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Parameterizing Human Speech Generation

by Nazariy PEREPICHKA

In modern days synthesis of human images and videos is arguably one of the most
popular topics in the Data Science community. The synthesis of human speech is less
trendy but deeply bonded to the mentioned topic. Since the publication of WaveNet
paper by Google researchers in 2016, the state-of-the-art approach transferred from
parametric and concatenative systems to deep learning models.

Most of the work on the area focuses on improving the intelligibility and natu-
ralness of the speech. However, almost every significant study also mentions ways
to generate speech with the voices of different speakers. Usually, such an enhance-
ment requires the model’s re-training in case of generating audio with the voice of a
speaker that was not present in the training set.

Additionally, studies focused on highly modular speech generation are rare. There-
fore there is a room left for research on ways to add new parameters for other aspects
of the speech, like sentiment, prosody, and melody.

In this work, we aimed to implement a competitive text-to-speech solution with
the ability to specify the speaker without model re-training and explore possibilities
for adding emotions to the generated speech.

Our approach generates good quality speech with the mean opinion score of 3,78
(out of 5) points and the ability to mimic speaker voice in real-time, which is a sig-
nificant improvement over the baseline that merely obtains 2,08. On top of that, we
researched sentiment representation possibilities. We built an emotion classifier that
performs on the level of the current state of the art solutions by giving an accuracy
of more than eighty percent.
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Chapter 1

Introduction

1.1 Motivation

The speech synthesis problem has a long research history. The desire to generate
human speech from a written text is easy to understand, given that the potential ar-
eas of applications for such systems are enormous: generation of audio-books, voice
acting of films, making computer systems socially accessible. Most of the possible
applications require not only high quality of the speech but also the ability to specify
other speech parameters, like tone and accent, speaker voice and emotion, melodic
and rhythmic components.

In the last five years, the researchers have made significant progress in this field.
The big breakthrough happened with the applying of deep learning techniques to
the task (A. v. d. Oord et al., 2016). Every year, the solutions diminish the difference
between program-generated and human speech samples(Arik et al., 2017, Wang et
al., 2017, Shen et al., 2018) and optimize training time (A. v. d. Oord et al., 2017,
Kalchbrenner et al., 2018).

Though the quality of generated speech increased, the replication of speech pa-
rameters is still a pretty young research area(Jia et al., 2019, Y. Wan et al., 2018).
The ability to generate natural-sounding, emotional speech can become the next big
breakthrough in the speech synthesis domain.

1.2 Goals and Contributions

The main goal of this work is to implement the end-to-end Text To Speech (TTS)
system, which generates reasonable speech output with limited computational re-
sources. Also, we studied and tested the possibilities for speech parameterization
by criteria, like voice and sentiment.

Developing such a TTS model requires a setup of a framework for the evaluation
of results and profound research in the field of speech synthesis.

The main contributions of this thesis are:

• Implementation of a TTS system with limited computational resources.

• Creating a framework for human evaluation of the experiments.

• Building of representation emotions representation from speech audio.
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1.3 Thesis structure

In Chapter 2, we review the theoretical background needed for the research. It con-
tains two parts: Signal Processing and Deep Learning theory. Signal processing is re-
quired to understand audio representations and preprocessing techniques for them.
The Deep Learning section contains an explanation of the theory and algorithms
mentioned in the thesis.

Next, in Chapter 3, we provide an overview of the related work in the field.
Chapter 4 explains our proposed method for the solution and go over architec-

tural decisions made during the research.
In Chapter 5, we describe the experiments, evaluation framework, and results of

the work.
Finally, in Chapter 6, we summarize the thesis: provide key results and discuss

possible directions of further work.
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Chapter 2

Background

In this chapter, we describe the background knowledge needed to develop this work.
The chapter is divided into two sections. The first one provides a background for the
understanding of the most relevant components of audio generation and processing.
The second section overviews deep learning algorithms, as nowadays, they are the
primary approach for speech synthesis.

2.1 Signal Processing

The most basic TTS task definition is a mapping of written words to the audio file.
It requires experience in working with sounds in digital formats. The domain of
expertise, which covers manipulations with sound representation, is called signal
processing.

The need to process (store, compress, modify) the sound urged with the ap-
pearance of the first "ear-oriented" electronic devices(radio, telephone, phonograph)
(Spanias, Painter, and Venkatraman, 2006). Therefore, the field of audio signal pro-
cessing has a history of more than one hundred years, and in the following section,
we present core definitions and algorithms related to the research.

2.1.1 Audio formats

The physics definition of sound is a vibration that propagates in a waveform through
transmission matter as gas, liquid, or solid.

Two main characteristics of a sound are amplitude and frequency. Amplitude is
the size of the vibration, and it defines the loudness of the sound. Frequency is the
speed of the vibration, and it determines the pitch of the sound.

The most basic application of the audio signal processing field is storing of sounds.
Two main techniques for storing a sound is through analog and digital signals. Ana-
log signals are continuous, and usually, they present sound waves in the air by corre-
sponding electrical voltage. Digital signals are discrete and approximate the sound
by a sequence of binary numbers.

Most of the datasets suitable for developing of a TTS system contain audio in
Waveform Audio File Format(WAV). WAV files do not compress the audio and rep-
resent the sound directly by capturing the raw value of sound waves in a particular
period.

WAV format has two main characteristics:

• sampling rate - the number of samples recorded per second; commonly mea-
sured in Hz;

• bitrate - number of bits needed to store one second of audio;
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2.1.2 Fourier transform

Fourier transform is the core algorithm for audio signal processing, based on the
Euler’s identity formula(2.1), which defines the fundamental relation between the
trigonometric functions and complex exponential function (Rahman, 2011).

ejω = cos(θ) + jsin(θ) (2.1)

Fourier transform allows us to decompose a function of time into its constituent
frequencies. For a continuous function, the formula is defined as in (2.2).

X(ω) =
∫ ∞

−∞
x(t)e−jwt dt, ω ∈ (−∞, ∞) (2.2)

For the processing of digital signals more useful is the discrete variation of the for-
mula (2.3).

X(ωk) =
N−1

∑
n=0

x(tn)e−jwktn , k = 0, 1, 2, .., N − 1 (2.3)

The result of the Fourier transform is often referred to as a spectrum.
Another Fourier transform modification used for audio processing is the short-

term Fourier transform(STFT). STFT divides longer time signals into shorter com-
ponents and computes Fourier transform on each of them. This approach allows
to tractate change of a spectrum as a function of time (Sejdića, Djurović, and Jiang,
2009).

2.1.3 Spectrogram

The result of the Fourier transform can be visualized with a spectrogram. A spectro-
gram is a graph of frequencies through time. The intensity of frequencies(amplitudes)
is usually defined through the corresponding color scale.

2.1.4 MEL-spectrogram

Spectrograms give the ability to understand the sound in a more intuitive way. The
main problem with this approach is that the human ear is not a perfect audio re-
ceiver, and we perceive sounds in the range from 20Hz to 20kHz(Olson, 1967). The
human perception of the sound has the associative nature: we hear different sound
frequencies with a specific step as the same. The whole classical music theory is built
on this fact.

To incorporate the subjectivity of human perception, the group of Harvard re-
searchers introduced the scale (Stevens et al., 1937), which maps Hz to mels. Mel is a
defined unit of frequency, which represents frequency in the human hearing range.
There is no unified formula for the mapping, but the most commonly used one is
(O’Shaughnessy, 1987).

m = 2595 log10(1 + f /700) (2.4)

After converting frequency values to this psycho-acoustic scale, we can visualize
signals using spectrograms. The result is called Mel-spectrogram.

The Mel scale emphasizes frequencies, which are perceived by a human. Figure
2.1 shows the difference between regular and Mel spectrograms.
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FIGURE 2.1: Visualization of audio spectrograms in Linear and Mel
scales accordingly

2.2 Deep Learning

Current SOTA approaches for TTS problems are based on Deep Learning techniques.
The proposed solution explicitly relies on the Neural Network theory.

In this section, I provide the theoretical background needed to understand the
methods mentioned in the thesis.

2.2.1 Neural Networks

A neural network(NN) is a computing system inspired by the structure and com-
putational behavior of the human brain. NNs provide a way for solving complex
nonlinear tasks, which cannot be solved with classical algorithms.

NNs are composed of layers, which are composed of nodes called neurons. Each
node has an activation function and weight coefficient, which reflects the importance
of the node output in the layer. Based on the output of the NN, we calculate the
function, which reflects the quality of the output, - loss function - and based on the
chain rule, we modify the weights to optimize the loss function.

2.2.2 Convolutional Neural Networks

Convolutional Neural Network(CNN) is a neural network, which uses convolution
operation (Goodfellow, Bengio, and Courville, 2016).

CNNs are dominant in the field of computer vision. They recognize visual pat-
terns in the images by applying convolutional operation and extract more complex
patterns with every following layer (Lecun et al., 1998).

2.2.3 Recurrent Neural Network

Recurrent Neural Networks(RNN) are a subset of artificial neural networks. They
are mostly used for sequence data. By using an internal state, models process se-
quences of inputs. RNNs are crucial for the TTS systems, as human speech is se-
quential by its nature.

RNNs have different types of architecture. We describe only two of them, which
are the most important for our research.
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FIGURE 2.2: Visualization of LSTM cell (Bolaños et al., 2017)

Long Short-Term Memory

Long Short-Term Memory(LSTM) is an RNN architecture introduced in 1997 (Hochre-
iter and Schmidhuber, 1997).

LSTM captures patterns in the long sequences by storing intermediate results
in the memory cells; therefore, they are well-suited for time series data with more
extended periods between important events. LSTM also solves the problem of van-
ishing and exploding gradients.

The visualization of LSTM cell is presented in 2.2 figure. The mathematical defi-
nitions can be found in 2.5.

ft = σg(W f xt + U f ht−1 + b f )
it = σg(Wixt + Uiht−1 + bi)
ot = σg(Woxt + Uoht−1 + bo)
ct = ft ◦ ct−1 + it ◦ σc(Wcxt + Ucht−1 + bc)
ht = ot ◦ σh(ct)

(2.5)

Since the introduction of the architecture, it achieved excellent results for the
tasks related to modeling text and audio.

Gated Recurrent Unit

Gated Recurrent Unit (GRU) was introduced in 2014 (Cho et al., 2014) to simplify the
LSTM structure. GRUs perform similar to LSTM cells but are more computationally
efficient due to less learnable parameters.

The 2.3 shows the internal structure of the GRU cell. The mathematical definition
presented by formulas in 2.6.
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FIGURE 2.3: Visualization of GRU cell (Huang et al., 2019)

zt = σg(Wzxt + Uzht−1 + bz)
rt = σg(Wrxt + Urht−1 + br)
ht = zt ◦ ht−1 + (1− zt) ◦ φh(Whxt + Uh(rt ◦ ht−1) + bh)

(2.6)
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Chapter 3

Related Work

In this chapter, we describe the transition of TTS systems from more algorithmic
approaches to current solutions. We focus on the Deep Learning systems, as they
are more relevant to our proposed method.

3.1 Concatenative systems

Concatenative systems are the implementation of the intuitive idea to compose the
speech audio out of small pre-recorded samples. This system builds output by con-
catenating recording units(words, phonemes).

Such an approach satisfies the intelligibility requirement, but it has multiple
drawbacks: large, hard to collect unit database; unnatural "robotic" sound; hard-
coded rule-based programming (Zhang, 2004).

3.2 Parametric systems

Parametric systems are a statistical approach for speech generation. Such systems
synthesize speech based on acoustic and linguistic features. Such models use Hid-
den Markov Models, and speech waves are generated based on the maximum like-
lihood criterion (Tokuda et al., 2013).

The general pipeline for developing parametric TTS can be found in Figure 3.1.
Parametric TTS requires feature engineering by hand, and it is the main draw-

back of approach. Hypothetically, with proper features selection, such systems should
work on the same level as deep learning models, but practically such systems per-
form much poorly.

FIGURE 3.1: General schema of parametric TTS systems
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FIGURE 3.2: Visual representation of WaveNet convolutional layers
(A. v. d. Oord et al., 2016)

3.3 Griffin-Lim Algorithm

The Griffin-Lim Algorithm was introduced in 1984 (Griffin and Lim, 1983). GLA
estimates the signal from its modified short-time Fourier transform.

The GLA is iterative, and it minimizes the mean squared error between estimated
and modified Short Time Fourier Transforms.

3.4 Wavenet

The big breakthrough in speech synthesis happened with the publication from Google
Deepmind in 2016 (A. v. d. Oord et al., 2016). The researchers presented a new ar-
chitecture called WaveNet, which operates directly on the raw audio waveform and
functions as a vocoder(model for audio generation). The joint probability of a wave-
form is factorized as a product of conditional probabilities, as follows:

p(x) =
T

∏
t=1

p(xt|x1, ..., xt−1) (3.1)

The authors modeled the conditional probability distribution with a stack of con-
volutional layers. On the output layer, they receive conditional probability distribu-
tion for xt given by softmax function.

For modeling, authors used gated activation units of the following form inspired
by PixelCNN (Aaron van den Oord, 2016) architecture.

In the paper, authors mention the ability to parameterize output audio by incor-
porating additional parameters h in the joint probability, as follows:

p(x|h) =
T

∏
t=1

p(xt|x1, ..., xt−1, h) (3.2)

For their research, they parameterized the narrator - by training on the dataset
with multiple speakers - and text - by passing linguistic features of the text.

The TTS solution significantly outperformed all of the previous benchmarks.

3.5 Tacotron 2

In 2018 Google researchers presented the paper (Shen et al., 2018), which describes
Tacotron 2 architecture for speech synthesis.
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FIGURE 3.3: Histogram of MOS scores for WaveNet and other TTS
approaches (A. v. d. Oord et al., 2016)

The model projects text to MEL-scale spectrograms and then uses a modified
Wavenet vocoder to audio output itself. This architecture combines WaveNet and
Tacotron 1 models.

Tacotron 2 achieved a MOS score of 4.53, in comparison to 4.58 by the profession-
ally recorded human speech.

3.6 Generalized End-To-End Loss For Speaker Classification

In 2019 Google researchers published a paper (L. Wan et al., 2018), in which they in-
troduced new loss function(GEEL) for more efficient training of speaker recognition
models.

For k speakers with M utterances, the model finds k centroids, which represent
the voice in the best way. Centroids are defined through the following formula:

ck =
M

∑
m=1

ekm/M (3.3)

Using LSTM-based architecture, they build speaker embedding, which is an L2-
normalized output of the model.

On each step, the similarity matrix Sji,k is built. It contains cosine similarities
values between each embedding vector eji and each centroid ck.

Sji,k = ω ∗ cos eji, ck + b (3.4)

The final classification layer is softmax. The authors define two losses: standard
and contrast. Standard loss has the following form:

L(eji) = −Sji,j + log
N

∑
k=1

exp(Sji,k) (3.5)



3.7. Voice Cloning 11

FIGURE 3.4: Tacotron 2 architecture (Shen et al., 2018)

For the positive pairs and most aggressive negative pairs authors introduce con-
trast loss:

L(eji) = 1− σ(Sji,j) + max σ(Sji,k) (3.6)

The final loss is a sum of previously defined:

LG(x; w) = ∑
j,i

L(eji) (3.7)

In their paper, researchers showed theoretical and experimental results, which
proved the superiority of the GEEL loss over its predecessors.

3.7 Voice Cloning

At the beginning of 2019, Google published the paper (Jia et al., 2019), which brought
together ideas from Wavenet, Tacotron 2, and Generalized End-To-End Loss For
Speaker Classification sections.

The paper described the TTS system, which allows performing real-time voice
cloning.

The model consists of three parts: speaker encoder trained with GEEL loss, syn-
thesizer with Tacotron 2 architecture, and Wavenet Vocoder. Each module of the
final network trains separately and is replaceable by other architectures.

The authors did not share specifications for the model’s architecture but the pre-
sented results, which showed the ability to generate high-quality human speech
with the different voices and generalize to voices, which were not present in the
training set.
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3.8 WaveRNN

In 2018 researchers of DeepMind presented their approach for vocoding (Kalchbren-
ner et al., 2018). The paper introduces WaveRNN architecture, which aims to be
more computationally efficient than the current SOTA solution - WaveNet.

Instead of a convolutional approach to audio sequence computation, WaveRNN
uses a modification of GRU cells. Experiments showed that WaveRNN performs
worse than WaveNet, but with the increasing of hidden units, the difference becomes
insignificant, and computational benefits are valid.

The WaveRNN vocoder is suitable for training on personal computers and rather
modest hardware, unlike the WaveNet one.
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Chapter 4

Proposed method

In this work, we aimed to implement the working TTS system with an ability of
parameterization by different factors.

We planned to build the model similar to the one described in the Voice Cloning
section. However, there are several challenges to achieve that goal:

• The described paper (Jia et al., 2019) did not provide concrete details of imple-
mentation (preprocessing parameters, projection size of the embedding, hy-
perparameters),

• Training of the WaveNet vocoder was not feasible with the computational re-
sources in our possession.

The first problem was solved by trial and error, and by experimenting with dif-
ferent approaches. We built our preprocessing engine and chose hyperparameters
during the initial phases of the research. For the second problem, the only suitable
solution was to replace original vocoder architecture with more suitable and com-
putationally efficient.

On figure 4.1, the general architecture of the proposed solution is displayed. In
the following subsections, we provide details on each part of the system.

4.1 Encoders

For encoding of voice, we implemented the model from Voice Cloning(Jia et al.,
2019) with Generalized End-To-End Loss For Speaker Classification(L. Wan et al.,

FIGURE 4.1: Generalized training flow for the proposed architecture
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FIGURE 4.2: Encoder architecture used for general model

2018). We used two LSTM layers with 256 hidden units per each with the projection
layer. We tried projection layers with different sizes, but in the end, the projection
size of 256 worked the best.

For the learning of embeddings, we needed a dataset with a high-variety of
speakers and emotions. There are multiple datasets for the speaker recognition task,
which suit the objective. For the sentiment classification, there are fewer datasets
available, and the majority of them are expensive.

For the training of the Mel synthesizer, there are more requirements for the dataset.
Data should contain annotated text, speaker, and emotion. We did not find a database,
which suits the description.

The initial idea for tackling of this problem was to classify emotions in the avail-
able voice+text datasets. The open-source implementations of sentiment classifiers
did not have an accuracy needed; therefore, we used our implementation of the en-
coder for the classification problem but faced the issue of a high imbalance in the
datasets suited for synthesizer training.

As a result, we parameterized the speech generation only by voice and built a
sentiment classifier.

4.2 Mel synthesis

For Mel Synthesizer, we used Tacotron 2 architecture (Shen et al., 2018) parameter-
ized by voice embedding.

We decided to use Mel preprocessing as it shows better results for speech gener-
ation then modeling on the raw waveform. During the research, we experimented
with other ways to represent audio(Harmonic Model, Harmonic Product Spectrum.)
but failed due to the complexity of such techniques and the absence of starting point
for such an approach. Though we believe that such representation of audio can out-
perform models with Mel representation, we decided to use a time-proven solution.

4.3 Vocoder

For the final vocoder, we used WaveRNN (Kalchbrenner et al., 2018) architecture.
Other two possible options were Griffin-Lim algorithm (Griffin and Lim, 1983) and
Wavenet model(A. v. d. Oord et al., 2016).

Griffin-Lim algorithm was not included in the final model due to much worse
performance than WaveRNN and WavNet, but due to its simplicity and compu-
tational efficiency, it was used for quick calculation of intermediate results of Mel
synthesizer and debugging purposes.

WaveNet vocoder is the current SOTA solution, but the architecture size and
amount of computation power needed to re-train it was not feasible for us.
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Chapter 5

Experiments And Evaluation

5.1 Datasets Description

The building of a TTS system is a complex task, which requires many data. The table
below provides the technical description of datasets used for model training.

Dataset Name Size Samples File Format Model Trained

LJ Speech Dataset 24 hours 13,100 .wav Baseline, WaveRNN
VoxCeleb1 2000 hours 1 million .wav Voice Encoder
VoxCeleb2 2000 hours 1 million .wav Voice Encoder

LibriSpeech 1000 hours 500,000 .flac Mel Synthesizer, Vocoder
Ravdess Speech 2 hours 1440 .wav Sentiment Encoder

TABLE 5.1: Datasets description

Those four datasets were used for the training of the final models.

• LJ Speech (Ito, 2017)

The database contains audio clips of a single speaker with transcriptions of the
spoken time. The dataset is relatively light-weight and was mostly used for
the testing and debugging purposes

• VoxCeleb1 (Nagrani, Chung, and Zisserman, 2017)

The dataset contains audio clips of more than 7,000 speakers without text tran-
scriptions. It was used for the training of voice embeddings

• VoxCeleb2 (Nagrani, Chung, and Zisserman, 2018)

The database contains audio clips of more than 6,000 speakers without text
transcriptions without overlap with VoxCeleb1. It was used for the training of
voice embeddings.

• LibriSpeech (Panayotov et al., 2015)

Dataset formed from audiobooks from the LibriVox project 1 with more than
1,000 speakers and annotation of spoken text. It was used for the training of
voice embeddings and Mel synthesizer.

• Ravdess (Livingstone and Russo, 2018)

Dataset of emotional speech with video and audio parts. It contains recordings
of two sentences said by twelve actors with eight different emotions.

1https://librivox.org/

https://librivox.org/
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5.2 TTS model

5.2.1 Baseline model

For the starting point, we took an outsource implementation of Tacotron (Shen et al.,
2018) with the Griffin-Lim Algorithm vocoder(Griffin and Lim, 1983. 2

We re-trained the model on LJSpeech Dataset. The output of the model was
not close to the SOTA results. However, computational powers utilized by Google
researchers for such models are uncomparable to the one that we had, so we decided
that the current model will suit as a sufficient benchmark.

5.2.2 TTS experiments

The voice encoder was trained on VoxCeleb1, VoxCeleb2, and LibriSpeech datasets.
During the implementation, we have experimented with different sizes of pro-

jection layers. Based on the early results of the training, we chose to construct an
embedding of 256 units. The original model was trained on the much bigger dataset,
constructed from a combination of open-source sources and exclusive to the authors’
samples. Despite the difference in the training data, our model showed the ability
to extract voice features. During the exploration of intermediate results, we also dis-
covered that the model captured slight intonation, accent, and prosody features of
the speaker.

The initial point for the Tacotron model was the baseline implementation, which
we parameterized by voice embedding and trained the model on the LibriSpeech
dataset. For quick iteration and intermediate results generation, we used Griffin-
Lim Algorithm algorithm from the baseline model.

For vocoder, we used pre-trained open-source implementation of WaveRNN ar-
chitecture 3, and trained it further on the LibriSpeech dataset.

5.2.3 Evaluation approach

The main two goals of the TTS system are intelligibility (capability of being under-
stood) and naturalness (ability to mimic human speech). The human perception of
the output defines both of the evaluation parameters. Therefore the evaluation of
TTS systems requires subjective techniques for quality measurements.

The most popular metric is the mean opinion score (MOS) - average grade given
to the audio sample by respondents. MOS is arithmetic mean over user-given rating
and depends on two parameters: quantity of respondents and grading scale:

MOS =
∑N

n=1 Rn

N
(5.1)

5.2.4 Evaluation Framework

For the evaluation of generated speech, we developed a web tool 4 with the interface
for evaluation of the TTS system and quality of voice copying.

For the TTS evaluation, we selected fifty sentences(see Evaluation sentences Ap-
pendix) and synthesized audio, using baseline and final models. For the final model,

2https://github.com/keithito/tacotron
3https://github.com/fatchord/WaveRNN
4https://tts-estimation.azurewebsites.net/

https://github.com/keithito/tacotron
https://github.com/fatchord/WaveRNN
https://tts-estimation.azurewebsites.net/
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(A) TTS evaluation

(B) Voice Evaluation

FIGURE 5.1: Screenshots of a user interface for model evaluation
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FIGURE 5.2: Visualization of learned sentiment embeddings

we used two voices: male and female, which were present in the training set and col-
lected 5000 scores in total from 200 people.

Model Mean Opinion Score

Baseline 2,08
Parameterized with female voice 3,78
Parameterized with male voice 3,75

TABLE 5.2: Evaluation results of TTS

For the quality of voice copying, we synthesized audio on one specific sentence
and instructed respondents to take into account the only similarity between the orig-
inal voice and generated one. The embedding vectors were formed for eight speak-
ers from samples of different lengths: 3, 5, and 8 seconds. In total, we received 400
scores for the generated samples from 50 unique evaluators.

Sample Length Mean Opinion Score

3 seconds 2,65
5 seconds 2,70
8 seconds 2,77

TABLE 5.3: Evaluation results for voice copying

5.3 Sentiment Classification

For the training, we used the Ravdess dataset and used the same architecture, as for
voice encoder. As a benchmark, we took the open-source implementation of emotion
recognizer, which had reported and accuracy of 76,6 percent on the test set. 5

Due to the small size of the training set, the number of steps needed for training
of the classifier was much smaller than for previously mentioned models. The model
faced overfitting problems, which we resolved by adding a recurrent dropout to the
initial architecture.

5https://github.com/maelfabien/Multimodal-Emotion-Recognition

https://github.com/maelfabien/Multimodal-Emotion-Recognition
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5.3.1 Sentiment Classifier Evaluation

We trained the model on the Ravdess dataset. During the training, we faced a high
variance problem, which was resolved by adding recurrent dropouts to the LSTM
layers. We outperformed the baseline model by achieving an accuracy of 81,3 per-
cent with an F1 macro score of 80,56.

The detailed evaluation of the classifier is presented in the table below:

class precision recall f1-score

neutral 0,86 1,00 0,92
calm 1,00 1,00 1,00

happy 0,80 0,33 0,47
sad 0,60 0,75 0,67

angry 1,00 1,00 1,00
fearful 1,00 1,00 1,00
disgust 0,36 0,42 0,38

surprised 1,00 1,00 1,00

weighted average 0,83 0,81 0,81

TABLE 5.4: Sentiment classification results

The model outperformed the baseline result, but it is unlikely that it generalizes
to the real-world scenarios, due to the size and variety of dataset.
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Chapter 6

Conclusions

In our work, we researched modern approaches for high-quality human speech gen-
eration. The main achievements of this work are the following:

• We built the working TTS system with the ability to parameterize speech gen-
eration by voice in real-time.

• We developed an evaluation framework for the subjective estimation of sys-
tems for speech generation.

• We improved the quality of synthesized speech in comparison to the baseline
solution by 1,6 points (out of five) in the opinion score.

• We did not achieve the same quality of voice parameterization as in Jia et al.,
2019, but we observed the same tendencies. Worse quality can be explained by
a much smaller dataset, and learning time.

• We showed that the method for the embedding of voice could be applied to
the embedding of sentiment.

• We build the emotion classifier, which outperformed the baseline model and
introduced the new method for emotion recognition of audio.Current classifi-
cation results are close to SOTA solutions (Yoon, Byun, and Jung, 2018, Etienne
et al., 2018) built on bigger datasets.

6.1 Future work

The main point of the future work is constructing the dataset suitable for training of
the TTS system with the ability of voice parameterization.

Another direction of future work would be to focus on emotion recognition from
audio, as the current result is promising, and we did not find mentions of the recur-
rent encoder with the GEEL loss function applied to the classification task.

The last thing would be to continue experiments with other audio representa-
tions and compare other acoustic models to the Mel-based preprocessing.
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Appendix A

Evaluation sentences

1. Where is the Money, Lebowski? Where is the Money?!

2. Oak is strong and also gives shade.

3. Cats and dogs each hate the other.

4. The pipe began to rust while new.

5. Open the crate, but don’t break the glass.

6. Add the sum to the product of these three.

7. Thieves who rob friends deserve jail.

8. The ripe taste of cheese improves with age.

9. Act on these orders with great speed.

10. The hog crawled under the high fence.

11. Move the vat over the hot fire.

12. But now you come to me, and you say: ’Don Corleone, give me Justice.’ But
you don’t ask with respect; you don’t offer friendship.

13. Get out of here, robber! I said get out of here!

14. London is the capital of the great Britain.

15. My mother thanks you. My father thanks you. My sister thanks you. And I
thank you.

16. I am the lizard king. I can do anything. We came down. The rivers and high-
ways. We came down from. Forests and falls

17. This kid’s going to be the best kid in the world. This kid’s going to be some-
body better than anybody I ever knew.

18. I want to break free. I want to break free from your lies. You’re so self satisfied
I don’t need you.

19. What are they doing in the Hyacinth House? To please the lions this day.

20. Yesterday all my troubles seemed so far away. Now it looks as though they’re
here to stay.

21. The time to hesitate is through. No time to wallow in the mire.
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22. Hey, guys. It’s John and welcome to another video. Let’s jump right into it.

23. That it’s a thriller, thriller night. Cause I can thrill you more than any ghost
would ever dare try.

24. I’ve just seen a face I can’t forget the time or place where we just met. Had it
been another day I might have looked the other way.

25. You need cooling. Baby I’m not fooling. I’m gonna send ya back to schooling.

26. Scaramouche, Scaramouche, will you do the Fandango?

27. So you think you can stone me and spit in my eye? So you think you can love
me and leave me to die?

28. I know a girl called Elsa. She’s into Alka Seltzer. She sniffs it through a cane
on a supersonic train.

29. As I walk through the valley of the shadow of death I take a look at my life
and realize there’s not much left.

30. Call up, ring once, hang up the phone to let me know you made it home. If
she’s with me I’ll blink the lights to let you know tonight’s the night.

31. Sun lights up the daytime, moon lights up the night. I light up when you call
my name, and you know I’m gonna treat you right.

32. Georgia, Georgia. The whole day through. Just an old sweet song keeps Geor-
gia on my mind.

33. Every evening, evening happens all of a sudden.

34. For though they may be parted, there is still a chance that they will see. There
will be an answer, let it be.

35. Summertime and the livin’ is easy. Fish are jumpin’ and the cotton is high.

36. I have a dream that one day on the red hills of Georgia, the sons of former
slaves and the sons of former slave owners will be able to sit down together at
the table of brotherhood.

37. Happiness is when what you think, what you say, and what you do are in
harmony.

38. Nor, finally, are these remarks intended to examine the proper degree of pri-
vacy which the press should allow to any President and his family.

39. And I’m never gonna dance again - guilty feet have got no rhythm. Though
it’s easy to pretend - I know you’re not a fool.

40. Up ahead in the distance, I saw a shimmering light. My head grew heavy and
my sight grew dim. I had to stop for the night.

41. Take me to the place where you go, where nobody knows, if it’s night or day.
Please don’t put your life in the hands, of a rock and roll band, who’ll throw it
all away.
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42. In the pines, in the pines where the sun don’t ever shine - I would shiver the
whole night through.

43. Honey, the stars keep on calling my name. But don’t worry, I’ve told you again
and again. When I’m down, you’re always the first one to know. Skipping
town, I’ll take you wherever I go.

44. Early in the morning. Just trying to let the sun in and open up my eyes.

45. Let her go, let her go, God bless her. Wherever she may be.She can search this
whole wide world over - she won’t ever find another man like me.

46. I just walked in to find you here with that sad look upon your face.

47. Take a jumbo across the water like to see America.

48. Goodbye stranger it’s been nice. Hope you find your paradise. Tried to see
your point of view, hope your dreams will all come true.

49. The attorney came up with several far-fetched arguments in a vain attempt to
buttress his weak case.

50. Read rhymes with lead, and read rhymes with lead, but read and lead don’t
rhyme, and neither do read and lead.
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