skipping the transition process in simulation) are applied.
Results are in Figure B.8. It is observed that all methods work with almost the same
performance, while some are slightly better than simple equal-width binning.

Afterwards, the best strategies are tested using historic data from the correspond-
ing experiments - experiments with skipping 175 seconds of the transition process.
Results are summarized in Table A.5 and Figure 5.5. Usage of corresponding historic
data did not lead to a breakthrough but did not decrease performance as well. His-
togram binning experiment with historic data received in simulations with transition
process works better than with historic data without transition process. This can
be explained the same way as good performance of 100 bins in [0.1; 1.7] interval.
I.e. smaller bins in the region of state space with many observations require longer
training.

The following conclusions can be drawn to summarize results of discretization
strategies investigation:

1. In general, any considered discretization strategy works good enough, as all of
them are somehow justified and data-driven.

2. Sophisticated data-driven approaches, e.g. histogram and quantile binning, can
be useful and applicable for choosing proper bins, but should not be expected
to bring a breakthrough.

3. However, they may require longer training to outperform straightforward ones.

26 Chapter 5. Extensions

Histogram
binning (b)

Histogram
binning, (a)

RPL as bin edge,
(a), 10 bins

100 bins,
[0.1;1.7]

interval for APL
(a) Competing approach historic data (175-375s),

(b) Q-learning historic data (0-200s)

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175
Pe
rfo

rm
an
ce
 (M

SE
)

Control type
RL-driven controller
Optimal constant control

FIGURE 5.5: DCCAP for Q-learning, smart dicretization strategies,
skipping transition

4. Accounting for problem formulation seems to be the most essential. Even if it
does not lead to leaps in performance, it can guarantee a decrease in RL-agent
confusion during training.

5. Having small bins in space regions with a high concentration of observations
is the most efficient technique in improving performance. However, it should
be combined with more sophisticated strategies to allow efficient training in
reasonable time and with reasonable resources usage.

5.2 Window-input Q-learning (WIQL)

This section describes an attempt of improving RL-driven controller performance by
employing Window-input Q-learning approach to widen a context available to RL
agent for decision making.

5.2.1 WIQL for the initial experimental setup

First of all two options are tested: sliding and hopping window. The dependency of
performance on window size is built for both. Results are in Table A.6. Figure 5.6
provides comparison of DCCAP for hopping window case.

As it can be observed, for experiment with the transition process at the beginning
of a simulation, WIQL performs worse than vanilla Q-learning.

Different discretization strategies are tested. Performance summary in Table A.6.
They don’t influence the superiority of vanilla Q-learning for experiment with tran-
sition process included. However, as expected, bigger bins require shorter training
time to achieve the same performance.

5.3. Experience Replay and DQN 27

1 2 4
Hop window size

0.01

0.02

0.03

0.04

0.05

0.06
Pe

rfo
rm

an
ce

 (M
SE

)
Control type

RL-driven controller
Optimal constant control

FIGURE 5.6: DCCAP for WIQL, different hop window sizes

The hypothesis that longer training may improve results is tested successfully (see
Figure B.9). It did reduce variance and slightly improved performance on average,
but not enough to consider longer training as a main mean to improve performance.

5.2.2 WIQL for the skipping transition experiment

Same experiments are conducted for skipping transition process simulation. Visual-
izations in Figure 5.7 and performance distributions summary in Table A.7. Several
discretization strategies are tested as well.

In this case, results of WIQL are slightly better than for vanilla Q-learning. Proper
discretization strategy can be used to achieve modest performance improvement.

Testing longer than training (400s and 200s respectively) is performed too (see
Figure 5.8) to test if the controller has an ability to extrapolate learnt strategy and
apply it to longer time intervals.

This extension attempt can be summarized as follows: WIQL can be useful
and efficient in certain setups. In addition, experiments with longer testing than
training shows, that it keeps the RL-driven controller ability to generalize better
than the competing approach observed for vanilla Q-learning. However, it requires
appropriate testing and hyperparameters tuning, proper discretization strategy choice.
Besides, a high correlation of the training examples passed to the agent, especially in
a sliding window case, harm training data independence assumption, consequently
slowing down the training process.

5.3 Experience Replay and DQN

To incorporate wider context but avoid excessive tuning, while reducing the correla-
tion of training samples, DQN with experience replay is chosen for utilization.

Several experiments configurations are tested, including but not limited to hyper-
parameters tuning. Optimal hyperparameters values are given in Table A.8.

28 Chapter 5. Extensions

Vanila Q-learning
100 bins in [0.1;1.7]

Sliding window 2
10 bins in [0.9;1.7]

Sliding window 4,
10 bins in [0.9;1.7]

Sliding window 4,
30 bins, RPL as edge

Hop window 2,
30 bins, RPL as edge

0.000

0.005

0.010

0.015

0.020
Pe
rfo

rm
an

ce
 (M

SE
)

Control type
RL-driven controller
Optimal constant control

FIGURE 5.7: DCCAP for WIQL, skipping transition

Comparison of results is given in Figure 5.9. It is clear, that RL-driven controller
performs slightly worse than the competing method. Measured performance is 5%
inferior in median performance and 10% in average performance.

As well as for previously considered extensions, experiments are repeated for
skipping transition experiments. In these cases, results are slightly worse than for
constant control as well.

The hypothesis is that it is because DQN controller overfits less. This is tested by
experiment with a longer test than the train. DQN has demonstrated performance
comparable to constant control, but not superior to it.

5.4 Summary

Best results are summarized in Table 5.1. Only moderate increase in performance is
achieved compared to the PoC, so there may be a need in further research. Directions
for future work are discussed in the next chapter.

5.4. Summary 29

Vanila Q-learning,
100 bins in [0.1;1.7]

Sliding window 2,
10 bins in [0.9;1.7]

Sliding window 4,
10 bins in [0.9;1.7]

Sliding window 2,
25 bins in [0.9;1.7]

Sliding window 2,
25 bins in [0.9;1.7],
200 ep. training

WIQL type

0.00

0.01

0.02

0.03

0.04

0.05

Pe
rfo

rm
an
ce
 (M

SE
)

Control type
RL-driven controller
Optimal constant control

FIGURE 5.8: DCCAP for WIQL, skipping transition, long test

Best DQN Best DQN, skip 175s Best DQN, skip 175s, 400s test

0.00

0.01

0.02

0.03

0.04

0.05

Pe
rfo

rm
an

ce
 (M

SE
)

Control type
RL-driven controller
Optimal constant control

FIGURE 5.9: DCCAP for best DQN-driven controllers

30 Chapter 5. Extensions

TABLE 5.1: Performance summary (median, mean, std) for best exten-
sions results

Experiment name Median Mean Std

No skipping transition (0-200s)

Baseline 0.0546 0.0613 0.0196

Competing approach (k=7) 0.0126 0.013 0.0043

Q-learning,
[0.9; 1.7] interval,
for APL, 25 bins 0.0121 0.0131 0.0038

Skipping transition (175-375s)

Baseline 0.0221 0.0349 0.0348

Competing approach (k=2) 0.0079 0.008 0.0027

Histogram binning,
Q-learning historic data

(32 episodes) 0.0083 0.0083 0.0029

31

Chapter 6

Conclusions

6.1 Results Summary

Overall results of the project are successful from the point of view of satisfying
original research interests and answering research questions.

First of all, RQ 1 answer was found: it is possible to successfully apply RL to
voltage controller development for the considered setup.

Achieved performance is several times better than baseline, when there is no
controller in the system, and 4% better than the competing approach - optimal
constant control chosen using the whole time interval simulation for the same voltage
controller design - in terms of median performance. The more important advantage
of RL-driven controller is its ability to generalize, i.e. it can be easily applied in wide
time frames, not like the competing approach that uses whole interval simulation to
choose optimal control parameter value.

To find answers to the RQ 3 and RQ 2, Q-learning, its modification taking window
of environment states as inputs and DQN were applied. Q-learning is successful
in getting rough estimates of the performance level that can be achieved, while
more advanced methods can be used to improve controller’s performance. They
achieve this goal in certain setups only and require additional tuning, though. In
particular, DQN has not shown capability to achieve performance superior to the
vanilla Q-learning for this task. The problem formulation may be too simple for such
a generalizing method as a DQN. However, this hypothesis should be investigated
further.

Considering RQ 2 on particularities of the controller development and training,
different continuous state space discretization strategies were applied. The conclusion
is as follows: an increase in performance can be achieved, but any justified strategy
leads to reasonable results, so a breakthrough should not be expected. Accounting
for the problem formulation in case of the considered problem is the most useful for
improving controller’s performance. The gained intuition is to have smaller bins in
part of space with a higher concentration of observations while paying less attention
to other parts of space.

RQ 4 on generalization of the developed approach was considered only partially.
Therefore, it is recommended to investigate this question further in future work.
Summing up the received results, the RL-driven controller is able to generalize well
enough to wider time frames. It is expected that with additional training, it can be
adapted to other system configurations.

Besides, it is important to mention that this problem is high dimensional neither
in state nor in action spaces. Thus, pretty straightforward methods like vanilla Q-
learning lead to good results and thus sophisticated methods like DQN don’t lead
to a breakthrough in performance. At the same time, DQN provides a natural and

32 Chapter 6. Conclusions

convenient way to encode the state of an environment and, consequently, easily scale
the solution to variable RPL.

6.2 Future Work

Overall results of the project are satisfying research interests that inspired this project.
At the same time, there is room for improvement and further research. The main
particularity that influences both is a conscious limitation of the considered problem
formulation. In all considered modifications the limit of performance was reached
in terms of median and average MSE. A possible reason is that local values of APL
and RPL don’t contain all the information required to choose globally optimal control
action. Taking this into account, the following directions for further research can be
outlined:

1. Consider a wider context for decision making - other parameters of the system
can be included in the environment state. As a first option, a binary indicator if
a certain thermostatic load is on can be utilized. Such a change in methodology
may allow developing a better performing controller, but will automatically
change particularities of controller’s utilization.

2. Investigate longer time intervals for training and application, bigger number of
TCLs that are connected to the point of common coupling. This may deepen
understanding of controller generalization abilities.

3. Consider other voltage controller designs.

4. Investigate other intervals of control signal change more thoroughly to make
better conclusions about the optimal interval.

33

Appendix A

Tables

TABLE A.1: Performance of the optimal constant control for determin-
istic TCL parameters initialization case (best results in bold)

Constant RPL Step down in RPL

Value of a control
parameter k

Time step 1s,
MSE

Time step 5s,
MSE

Time step 1s,
MSE

Time step 5s,
MSE

0.5 0.0806 0.0767 0.1145 0.1138
1 0.0806 0.0767 0.1147 0.116
2 0.0909 0.0896 0.1407 0.1494
3 0.0917 0.0789 0.1395 0.1299
4 0.0910 0.0962 0.1394 0.1531
5 0.09 0.0834 0.1405 0.1298
6 0.0913 0.1 0.1350 0.1418
7 0.0894 0.1 0.1334 0.1402

TABLE A.2: Performance summary (median, mean, std) for the base-
line (no control) and the competing approach (optimal constant con-
trol) for stochastic TCLs parameters initialization, 5s control change,

constant RPL of 1.2 (best results in bold)

Value of
a control parameter k Median Mean Std

Baseline 0.0549 0.061 0.0191
0.5 0.0418 0.0425 0.0081
1 0.0437 0.0452 0.0111
2 0.403 0.0420 0.0088
3 0.0363 0.0367 0.0077
4 0.0277 0.0285 0.0055
5 0.0212 0.0223 0.0049
6 0.0177 0.0189 0.0053
7 0.0136 0.0149 0.0047

34 Appendix A. Tables

TABLE A.3: Optimal hyperparameters for the Q-learning

Parameter
Chosen
value

Learning rate 0.5
Exploration rate 0.5

Exploration rate decay 0.9
Discount factor 0.6

Actions [0.1, 0.5, 1, 2, 7]
Reward squared error scaled by -1000

TABLE A.4: Performance summary (median, mean, std) for Q-learning
utilizing smart discretization strategies)

n Experiment name Median Mean Std

1 100 bins in [0.1; 1.7] 0.0123 0.0132 0.0034
2 10 bins in [0.9; 1.7] 0.0126 0.0133 0.0036
3 25 bins in [0.9; 1.7] 0.0121 0.0131 0.0038
4 50 bins in [0.9; 1.7] 0.0126 0.0132 0.0038
5 100 bins in [0.9; 1.7] 0.0127 0.0142 0.0066

6
Histogram binning,

competing approach historic data 0.0123 0.0134 0.0045

7
Histogram binning,

Q-learning historic data (32 episodes) 0.0126 0.0136 0.0042

8

Histogram binning,
competing approach historic data

(200 episodes training) 0.0122 0.0131 0.0039

9
10 quantile bins,

competing approach historic data 0.0128 0.0134 0.0039

10
10 quantile bins,

Q-learning historic data (32 episodes) 0.0126 0.0137 0.0049

11
10 bins, RPL as bin edge

competing approach historic data 0.0123 0.0131 0.0037

12
10 bins, RPL as bin edge

competing approach historic data, 200 episodes 0.0132 0.0164 0.0031

13
10 bins, RPL as bin edge

Q-learning historic data (32 episodes) 0.0126 0.0132 0.0035

Appendix A. Tables 35

TABLE A.5: Performance summary (median, mean, std) for Q-learning
utilizing smart discretization strategies, skipping transition)

n Experiment name Median Mean Std

1 100 bins in [0.1; 1.7] 0.0085 0.0087 0.0036
2 25 bins in [0.9; 1.7] 0.0085 0.0086 0.0027

3
Histogram binning,

competing approach historic data 0.0084 0.0087 0.0027

4
Histogram binning,

Q-learning historic data (32 episodes) 0.0083 0.0083 0.0026

5
10 quantile bins,

competing approach historic data 0.0086 0.0087 0.0027

6
10 quantile bins,

Q-learning historic data (32 episodes) 0.0084 0.0086 0.0026

7
10 bins, RPL as bin edge,

competing approach historic data 0.0086 0.0087 0.0028

8
10 bins, RPL as bin edge,

Q-learning historic data (32 episodes) 0.0087 0.0091 0.0028

9

Histogram binning,
skipping transition,

competing approach historic data 0.0086 0.0088 0.0028

10
10 bins, RPL as bin edge

skip 175s competing approach historic data 0.0083 0.0085 0.0026

TABLE A.6: Performance summary (median, mean, std) for WIQL
experiments)

n Experiment name Median Mean Std

1.1 Vanilla Q-learning, 100 bins in [0.1; 1.7] 0.0123 0.0129 0.0036
1.2 Hop window 2, 100 bins in [0.1; 1.7] 0.0136 0.0147 0.0052
1.3 Hop window 4, 100 bins in [0.1; 1.7] 0.0168 0.0183 0.0062

2.1 Vanilla Q-learning, 10 bins in [0.9; 1.7] 0.0126 0.0133 0.0036
2.2 Sliding window 2, 10 bins in [0.9; 1.7] 0.0133 0.0143 0.0043
2.3 Sliding window 4, 10 bins in [0.9; 1.7] 0.015 0.0173 0.0086

3.1 Vanilla Q-learning, 100 bins in [0.9; 1.7] 0.0127 0.0142 0.0066
3.2 Sliding window 2, 100 bins in [0.9; 1.7] 0.0137 0.015 0.0049
3.3 Sliding window 4, 100 bins in [0.9; 1.7] 0.019 0.0203 0.0055

4
Hop window 2, 100 bins in [0.9; 1.7],

200 episodes training 0.0135 0.0143 0.0035

36 Appendix A. Tables

TABLE A.7: Performance summary (median, mean, std) for WIQL
experiments, skipping transition)

n Experiment name Median Mean Std

2.1 Vanilla Q-learning, 100 bins in [0.1; 1.7] 0.0085 0.0087 0.0036
2.2 Sliding window 2, 10 bins in [0.9; 1.7] 0.0085 0.0086 0.0027
2.3 Sliding window 4, 10 bins in [0.9; 1.7] 0.0086 0.0088 0.0029

3.2 Hop window 2, 10 bins, RPL as bin edge 0.0088 0.0088 0.0025
3.3 Hop window 4, 10 bins, RPL as bin edge 0.009 0.0092 0.0028

3.2 Hop window 2, 30 bins, RPL as bin edge 0.0087 0.0087 0.0028
3.3 Hop window 4, 30 bins, RPL as bin edge 0.009 0.0091 0.0032

3.2 Sliding window 2, 30 bins, RPL as bin edge 0.0083 0.0087 0.0025
3.3 Sliding window 4, 30 bins, RPL as bin edge 0.0084 0.0087 0.0027

TABLE A.8: Optimal hyperparameters for DQN

Parameter
Chosen
value

Batch size 16
Buffer size 200

Hidden layers [32;32]
Exploration rate 0.5

Exploration rate decay 0.9996
Steps between expl.r.decay 1

Discount factor 0.6
Actions [0.1, 0.5, 1, 2, 7]
Reward squared error scaled by -1000

37

Appendix B

Figures

20 30 40 50 60 70 80 90 100
of episode

0.090

0.092

0.094

0.096

0.098

0.100

0.102

Av
er

ag
e

sm
oo

th
ed

 M
SE

Average smoothed last episode MSE vs training time. Different exploration parameters
0.2, 1
1, 0.99
0.5, 0.9
Avg exploit performance

FIGURE B.1: Average smoothed MSE at the end of training episode
for Q-learning, exploration parameters change experiment

38 Appendix B. Figures

20 30 40 50 60 70 80 90 100
of episode

0.014

0.016

0.018

0.020

0.022

Av
er

ag
e

sm
oo

th
ed

 M
SE

Average smoothed last episode MSE vs training time. Different time step
t=1
t=5
Avg exploit performance

FIGURE B.2: Average smoothed MSE at the end of training episode
for Q-learning, optimal hyperparameters experiment

FIGURE B.3: Voltage controller diagram in OpenModelica

Appendix B. Figures 39

FIGURE B.4: OpenModelica diagram of a simulated power system (20
TCLs)

100 ep. 200 ep. 300 ep.
Training length

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Pe
rfo

rm
an

ce
 (M

SE
)

Control type
RL-driven controller
Optimal constant control

FIGURE B.5: DCCAP for Q-learning, step down in RPL, different
training time

40 Appendix B. Figures

10 bins,
[0.9;1.7] interval for APL

100 bins,
[0.9;1.7] interval for APL

100 bins,
[0.1;1.7] interval for APL

0.02

0.04

0.06

0.08

0.10

Pe
rfo

rm
an

ce
 (M

SE
)

Control type
RL-driven controller
Optimal constant control

FIGURE B.6: DCCAP for Q-learning, state space discretization using
different APL intervals and numbers of bins

Histogram
binning (a)

Histogram binning
(a), 200 ep.

RPL as bin edge
(a), 10 bins

RPL as bin edge
(a), 10 bins,

200 ep.

10 bins, [0.9;1.7]
interval for APL

100 bins, [0.1;1.7]
interval for APL

(a) Competing approach historic data, (b) Q-learning historic data

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Pe
rfo

rm
an

ce
 (M

SE
)

Control type
RL-driven controller
Optimal constant control

FIGURE B.7: DCCAP for Q-learning, 100 and 200 episodes of training,
optimal bin width detected with histogram-based approach

Appendix B. Figures 41

Histogram
binning (a)

Histogram
binning (b)

Quantile
bins (a)

Quantile
bins (b)

RPL as
bin edge,
(a), 10 bins

RPL as
bin edge,
(b), 10 bins

25 bins,
[0.9;1.7]

interval for APL

100 bins,
[0.1;1.7]

interval for APL
(a) Competing approach historic data, (b) Q-learning historic data

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

0.0200

Pe
rfo

rm
an
ce
 (M

SE
)

Control type
RL-driven controller
Optimal constant control

FIGURE B.8: DCCAP for Q-learning, smart dicretization strategies,
skipping transition, historic data from 0-200s interval

100 episodes 200 episodes
Training length

0.01

0.02

0.03

0.04

0.05

0.06

Pe
rfo

rm
an

ce
 (M

SE
)

Control type
RL-driven controller
Optimal constant control

FIGURE B.9: DCCAP for WIQL, longer training hypothesis testing

42

Bibliography

Andersson, Christian, Johan Åkesson, and Claus Führer (2016). Pyfmi: A python
package for simulation of coupled dynamic models with the functional mock-up interface.
Centre for Mathematical Sciences, Lund University.

Begovic, Miroslav et al. (2001). “Impact of renewable distributed generation on power
systems”. In: Proceedings of the 34th Annual Hawaii International Conference on System
Sciences. IEEE, pp. 654–663.

Bogodorova, Tetiana, Luigi Vanfretti, and Konstantin Turitsyn (2016). “Voltage control-
based ancillary service using thermostatically controlled loads”. In: 2016 IEEE
Power and Energy Society General Meeting (PESGM). IEEE, pp. 1–5.

Brockman, Greg et al. (2016). “Openai gym”. In: arXiv preprint arXiv:1606.01540.
Claessens, Bert J et al. (2018). “Model-free control of thermostatically controlled loads

connected to a district heating network”. In: Energy and Buildings 159, pp. 1–10.
Diaconis, P and D Freedman (1981). “On the histogram as a density estimator: L2 the-

ory”. In: Zeitschrift fur Wahrscheinlichkeitstheorie und verwandte Gebiete 57, pp. 453–
476.

Diao, Ruisheng et al. (Apr. 2019). “Autonomous Voltage Control for Grid Opera-
tion Using Deep Reinforcement Learning”. In: arXiv e-prints, arXiv:1904.10597,
arXiv:1904.10597. arXiv: 1904.10597 [cs.SY].

Ernst, Damien et al. (2008). “Reinforcement learning versus model predictive control:
a comparison on a power system problem”. In: IEEE Transactions on Systems, Man,
and Cybernetics, Part B (Cybernetics) 39.2, pp. 517–529.

Functional Mock-up Interface (2019). URL: https://fmi-standard.org/.
Heffner, Grayson (2008). “Loads providing ancillary services: Review of international

experience”. In:
Houwing, Michiel, Rudy R Negenborn, and Bart De Schutter (2010). “Demand re-

sponse with micro-CHP systems”. In: Proceedings of the IEEE 99.1, pp. 200–213.
Ipakchi, Ali and Farrokh Albuyeh (2009). “Grid of the future”. In: IEEE power and

energy magazine 7.2, pp. 52–62.
Kirby, BRENDAN and Eric Hirst (1999). “Load as a resource in providing ancillary

services”. In: Lockheed Martin Energy Research, Oak Ridge National Laboratory. Oak
Ridge, TN.

Lukianykhin, Oleh and Tetiana Bogodorova (Sept. 2019). “ModelicaGym: Applying
Reinforcement Learning to Modelica Models”. In: arXiv e-prints, arXiv:1909.08604,
arXiv:1909.08604. arXiv: 1909.08604 [cs.SE].

Ma, O. et al. (Dec. 2013). “Demand Response for Ancillary Services”. In: IEEE Transac-
tions on Smart Grid 4.4, pp. 1988–1995. ISSN: 1949-3053. DOI: 10.1109/TSG.2013.
2258049.

Meyn, Sean P et al. (2015). “Ancillary service to the grid using intelligent deferrable
loads”. In: IEEE Transactions on Automatic Control 60.11, pp. 2847–2862.

Mnih, Volodymyr et al. (2015). “Human-level control through deep reinforcement
learning”. In: Nature 518.7540, p. 529.

Moriyama, Takao et al. (2018). “Reinforcement Learning Testbed for Power-Consumption
Optimization”. In: Asian Simulation Conference. Springer, pp. 45–59.

https://arxiv.org/abs/1904.10597
https://fmi-standard.org/
https://arxiv.org/abs/1909.08604
https://doi.org/10.1109/TSG.2013.2258049
https://doi.org/10.1109/TSG.2013.2258049

Bibliography 43

Rebours, Yann G et al. (2007a). “A survey of frequency and voltage control ancillary
services—Part I: Technical features”. In: IEEE Transactions on power systems 22.1,
pp. 350–357.

— (2007b). “A survey of frequency and voltage control ancillary services—Part II:
Economic features”. In: IEEE Transactions on power systems 22.1, pp. 358–366.

Riedmiller, Martin et al. (July 2009). “Reinforcement learning for robot soccer”. In:
Autonomous Robots 27.1, pp. 55–73. ISSN: 1573-7527. DOI: 10.1007/s10514-009-
9120-4. URL: https://doi.org/10.1007/s10514-009-9120-4.

Ruelens, Frederik et al. (2016). “Reinforcement learning applied to an electric water
heater: from theory to practice”. In: IEEE Transactions on Smart Grid 9.4, pp. 3792–
3800.

Silver, David et al. (2016). “Mastering the game of Go with deep neural networks and
tree search”. In: Nature 529, pp. 484–503. URL: http://www.nature.com/nature/
journal/v529/n7587/full/nature16961.html.

S.Mottahedi (2019). Battery Energy Management System Using Reinforcement Learning.
URL: https://github.com/smottahedi/RL-Energy-Management/blob/master/
presentation.ipynb.

Tindemans, Simon H, Vincenzo Trovato, and Goran Strbac (2015). “Decentralized
control of thermostatic loads for flexible demand response”. In: IEEE Transactions
on Control Systems Technology 23.5, pp. 1685–1700.

Totu, Luminita Cristiana (2015). “Large scale demand response of thermostatic loads”.
PhD thesis. PhD thesis, Faculty of Engineering and Science, Aalborg University.

Vázquez-Canteli, José R and Zoltán Nagy (2019). “Reinforcement learning for demand
response: A review of algorithms and modeling techniques”. In: Applied energy
235, pp. 1072–1089.

Vinyals, O. et al. (2019). AlphaStar: Mastering the Real-Time Strategy Game StarCraft
II. URL: https : / / deepmind . com / blog / alphastar - mastering - real - time -
strategy-game-starcraft-ii/.

Zhang, Wei et al. (2012). “Aggregate model for heterogeneous thermostatically con-
trolled loads with demand response”. In: 2012 IEEE Power and Energy Society
General Meeting. IEEE, pp. 1–8.

https://doi.org/10.1007/s10514-009-9120-4
https://doi.org/10.1007/s10514-009-9120-4
https://doi.org/10.1007/s10514-009-9120-4
http://www.nature.com/nature/journal/v529/n7587/full/nature16961.html
http://www.nature.com/nature/journal/v529/n7587/full/nature16961.html
https://github.com/smottahedi/RL-Energy-Management/blob/master/presentation.ipynb
https://github.com/smottahedi/RL-Energy-Management/blob/master/presentation.ipynb
https://deepmind.com/blog/alphastar-mastering-real-time-strategy-game-starcraft-ii/
https://deepmind.com/blog/alphastar-mastering-real-time-strategy-game-starcraft-ii/

	Declaration of Authorship
	Abstract
	Acknowledgements
	Introduction
	Background and Domain Overview
	Motivation
	Problem Formulation and Research Objectives
	Thesis Structure

	Related Work
	Energy Imbalance Management Ancillary Services
	Reinforcement Learning in Power Systems

	Approach to Solution
	High-level Overview
	Model
	Experiments Pipeline
	Reinforcement Learning
	Exploration-exploitation trade-off
	Smart discretization strategies
	Q-learning
	Window-input Q-learning
	Experience replay and DQN

	Proof of Concept
	Baseline and Competitors
	Deterministic case
	Stochastic case

	Q-learning
	Deterministic case
	Stochastic case

	Summary

	Extensions
	Smart Discretization Strategies
	Equal-width interval
	Optimal bin width detection
	Quantiles of historic data
	Accounting for problem formulation
	Transferring results to skipping transition process case

	Window-input Q-learning (WIQL)
	WIQL for the initial experimental setup
	WIQL for the skipping transition experiment

	Experience Replay and DQN
	Summary

	Conclusions
	Results Summary
	Future Work

	Tables
	Figures
	Bibliography

