
UKRAINIAN CATHOLIC UNIVERSITY

MASTER THESIS

Changing clothing on people images
using generative adversarial networks

Author:
Yevhen Pozdniakov

Supervisor:
Orest Kupyn

A thesis submitted in fulfillment of the requirements
for the degree of Master of Science

in the

Department of Computer Sciences
Faculty of Applied Sciences

Lviv 2020

http://www.ucu.edu.ua
http://www.johnsmith.com
http://www.jamessmith.com
http://researchgroup.university.com
http://department.university.com

ii

Declaration of Authorship
I, Yevhen Pozdniakov, declare that this thesis titled, “Changing clothing on people
images using generative adversarial networks” and the work presented in it are my
own. I confirm that:

• This work was done wholly or mainly while in candidature for a research de-
gree at this University.

• Where any part of this thesis has previously been submitted for a degree or
any other qualification at this University or any other institution, this has been
clearly stated.

• Where I have consulted the published work of others, this is always clearly
attributed.

• Where I have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have
made clear exactly what was done by others and what I have contributed my-
self.

Signed:

Date:

iii

UKRAINIAN CATHOLIC UNIVERSITY

Faculty of Applied Sciences

Master of Science

Changing clothing on people images using generative adversarial networks

by Yevhen Pozdniakov

Abstract

Generative Adversarial Networks (GANs) in recent years has certainly become one
of the biggest trends in the computer vision domain. GANs are used for generating
face images and computer game scenes, transferring artwork style, visualizing de-
signs, creating super-resolution images, translating text to images, etc.
We want to present a model to solve an image problem: generate new outfits onto
people images. This task seems to be extremely important for offline/online trade
and fashion industry.
Changing clothing on people images isn’t a trivial task. The generated part of the
image should have high quality without blurring. Another problem is generating
long sleeves on the images with T-shirts, for example. As a result, well-known mod-
els are not suitable for this task.
In the master project, we are going to reproduce the model for clothing changing on
people images based on the existing approaches and improve it in order to get better
quality of the image.

HTTP://WWW.UCU.EDU.UA
http://department.university.com

iv

Contents

Declaration of Authorship ii

Abstract iii

1 Introduction 1
1.1 Background . 1
1.2 Purpose . 2
1.3 Approach and Methodology . 3
1.4 Motivation . 3
1.5 Time plan . 3

2 Theory and related works 5
2.1 Generative adversarial networks . 5
2.2 Conditional GANs and image-to-image translation 6
2.3 GANs in fashion industry . 7

3 Method 10
3.1 Changing clothing using Virtual Try-on Network 10

3.1.1 CP-VTON model . 10
Geometric Matching Module . 11
Try-On Module . 11

3.1.2 VITON-GAN model . 12
3.2 Changing clothing using Liquid Warping GAN 13

3.2.1 General description . 13
Body Mesh Recovery Module . 14
Flow Composition Module . 14
Liquid Warping GAN . 15

3.2.2 Loss function . 16
Perceptual Loss . 16
Face Identity Loss . 16
Adversarial Loss . 16
Attention Regularization Loss 17

3.2.3 Model architecture . 17

4 Training process 18
4.1 CP-VTON and VITON-GAN model training 18

4.1.1 Dataset . 18
4.1.2 GMM module training . 18
4.1.3 TOM module training . 22

4.2 Liquid Warping GAN . 22
4.2.1 Dataset . 22
4.2.2 Training Liquid Warping GAN 24

v

5 Results 27
5.1 Virtual Try-on Network results . 27
5.2 Liquid Warping GAN results . 27

6 Conclusion 33
6.1 What was done . 33
6.2 Implications . 34
6.3 Future work . 34

A Liquid Warping GAN architecture and loss functions 35
A.1 Architecture . 35
A.2 Loss functions . 35

B Results 43
B.1 Virtual Try-on Network results . 43
B.2 Liquid Warping GAN results . 43

vi

List of Figures

2.1 Changing the upper-body garment of a human: the original xi wears
article yi; we want to paint him wearing article yj; the generated image
with that property is xji . Note that CAGAN also generates not-in-
place transformations (e.g. the neckline of the pullovers). Resolution
is 128x96 pixels. Taken from [18] . 9

3.1 A clothing-agnostic person representation. Taken from [16] 11
3.2 GMM module pipeline . 12
3.3 TOM module pipeline . 12
3.4 VITON-GAN pipeline. Taken from [16] 13
3.5 The training pipeline of Liquid Warping GAN. Taken from [28] 14
3.6 Liquid Warping Block. Taken from [28] 15
3.7 Liquid Warping GAN. Taken from [28] 16

4.1 Example of pair from dataset . 19
4.2 Example of preprocessed pair from dataset 19
4.3 Example of GMM transformation . 20
4.4 Loss function for training GMM model. The value of loss function at

the end of the training process is 0.0491. 20
4.5 Demonstration of the GMM module training 21
4.6 Loss function for training TOM model 22
4.7 Demonstration of the TOM module training 23
4.8 Details of iPER dataset: (a) shows the class of actions and their num-

ber of occurrences; (b) shows the styles of clothes; (c) and (d) are the
distributions of weight and height of all 30 actors. Taken from [5] . . . 24

4.9 Liquid Warping GAN: discriminator loss function. Loss value at the
end of training is 0.3. 25

4.10 Demonstration of Liquid Warping GAN training 26

5.1 Qualitative results of Virtual Try-on Network 28
5.2 Failed cases of Virtual Try-on Network 29
5.3 Qualitative results of Liquid Warping GAN 31
5.4 Failed cases of Liquid Warping GAN . 32

A.1 Perceptual loss . 36
A.2 Face identity loss . 37
A.3 Adversarial loss . 37
A.4 Attention regularization loss . 38

vii

List of Tables

1.1 Time Table for Completing the Thesis. 4

A.1 Pix2Pix architecture (discriminator) . 39
A.3 Residual block architecture . 39
A.5 ResNet architecture (background generator) 40
A.7 ResUNet architecture: encoders and decoders 41
A.9 ResUNet architecture: skippers and regularizations 42

viii

List of Abbreviations

GAN Generative adversarial network
ML Machine learning
DCGAN Deep convolutional generative adversarial
CAGAN Conditional analogy GAN
CP-VTON Characteristic-preserving virtual try-on network
LWB Liquid warping block HMR
Human mesh recovery
SMPL Skinned multi-person linear model
NMR Neural mesh renderer
GMM Geometric matching module
TOM Try-on module

1

Chapter 1

Introduction

1.1 Background

Machine learning (ML) is one of the hottest topics over the last decade. ML the-
ory based on the idea that algorithms can learn without being directly programmed.
Typically ML algorithm trained on the prepared data and after it performs on the
unknown data with similar or even better accuracy as people.
Many classical machine learning algorithms have been developed for different tasks.
The traditional examples of such tasks are classification and regression problem.
However, the rapid growth of computational power and the amount of digital in-
formation leads to the development of the more sophisticated algorithms. These
algorithms play a key role in self-driving cars, recommendation systems, fraud de-
tection, robotics, etc.
Computer vision is one of the application areas of machine learning algorithms.
Computer vision history started in the 1960s. One of the first task in this domain
was image recognition; in other words, people ask computers to tell us what they
see. Computers "see" world as number of pixels and even first computer vision al-
gorithms require a lot of computation power.
The rapid growth of computer vision began in the last decade. Significant increase
in computational power and a large amount of digital information creates possibil-
ities for deep learning usage. Deep learning added a huge boost to the computer
vision domain. During the last years, many applications of computer vision tech-
niques have been introduced. These applications are essential parts of our everyday
lives. Typical computer vision tasks are image classification, object detection, object
segmentation, image style transfer, image colorization, image reconstruction, image
super-resolution, image synthesis, etc.
There are many application areas where computer vision algorithms based on deep
learning are valuable. The one example that is taking advantage of such algorithms
is the automotive industry. With a computer, it’s possible to mitigate human error
in the auto industry, assisting drivers at the wheel with tools and features that keep
them from committing severe mistakes and accidents. For many years automotive
sectors have created new sensors and systems to help the driver and reduce the ac-
cident rate. Computer vision acts as a combination of all such sensors, analyzes the
environment around cars for potential threats, obstacles, and other relevant situa-
tions that a driver needs to react while driving [2].
Another application for computer vision is retail. One of the impressive examples
is Amazon Go. It is an automated store that has no checkout stations or cashiers.
Another possible idea is the client’s identification (face recognition) that can be ex-
tremely helpful to high fashion. After identification, the client’s habits, past pur-
chases, and shipping address could appear on a screen for all sales associates to see.
A similar approach is suitable for financial services. For example, new customers

2 Chapter 1. Introduction

can get a bank account within minutes by uploading a photo of their ID and selfie.
But, maybe the most critical application is healthcare. Computers won’t completely
replace the doctors, but they can be a good assistant in the diagnosis like magnetic
resonance diagnostic.
All of the mentioned cases are examples of image recognition problem usage. How-
ever, using more sophisticated algorithms creates new opportunities in new indus-
tries.
Computer vision algorithms have massive potential in the fashion industry. The
fashion industry based on visual information and has a natural connection with
computer vision. For example, let’s consider the following task: changing clothing
on people images. In this case, you can be your own designer with the possibility
to ease transform your current outfit on the photo into a completely new one. It can
boost online clothing shopping significantly. The other possible application is photo
images generation. Suppose that several thousands of items arrive in a new batch.
Shooting them on cloth hangers standalone is relatively easy and cheap, but tak-
ing photos with professional models is time-consuming and expensive. Leveraging
available data and reusing images of human models and products would, therefore,
be very useful for a fashion business[18]. This task is also applicable for the offline-
commerce as well. For example, a client doesn’t want to waste time in a shop for
"trying on" clothes. In this case, he/she can check how different clothes’ is suitable
for him/her on the screen.
GAN is a natural class algorithms for this task. According to [12], GAN consists of a
generative model G that captures the data distribution, and a discriminative model
D that estimates the probability that a sample came from the training data rather
than G. The training procedure for G is to maximize the probability of D making a
mistake. This framework corresponds to a minimax two-player game. The game
ends when a Nash equilibrium is achieved.
GANs are one of the most exciting algorithms in machine learning and computer
vision in particular. GANs used for generating face images and computer game
scenes, transferring artwork style, visualizing designs, creating super-resolution im-
ages, translating text to images, etc.

1.2 Purpose

The purpose of the master thesis is to investigate and suggest a method to solve an
image problem: change outfits on people images. Quality question is essential here
because the changing outfits should be visually realistic and have minimum blur-
ring or other harmful effects of image transformation. The existing algorithms and
models should be investigated to select the most appropriate model and improve it
as much as possible.
A common problem in such type of tasks is result’s evaluation [3]. It’s known there
is no objective loss function that can be used during training the GAN generator
models and no way to evaluate the final results of the trained model. Both quanti-
tative (average log-likelihood, coverage metric, inception score, etc.) and qualitative
evaluation (neighbors, rapid scene categorization, rating, and reference judgment,
etc.) can be used instead. But the main aim is to receive visually relevant results.
The thesis will investigate if GAN model can change clothing on people images. The
existing models will be investigated to choose the model to be implemented and im-
proved.
The following questions addressed here:

1.3. Approach and Methodology 3

1. Can GANs be used to changing clothing on people images?

2. Which model should be used for the best possible visual results?

3. How it’s possible to improve the model to get better results?

1.3 Approach and Methodology

In this thesis, we are going to investigate methods and models to solve the following
task: change outfits on people images. We are supposed to use GAN model for
this purpose. Like other deep learning algorithms, GAN models requires a lot of
information for training. We think to use existing datasets, such as iPER, Place2 and
DeepFashion datasets. The most essential criteria are the visual representation of
the changed images, so just qualitative methods will be used for the GAN model
evaluation.

1.4 Motivation

GANs are one of the most active-development algorithms during the last years.
Many GAN models have been proposed for the last time. As a result, a lot of factors
should be taken into account before GAN models choice.
GANs had a lot of hype last years. But this is logical because the really fascinating
things are possible with them. Referring to GANs, Facebook’s AI research director
Yann LeCun called adversarial training "the most exciting idea in the last ten years
in ML. So, the first motivation for me is getting in-depth knowledge about GANs.
To reach the aim, at least one GAN model needs to be implemented. The choice of
model is a crucial decision. A lot of existing models need to be considered and in-
vestigated.
As mentioned above, this model could be beneficial for the fashion industry. How-
ever, changing clothing on people images isn’t a trivial task. The generated part
of the image should have high quality without blurring. Another problem is creat-
ing long sleeves on the images with T-shirts, for example. As a result, well-known
models are not suitable for this task.

1.5 Time plan

Time plan for completing the master thesis is presented in Table 1.1[t].

4 Chapter 1. Introduction

TABLE 1.1: Time Table for Completing the Thesis.

Sep.
2019

Oct.
2019

Nov.
2019

Fri.
2019

Jan.
2020

Literature review x
Thesis proposal x
Development of tools x
Data Collection x
Prototype model implementation x x
Model improvement x x
Thesis write-up x
Submission of thesis x

5

Chapter 2

Theory and related works

2.1 Generative adversarial networks

The first paper about GAN was published in 2014 [12]. In this paper, Goodfellow
described the basic idea of GAN model, when the generative model is pitted against
an adversary; with a discriminative model that learns to determine whether a sam-
ple is from the model distribution or the data distribution. In that article, the author
explored the special case when the generative model generates samples by passing
random noise through a multilayer perceptron, and the discriminative model is also
a multilayer perceptron. This special case was called as adversarial nets.
In order to learn the generator’s distribution pq over data x there is defined a prior
on input noise variables pz(z), then represent a mapping to data space as G(z; θg),
where G is differentiable function represented by a multilayer perceptron with pa-
rameters θg. There is also defined a second multilayer perceptron D(x; θd) that out-
puts a single scalar. D(x) represents the probability that x came from the data rather
than pg. And D is trained to maximize the probability of assigning the correct label
to both training examples and samples from G. The discriminator and generator are
trained on each training iteration and are competing with each other when trying to
achieve the objective according to the following equation:

min
G

max
D

V(D, G) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1− D(G(z)))]. (2.1)

Initially generator synthesizes data that far from the real data distribution. This data
seems to be easy classifies as fake. But, in order that discriminator is not "experi-
enced", it will a difficult task for the discriminator to distinguish between the real
and fake data. During the training process, both generator and discriminator learns:
the first one how to generate better data, the second one - how to distinguish real
and fake data. So the training process can be seen as a game between the generator
and discriminator. The key aspect is the synchronicity of the process because if ei-
ther one of them wins, it will stop the process.
The described article proved its results on the MNIST dataset and is the real best-
seller in the research world. Many models based on the initial GAN’s idea have
been suggested since 2014. Let’s consider the most important models.
Deep convolutional generative adversarial networks (DCGAN) presented in [34].
This article shows how convolutional layers can be used with GANs. According to
the article, the suggested architecture can be considered, with certain architectural
constraints, as a strong candidate for unsupervised learning. The model was trained
on three datasets: three datasets, Large-scale Scene Understanding, Imagenet-1k and
Faces dataset. Some improved techniques for training GANs suggested in [35]. This
article presented a variety of new architectural features and training procedures that

6 Chapter 2. Theory and related works

can be applied to the GAN models. Such techniques as feature matching, minibatch
discrimination, historical averaging, one-sided label smoothing, and virtual batch
normalization are used for encouraging convergence.
The BigGAN model is the current state-of-the-art model for ImageNet generation
[8]. This article combines a lot of modern technics such as self-attention, spectral
normalization and conditional GANs with projection discriminators.
All of the described GANs model used for the image generation. However, when we
change clothing on people image, we need to transfer part of one image into another.
This kind of task requires conditional GANs.

2.2 Conditional GANs and image-to-image translation

Conditional GANs were introduced in [32]. In an unconditioned generative model,
there is no control on modes of the data being generated. However, by condition-
ing the model on additional information, it is possible to direct the data generation
process. Such conditioning could be based on class labels, on some part of data for
inpainting or even on data from different modality.
Generative adversarial nets can be extended to a conditional model if both the gen-
erator and discriminator are conditioned on some extra information y. The variable
y could be any auxiliary information, such as class labels or data from other modal-
ities. We can perform the conditioning by feeding y into both the discriminator and
generator as the additional input layer. Equation (1) remains the same. Conditional
GAN is a base idea for image-to-image or text-to-image transfer.
Conditional GANs have a lot of cool modifications and improvements. One of them
is PatchGAN [17]. The idea behind PatchGAN is that instead of having the discrim-
inator evaluating the whole image, the model looks at 70x70 regions of the image to
determine if they are real or fake. Such an approach helps to produce sharper image
outputs from the generator. This model also shows an interesting U-Net style gen-
erator architecture as well as using ResNet-style skip connections in the generator
model [6].
Image-to-image translation is a class of vision and graphics problems where the goal
is to learn the mapping between an input image and an output image [4]. Image-to-
image translation based on conditional GANs models. The key difference with the
usual GANs is that the input to the network is an image instead of random noise.
The generated image based on an input image, thus fact makes the model condi-
tional.
Image-to-image translation refers to the unsupervised class problem because it does
not require image pairs for training. It means that that output image will be com-
pared with the image in the same domain. No ground truth (like in supervised
learning) is available here. So, all of the advantages of unsupervised learning are
applicable here.
Well-known example of image-to-image is CycleGAN [41]. There is presented a
model to translate an image from a source domain X to a target domain Y with-
out any paired examples. The key factor in this model is the cycle-consistency loss
function. As usual, this loss function is a part of the objective function that the gen-
erator learns from. The advantage of this function is that it translates input image to
the output domain and then translates it back. The back-translated image compares
with the original input image using the MAE. Cycle-consistency loss helps to stabi-
lize GAN training.
The suggested model contains two discriminators and two generators. It guarantees

2.3. GANs in fashion industry 7

translation in both directions, which are learned simultaneously. There are many
cool applications of CycleGAN such as super-resolution, style transfer, horse to ze-
bra transformation, season translations, etc.
CycleGAN as the typical image-to-image translation, has a serious limitation: it
transforms images between just two domains. Usually, two generators are needed
for each pair of images. This fact limits scalability and robustness in handling more
than two domains. StarGAN is an approach to handle this problem [11]. It can per-
form image-to-image translations for multiple areas using only a single generator.
StarGAN consists of a discriminator D and a generator G. The critical difference is
that G takes as an input both the image and target images. The output images are
spatially replicated and concatenated with the input image. D acts in a usual way
but to keep up with the generator it also has to learn the specific features of each
image domain. For this purpose, the discriminator should know the domain class
label during training.
Interesting combination of unsupervised learning, 3D-reconstruction, and condi-
tional GAN is presented in [33]. Authors suggested an architecture (HoloGAN) that
allows unsupervised learning of 3D representations directly from natural images.
After learning the 3D structure and understanding a target pose, HoloGAN can gen-
erate new views of the same scene. HoloGAN tries to understand 3D representation
of the world and then apply 3D rigid-body transformation for the found represen-
tation while other similar GANs learn to map a noise input vector directly to 2D
features to generate images. As a result, in HoloGAN, a strong inductive bias about
the 3D world is added into the generator network. on the first stage, HoloGAN tries
to understand 3D representation, e.g., disentangle pose and identity. Model learns
3D features from a 4D constant tensor (size 4x4x4x512); HoloGAN performs an ex-
plicit 3D rigid-body transformation (3D rotation followed by trilinear resampling);
projection unit generates 2D images (128x128) from the 3D structure.

2.3 GANs in fashion industry

Despite the considerable progress in GANs models, generating artificial face images
is still a challenging task. In particular, one of such challenges is changing specific
features like pose, face shape, and hairstyle. A newest NVIDIA papers [22] addresses
this problem.
StyleGAN generates the artificial image gradually, starting from a shallow resolu-
tion and continuing to a high resolution (1024x1024). By modifying the input of
each level separately, it controls the visual features that are expressed in that level,
from coarse features (pose, face shape) to fine details (hair color), without affecting
other levels [1].
To generate high-resolution images, many approaches from ProGAN [21] used in
StyleGAN. But ProGan has limited ability to control specific features of the gener-
ated image. To add this control, several new technics are used in StyleGAN. One
of them is Mapping Network which goal is is to encode the input vector into an
intermediate vector whose different elements control different visual features. The
Mapping Network consists of 8 fully connected layers. The second specific part is
the AdaIN (Adaptive Instance Normalization) module that transfers the encoded
information, created by the Mapping Network, into the generated image. Also, this
model doesn’t have traditional input which replaced on the constant values. Style-
GAN is a state-of-the-art model that produces high-quality and realistic images and
also allows superior control of the generated images.

8 Chapter 2. Theory and related works

One of the first attempt to implement clothing translation is suggested in [40], where
special technic called Pixel-Level Domain Transfer is considered. There are defined
two domains; for example, if an image of a dressed person is as a source domain,
a piece of the person’s clothing is the target domain. Big LookBook dataset is used
for training purpose. This dataset contains 84k images in total, where 75k human
images are associated with 10k top product images. In [18] presented Conditional
Analogy GAN (CAGAN): image-to-image translation network that will exchange
one piece of clothing yi with a new one, yj, on a given human image xi (see Fig. 2.1).
This task is complicated due to the following:

1. There are never examples of xj
i , where xj

i is the modified human image with
the swapped fashion item we would like to see.

2. The model needs to find where the old clothing is located and replace it with
the new clothing.

3. Additional transformation to correct for illumination, occlusion, 3D rotation,
and deformation required for the clothing.

For training D and G authors defined a loss which contains several terms, weighted
by constants γi, γc and introduced the adversarial loss that involves the generator
and the discriminator.

2.3. GANs in fashion industry 9

FIGURE 2.1: Changing the upper-body garment of a human: the
original xi wears article yi; we want to paint him wearing article yj;
the generated image with that property is xji . Note that CAGAN
also generates not-in-place transformations (e.g. the neckline of the

pullovers). Resolution is 128x96 pixels. Taken from [18]

10

Chapter 3

Method

This chapter describes the methods used in the thesis. The analysis of the related
works proved that many of the well-known existing GAN models (conditional GAN,
CycleGAN, StyleGAN, etc.) generate blurring and "bad looking" images during
changing clothing on the images due to the following reasons: 1) it’s difficult to
capture and save all details related to color, style and texture of clothes; 2) human
pose on the different images can be different and it should be taken into account dur-
ing image generation; 3) some body parts presented on the generated image could
be invisible on the source image. This chapter will describes two approaches that
designed directly for cloth changing: Virtual Try-on Network and Liquid Warping
GAN. General information about the methods, their modifications, loss functions
and architecture details are provided in this chapter.

3.1 Changing clothing using Virtual Try-on Network

CAGAN models demonstrate impressive results on the image generation. But CA-
GANs are not able to generate graphic details and accommodate geometric changes
[41]. As a result they are not suitable for changing clothing on the people images.
To address these limitations, a Virtual Try-on Network is suggested in [13]. The key
features of this model are:

1. usage of a clothing-agnostic input people image representation consisting of
the following features: pose heatmap, human body representation, face and
hair segmentation;

2. generation of the clothing region mask from the source image;

3. warping the target clothing item with help of the generated mask;

4. composition of the warped clothing item and the target person image.

Example of a clothing-agnostic person representation is shown on the Fig.3.1.
Many new models based on the original idea of Virtual Try-on Network have

been presented in the recent time. In this thesis we will describe two of them:
Characteristic-Preserving Virtual Try-On Network (CP-VTON) and VITON-GAN.

3.1.1 CP-VTON model

CP-VTON model suggested in [38]. Having a source image Ii of a person wearing
in clothes ci and a target clothes c, the goal of the model is to generate new image Io
wearing in the new cloth co, which saves the body shape, pose and hair style of the
source image Ii and changes ci on c [38].
Training with the triplets (Ii; c; It) where It is the ground truth of Io is logical, but

3.1. Changing clothing using Virtual Try-on Network 11

FIGURE 3.1: A clothing-agnostic person representation. Taken from
[16]

not practical due to lack of such datasets. Training with triplets (It; c; It) affects
the generalization ability of the model. According to [13], clothing-agnostic person
representation p (see Fig.3.1) can be used instead of Ii, in other words, the training
triplet (p; c; It) is used for training.

The enhancement of Virtual Try-on Network results can be reached by:

• improvement of shape-context matching for aligning clothes and body shape;

• improvement of inferior appearance merging strategy.

Geometric Matching Module (GMM) and Try-On Module (TOM) are suggested for
these purposes.

Geometric Matching Module

GMM module pipeline is presented on the Fig.3.2. The main aim of this module is
to transform the target clothes c into warped clothes ĉ aligned with input clothing-
agnostic person representation p. As described in [38], GMM consists of four parts:

1. two networks for extracting high-level features of p and c respectively;

2. a correlation layer to combine two features into a single tensor as input to the
regressor network;

3. the regression network for predicting the spatial transformation parameters θ;

4. a Thin-Plate Spline transformation module T for warping an image into the
output ĉ = Tθ(c).

Loss function of the module is L1 distance between the warped result ĉ and ground
truth ct:

LGMM(θ) = ||ĉ− ct||1 = ||Tθ(c)− ct||1, (3.1)

where ct is the clothes worn on the target person in It.

Try-On Module

GMM module pipeline is presented on the Fig.3.3. The main aim of this module is
to is to fuse ĉ with the target person image for generation the final result.
As described in [38], given a concatenated input of person representation p and the
warped clothes ĉ, UNet simultaneously renders a person image Ir and predicts a

12 Chapter 3. Method

FIGURE 3.2: GMM module pipeline

FIGURE 3.3: TOM module pipeline

composition mask M. The rendered person Ir and the warped clothes ĉ are then
fused together using the composition mask M to synthesize the final result Io:

Io = M� ĉ + (1−M)� Ir,

where � represents element-wise matrix multiplication.
The main aim of the module is to minimize difference between output Io and ground
truth It. The overall loss function for TOM is:

LTOM = λL1||Io − It||1 + λVGGLVGG(Î, I) + λmask||1−M||1, (3.2)

where the VGG perceptual loss [19] is defined as follows:

LVGG(Io, It) =
5

∑
i=1

λi||ψ(Io)− ψi(It)||1.

3.1.2 VITON-GAN model

Some modifications to the CP-VTON model is suggested in [16]. These modifica-
tions are:

1. Add adversarial loss to TOM module (see equation 3.2). Discriminator takes
the TOM result image and person representation as inputs in order to make
decision whether the result is real or fake.

3.2. Changing clothing using Liquid Warping GAN 13

FIGURE 3.4: VITON-GAN pipeline. Taken from [16]

2. Add L1 distance distance between the generated and real images as loss func-
tion to GMM module (see equation 3.1).

3. Use additional data augmentation.

The model trained with these modifications called VITON-GAN in this thesis. The
pipeline of VITON-GAN is presented on the Fig.3.4.

3.2 Changing clothing using Liquid Warping GAN

This model is presented in the article from ICCV 2019 [28]. The key fetures of these
model are: 1) using a parametric statistical human body model which disentangles
human body into pose (joint rotations) and shape; 2) using a special Liquid Warping
Block (LWB) which addresses the problem of losing important source information.

3.2.1 General description

The model consists of three parts:

• mesh recovery;

• flow composition;

• GAN module.

The training pipeline is presented on the Fig. 3.5 . Source image (Is) and target image
(Ir) are the input arguments for the model. Based on the input images, the body

14 Chapter 3. Method

FIGURE 3.5: The training pipeline of Liquid Warping GAN. Taken
from [28]

mesh recovery module creates the corresponding 3D mesh and their maps (Cs) and
Ct).
Then the flow composition module uses these maps to calculate transformation flow
T. The other task of the flow composition module is to divide source image Is into
background Ibg and foreground I f t. Finally, using transformation flow T it produces
a warped image Isyn from the Is.
The generator consists of three streams. The first one Gbg takes Ibg as an input image
and generate background image Îbg; second one Gsid reconstructs source image Îs

using I f t and Cs; the third one generator GTSF synthesizes the target image Ît.
The key feature of this model is Liquid Warping Block (LWB) which addresses the
problem of losing the source information.

Body Mesh Recovery Module

In this thesis the pre-trained model of human mesh recovery (HMR)[20] is using.
Here an image is firstly encoded into a feature with R2048 by a ResNet-50[14] and
then followed by an iterative 3D regression network that predicts the pose θ ∈ R72

and shape β ∈ R10 of a skinned multi-person linear model (SMPL)[30], as well as the
weak-perspective camera K ∈ R10. SMPL is a 3D body model that can be defined as a
differentiable function M(θ, β) ∈ RNv×3, where Nv = 6890 - number of vertices, N f =
13776 - number of faces θ ∈ R72 - pose, β ∈ R10 - shape. The output of the module is
the body reconstruction parameters of source and reference image correspondingly:
{Ks, θs, βs, Ms}, {Kr, θr, βr, Mr}.

Flow Composition Module

A fully differentiable renderer, Neural Mesh Renderer (NMR) [23] is using for render
a correspondence map of Ms and Mr under the camera view of Ks. For this purpose
vertices of source Vs projected into 2D image space: vs = Proj(Vs; Ks). Here the
source and reference correspondence maps marked as Cs and Ct.
Then the transformation flow T ∈ RH×W×2 (H and W - height and width of the im-
age) is calculated by matching the correspondences between source correspondence

3.2. Changing clothing using Liquid Warping GAN 15

FIGURE 3.6: Liquid Warping Block. Taken from [28]

map Cs with its mesh face coordinates fs ∈ RN f×2 and reference correspondence
map Ct. A front image I f t and a masked background image Ibg are derived from
masking the input source image Is based on Cs. Finally, the warped image Isyn is
generated from applying the transformation flow T on the source images Is.

Liquid Warping GAN

This stage generates high-fidelity human image under the desired condition. More
specifically, it 1) synthesizes the background image; 2) predicts the color of invisible
parts based on the visible parts; 3) generates pixels of clothes, hairs and others out
of the reconstruction of SMPL.
As already mentioned the generator has three streams. In order to link the source
with target streams without losing a source information, LWB is using here. One
advantage of the proposed in [28] LWB is that it addresses multiple sources. For ex-
ample it can preserve the head from source one, wear the upper outer garment from
the source two and the lower outer garment from the source three. As a result of this
advantage, the different parts of features can be added to GTSF from the independent
streams.
Fig. 3.6 presents a structure of LWB. Xl

s1 and Xl
s2 are the feature maps extracted by

GSID of different sources in l-th layers. Xl
T is the feature map of GTSF at the l-th layer.

The output features X̂l
t aggregate the feature from GTSF and GSID without losing

information and can be obtained as follows:

X̂l
t = BS(Xl

s1, T1) + BS(Xl
s2, T2) + Xl

t,

where BS - bilinear sampler.
The architecture of liquid warping GAN is presented on the Fig. 3.7.

The generators use ResNet and ResUnet architecture, no parameters share be-
tween them. The final image can be obtained as follows:

Îs = Ps × As + Îbg × (1− As),

Ît = Pt × At + Îbg × (1− At),

16 Chapter 3. Method

FIGURE 3.7: Liquid Warping GAN. Taken from [28]

where Îbg - output of GBG.
The discriminator uses Pix2Pix architecture [17].

.

3.2.2 Loss function

The whole loss function consists of: perceptual loss[19], face identity loss, attention
regularization loss and adversarial loss.

Perceptual Loss

It regularizes the reconstructed source image Îs and generated target image Ît to be
closer to the original images Is and Ir. It formulates in the following way:

Lp = || f (Îs)− f (Is)||1 + || f (Ît)− f (Ir)||1, (3.3)

where f - is a pre-trained VGG-19[37].

Face Identity Loss

It regularizes the cropped face from the generated target image Ît to be similar to the
ground truth Ir. It forces the generator to preserve the face identity. It formulates in
the following way:

L f = ||g(Ît)− g(Ir)||1, (3.4)

where g - is a pre-trained SphereFaceNet[27].

Adversarial Loss

It forces the distribution of generated images to the distribution of real images.
LSGAN110[31] loss is using in a way like PatchGAN for the generated target image
Ît. The discriminator D regularizes Ît to be more realistic-looking. We use condi-
tioned discriminator, and it takes generated images and the correspondence map Ct

3.2. Changing clothing using Liquid Warping GAN 17

as inputs:
LG

adv = ∑ D(Ît, Ct)
2. (3.5)

Attention Regularization Loss

It prevents the attention map A from saturation. There is no ground truth of atten-
tion map A and color map P. In case of saturation of A, generator will not work.
In order to avoid this situation, the mask is regularized to be closer to silhouettes S
rendered by 3D body mesh. This loss formulates in the following way:

La = ||As − Ss||22 + ||At − St||22 + TV(As) + TV(At), (3.6)

TV(A) = ∑
i,j

[A(i, j)− A(i− 1, j)]2 + [A(i, j)− A(i, j− 1)]2. (3.7)

For generator, the full objective function is shown in the following, and λp, λ f and
λa are the weights of perceptual, face identity and attention losses [28].

LG = λpLp + λ f L f + λaLa + LG
adv.

For discriminator, the full objective function is [28]:

LD = ∑ [D(Ît, Ct) + 1]2 + ∑ [D(Îr, Cr)− 1]2.

3.2.3 Model architecture

The original architecture of the Liquid Warping GAN is available in the open repos-
itory on github [29].
The generator consists of three separate generators: background generator, source
generator and transfer generator. More details related to the model’s architecture
are presented in Appendix A.
Background generator has ResNet architecture which is presented in Table A.5. The
architecture of residual block is presented in Table A.3.
The source generator and transfer generator has more complicated (in comparison
with ResNet) ResUNet architecture, which is presented in Table A.7 and Table A.9.
The discriminator uses Pix2Pix GAN model, which architecture is presented in the
Table A.1.

18

Chapter 4

Training process

The choice of the two methods to implement, Virtual Try-on Network and Liquid
Warping GAN, is based on the comparison study in the theory chapter. Both models
show promising results on changing clothes on the people images. The key differ-
ence of the proposed methods over CAGAN is that they get pose, body shape and
cloth details at the initial step of their pipeline. Using this information the models are
able to generate just selected region of the image (cloth) and transform it according
to the pose and body shape information. It helps to generate more realistic images.
This chapter will describe training process of the selected models with more details.

4.1 CP-VTON and VITON-GAN model training

4.1.1 Dataset

For CP-VTON training there is used dataset proposed in [13]. It consists of 16,253
pairs of person and the corresponding cloth. This dataset was divided on 14221 and
2000 pairs for the training and test purpose, respectively. All of the images have
been fitted to a common template so they have the same size 192x256. Example of
dataset pair is presented on the Fig.4.1.

CP-VTON uses a human parser and pose estimator for extracting the person
information and cloth information independently. This part isn’t included in the
current pipeline because the already preprocessed dataset from [38] is used instead.
In this dataset OpenPose framework [10], [9],[36] [39] is used for extracting pose info
into json format as a set of 2d keypoints. The Look Into Person[26] is used for the
segmentation labels generation. CP-VTON requires the keypoints from OpenPose
and segmentation labels from Look Into Person. This dataset was used in [38] as
well. Example of the preprocessed pair is presented on the Fig.4.2. These images
will be used used during models training.

As described in 3.1.1, the main aim of GMM is to transform the target clothes
into warped clothes. This transformation should correspond to the target’s person
information. Example of GMM module transformation is presented on the Fig.4.3.

4.1.2 GMM module training

In GMM training the following hyper-parameters used: λL1 = λVGG = 1, Adam
[24] optimizer parameters: β1 = 0.5 and β2 = 0.999. Training process continues for
200k steps, learning rate for the first 100k steps is equal to 0.0001 and linearly decays
for the following steps. Changes of the loss function for training GMM model is
presented on the Fig.4.4.

Demonstration of the GMM module training is presented on the Fig.4.5.

4.1. CP-VTON and VITON-GAN model training 19

(A) Person image (B) Cloth image

FIGURE 4.1: Example of pair from dataset

(A) Person image seg-
mentation

]
(B) Cloth image mask

FIGURE 4.2: Example of preprocessed pair from dataset

20 Chapter 4. Training process

(A) Cloth image (B) Warped cloth image

FIGURE 4.3: Example of GMM transformation

FIGURE 4.4: Loss function for training GMM model. The value of loss
function at the end of the training process is 0.0491.

4.1. CP-VTON and VITON-GAN model training 21

(A) Head image (B) Body shape (C) Pose

(D) Target cloth (E) Warped target cloth (F) Source cloth

(G) Warped grid image (H) Target person (I) Source person

FIGURE 4.5: Demonstration of the GMM module training

22 Chapter 4. Training process

(A) L1 loss (B) VGG loss

(C) Mask loss (D) Overall loss

FIGURE 4.6: Loss function for training TOM model

Fig.4.5a, Fig.4.5b, Fig.4.5c, Fig.4.5i and Fig.4.5d are the input images of GMM
module. Then module parses source cloth Fig.4.5f, get it’s transformation grid Fig.4.5g
and change target cloth Fig.4.5d to the warped target cloth Fig.4.5e. Image Fig.4.5h
is a result of overlapping Fig.4.5e and Fig.4.5i.

4.1.3 TOM module training

Having the warped image which is aligned with the target’s body pose, TOM mod-
ule is able to generate final try-on result. As described in 3.1.1 Unet generator is used
for this purpose. The hyper-parameters are the same as was used for GMM module
training. Loss function components of the TOM module is described in 3.1. Changes
of the loss function for training TOM model is presented on the Fig.4.6.

Demonstration of the TOM module training is presented on the Fig.4.7.
Fig.4.7a, Fig.4.7b, Fig.4.7c, Fig.4.7d and Fig.4.7e are the input images of TOM

module. The module generates the image that will split on two images: the Fig.4.7f
and Fig.4.7g. These splitted images join with Fig.4.7d using the formula described in
3.1 and produce Fig.4.7h as an output of the generator. The generated image Fig.4.7h
and ground-truth image Fig.4.7i are the input of discriminator.

4.2 Liquid Warping GAN

4.2.1 Dataset

For training the suggested model, iPER dataset is used[28]. There are 30 subjects of
different conditions of shape, height and gender. Each subject wears different clothes
and performs an A-pose video and a video with random actions. Some subjects
might wear multiple clothes, and there are 103 clothes in total. The whole dataset
consists of 206 video sequences with 241,564 frames. The training/testing ratio is

4.2. Liquid Warping GAN 23

(A) Head image (B) Body shape (C) Pose

(D) Warped cloth (E) Masked warped tar-
get cloth

(F) Composite output

(G) Rendered output (H) Output (I) Ground truth

FIGURE 4.7: Demonstration of the TOM module training

24 Chapter 4. Training process

FIGURE 4.8: Details of iPER dataset: (a) shows the class of actions and
their number of occurrences; (b) shows the styles of clothes; (c) and
(d) are the distributions of weight and height of all 30 actors. Taken

from [5]

8:2. More details of iPER dataset is presented on the Fig.4.8. .
Additionally training option is to use Place2 dataset for improving the ability of
background generalization. This dataset can be downloaded from [7].

4.2.2 Training Liquid Warping GAN

The training process organized in the following way. Two random images selected
from each video. They are normalized to range [-1..1] and resized to the size 256x256.
As it was already noted, human mesh recovery is using pre-trained HMR model.
SMPL is using for rendering purpose.
The Liquid Warping GAN training process continues for 30 epochs. The following
hyper-parameters are using: λp = 10.0, λ f = 5.0, λa = 1.0. Adam is used for param-
eter optimization of both generator and discriminator. The initial value of learning
rate is chosen as 0.0002 for both generator and discriminator and linearly decays
each epoch. The mini-batch size depends on the available GPU memory and was
selected as 10 for this experiments.

Discriminator loss function is presented on the Fig.4.9.

4.2. Liquid Warping GAN 25

FIGURE 4.9: Liquid Warping GAN: discriminator loss function. Loss
value at the end of training is 0.3.

As described in 3.2.2, whole loss function consists of 4 elements. The corresponding
plots are presented in in Appendix A. Perceptual loss function (see equation 3.3) is
presented on the Fig.A.1.

Face identity loss (see equation 3.4) is presented on the Fig.A.2.
Adversarial identity loss (see equation 3.5) is presented on the Fig.A.3.
Attention regularization loss identity loss (see equation 3.6 and 3.7) is presented

on the Fig.A.4.
Demonstration of the GMM module training is presented on the 4.10. In terms

of definitions from section 3.2: 4.10a corresponds to the source image Is, 4.10b -
reconstructed source image Îs, 4.10c - TSF input Isyn, 4.10d - TSF output Ît, 4.10e -
restored background Îbg, 4.10f - attention map As.

26 Chapter 4. Training process

(A) Source image (B) Reconstructed source
image

(C) TSF module input (D) TSF module output

(E) Restored background (F) Attention map A vi-
sualization

FIGURE 4.10: Demonstration of Liquid Warping GAN training

27

Chapter 5

Results

Results of Viton-GAN and Liquid Warping GAn are presented in this chapter. Sev-
eral quantative indicators for evaluating models that generate images such as the
Inception Score [35] and FID [15] are not useful for judging the quality of dressing
[25]. So, just qualitative evaluation is used in this chapter.

5.1 Virtual Try-on Network results

As described in 3.1 there are suggested two models based on Virtual Try-on Net-
work:

• CP-VTON

• VITON-GAN

For comparing results, images from dataset described in 4.1.1 are used. Qualitative
results of Virtual Try-on Network models is presented on the Fig.5.1. The following
columns are presented on this image:

• A - source image

• B - target image

• C - target cloth

• D - CP-VTON results

• E - VITON-GAN results

In general, the results presented in 5.1 look good. Visually, the results in column D
better than in column E, so we can make a conclusion that CP-VTON model provides
better results. The result image in the higher resolution are available in Appendix B.
However in some cases Virtual Try-on Network models generate bad results. Some
examples of the failed cases are presented on the Fig.5.2.
From 5.2 we can make a conclusion that model can not handle case when the hands
have unusual position, for example, along the body. Such examples are presenteds
on the first three examples from Fig.5.2. On the fourth example the source image
is back to camera. We can consider these situations as "corner cases". Additional
training images are required for handling such "corner cases".

5.2 Liquid Warping GAN results

The results of three modifications of Liquid Warping GAN training process are con-
sidered here:

28 Chapter 5. Results

(A) Source image (B) Target image (C) Target cloth (D) CP-VTON (E) VITON-GAN

FIGURE 5.1: Qualitative results of Virtual Try-on Network

5.2. Liquid Warping GAN results 29

(A) Source image (B) Target image (C) Target cloth (D) CP-VTON (E) VITON-GAN

FIGURE 5.2: Failed cases of Virtual Try-on Network

30 Chapter 5. Results

• training with iPER dataset;

• training with iPER+Place2 dataset;

• iPER+Place+DeepFashion dataset.

The training procedure with iPER+Place+DeepFashion dataset isn’t done in this the-
sis, the coefficients of the pre-trained model are used instead. More details about
training with iPER dataset and iPER+Place2 dataset are provided in 4.2.2.

Qualitative results of Liquid Warping GAN is presented on the Fig.5.3. The fol-
lowing columns are presented on this image:

• A - source image

• B - target image

• C - results of model trained with iPER dataset

• D - results of model trained with iPER+Place2 dataset

• E - results of model trained with iPER+Place2+DeepFashion dataset

There are used custom images from internet. In general results are acceptable, how-
ever some blurring effects also take a place. All of the models provide competitive
results, maybe with slightly better results in the last column. The results in higher
resolutions are available in Appendix B.

Also some failed cases of Liquid Warping GAN have investigated. Examples of
the failed cases are presented on the Fig.5.4.
First failed example is taken from the dataset used for Virtual Try-on Network. The
reason of this fail is that Liquid Warping GAN had been trained for the full height
images, but there is input with half-height image.
In the second example, the hands are along the body and Liquid Warping GAN also
handles such cases poorly.
In the third and fourth examples, the cloth transfer happens but the resulting images
have non-natural view.

5.2. Liquid Warping GAN results 31

(A) Source image (B) Target image (C) iPER (D) iPER+Place2 (E) iPER+Place2+
DeepFashion

FIGURE 5.3: Qualitative results of Liquid Warping GAN

32 Chapter 5. Results

(A) Source image (B) Target image (C) iPER (D) iPER+Place2 (E) iPER+Place2+
DeepFashion

FIGURE 5.4: Failed cases of Liquid Warping GAN

33

Chapter 6

Conclusion

The purpose of the thesis was to investigate the possibilities of changing clothing
on the people images using GAN models. Among the investigation was the goal
to choose the existing models, reproduce them, compare the results and generate as
visually realistic images as possible.
Changing clothing on the people images have been done using Virtual Try-on Net-
work and Liquid Warping GAN models. The theory, implementation and training
of the selected methods have been provided. Results have been compared by visual
inspections. Also, modifications to proposed models have been made in order to
improve the model results. The following section describes what was done in this
thesis with more details.

6.1 What was done

• learned the general principles of the GAN models;

• researched the existing GAN models that are applicable in fashion industry;

• selected two approaches for the clothing transfer: Virtual Try-on Network and
Liquid Warping GAN;

• described the selecterd methods: loss functions, implementation and training
details, model’s architecture;

• from scratch trained two models related to Virtual Try-on Network approach:
CP-VTON and VITON-GAN;

• from scratch trained two models related to Liquid Warping GAN: using iPER
dataset and iPER+Place2 datasets;

• compared the results obtained from the trained models.

The investigations have resulted in answers to the following questions:

1. Can GANs be used to changing clothing on people images?
In general, yes. The trained models demonstrate the acceptable results on the
test data.
However, for generalization purpose, the additional improvements required.
As it was demonstrated on the Fig.5.2, the CP-VTON and VITON-GAN don’t
handle cases when hand is along the body, when a person is back to camera or
when a full height people image is provided. Also, at the current moment, CP-
VTON and VITON-GAN require specially prepared input data, because their
pipeline isn’t able to get clothing-agnostic person representation from source

34 Chapter 6. Conclusion

image.
As it was shown on the Fig.5.4, Liquid Warping GAN also has some limita-
tions. It’s suitable just for full height people image, it doesn’t handle cases
when hands have unusual positions, it has problem in hair style transfer. Ad-
ditional training data required for handling these problems. In comparison
with CP-VTON and VITON-GAN, Liquid Warping GAN has HMR module
for getting body shape and pose information.

2. Which model should be used for the best possible visual results? According to the
obtained visual results - CP-VTON model.

3. How it’s possible to improve the model to get better results? See Section 6.3.

6.2 Implications

Understanding of the opportunities with GAN models, in the changing clothing on
the people images, provides a platform for development a framework that can be
valuable in the fashion and marketing industry, social networks, people photos and
entertainment area. From the investigation made in this thesis, the selected models
can be used as a base for the further development.

6.3 Future work

According to the experiment results, I would suggest to use CP-VTON model as a
base for the future development. The following further steps for improvement are
required:

1. transform source image to the clothing-agnostic person representation auto-
matically in the pipeline;

2. check if the selected model handles images with full-height person images;

3. investigate how to handle cases when hands are along the body or in other
unusual position;

4. increase the resolution of the generated images.

35

Appendix A

Liquid Warping GAN architecture
and loss functions

A.1 Architecture

A.2 Loss functions

36 Appendix A. Liquid Warping GAN architecture and loss functions

(A) Recovery loss

(B) Generated image loss

FIGURE A.1: Perceptual loss

A.2. Loss functions 37

FIGURE A.2: Face identity loss

FIGURE A.3: Adversarial loss

38 Appendix A. Liquid Warping GAN architecture and loss functions

(A) Attention loss (equa-
tion 3.6)

(B) Smoothed attention
loss (equation 3.7)

FIGURE A.4: Attention regularization loss

A.2. Loss functions 39

TABLE A.1: Pix2Pix architecture (discriminator)

Layer number Description

(0)
Conv2d(6, 64, kernel size=(4, 4), stride=(2, 2),
padding=(1, 1))

(1) LeakyReLU(negative slope=0.2, inplace=True)

(2)
Conv2d(64, 128, kernel size=(4, 4), stride=(2, 2),
padding=(1, 1))

(3)
InstanceNorm2d(128, eps=1e-05, momentum=0.1, affine=False,
track running stats=False)

(4) LeakyReLU(negative slope=0.2, inplace=True)
(5) Conv2d(128, 256, kernel size=(4, 4), stride=(2, 2), padding=(1, 1))

(6)
InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=False,
track running stats=False)

(7) LeakyReLU(negative slope=0.2, inplace=True)
(8) Conv2d(256, 512, kernel size=(4, 4), stride=(2, 2), padding=(1, 1))

(9)
InstanceNorm2d(512, eps=1e-05, momentum=0.1, affine=False,
track running stats=False)

(10) LeakyReLU(negative slope=0.2, inplace=True)
(11) Conv2d(512, 512, kernel size=(4, 4), stride=(1, 1), padding=(1, 1))

(12)
InstanceNorm2d(512, eps=1e-05, momentum=0.1, affine=False,
track running stats=False)

(13) LeakyReLU(negative slope=0.2, inplace=True)
(14) Conv2d(512, 1, kernel size=(4, 4), stride=(1, 1), padding=(1, 1))

TABLE A.3: Residual block architecture

Layer number Description

(0)
Conv2d(512, 512, kernel size=(3, 3), stride=(1, 1), padding=(1, 1),
bias=False)

(1)
InstanceNorm2d(512, eps=1e-05, momentum=0.1, affine=True,
track running stats=False)

(2) ReLU(inplace=True)

(3)
Conv2d(512, 512, kernel size=(3, 3), stride=(1, 1), padding=(1, 1),
bias=False)

(4)
InstanceNorm2d(512, eps=1e-05, momentum=0.1, affine=True,
track running stats=False)

40 Appendix A. Liquid Warping GAN architecture and loss functions

TABLE A.5: ResNet architecture (background generator)

Layer number Description

(0)
Conv2d(4, 64, kernel size=(7, 7), stride=(1, 1), padding=(3, 3),
bias=False)

(1)
InstanceNorm2d(64, eps=1e-05, momentum=0.1, affine=True,
track running stats=False)

(2) ReLU(inplace=True)

(3)
Conv2d(64, 128, kernel size=(3, 3), stride=(2, 2), padding=(1, 1),
bias=False)

(4)
InstanceNorm2d(128, eps=1e-05, momentum=0.1, affine=True,
track running stats=False)

(5) ReLU(inplace=True)

(6)
Conv2d(128, 256, kernel size=(3, 3), stride=(2, 2), padding=(1, 1),
bias=False)

(7)
InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=True,
track running stats=False)

(8) ReLU(inplace=True)

(9)
Conv2d(256, 512, kernel size=(3, 3), stride=(2, 2), padding=(1, 1),
bias=False)

(10)
InstanceNorm2d(512, eps=1e-05, momentum=0.1, affine=True,
track running stats=False)

(11) ReLU(inplace=True)
(12) ResidualBlock(512, kernel size =(3,3), stride=(1, 1), padding=(1, 1))
(13) ResidualBlock(512, kernel size =(3,3), stride=(1, 1), padding=(1, 1))
(14) ResidualBlock(512, kernel size =(3,3), stride=(1, 1), padding=(1, 1))
(15) ResidualBlock(512, kernel size =(3,3), stride=(1, 1), padding=(1, 1))
(16) ResidualBlock(512, kernel size =(3,3), stride=(1, 1), padding=(1, 1))
(17) ResidualBlock(512, kernel size =(3,3), stride=(1, 1), padding=(1, 1))

(18)
ConvTranspose2d(512, 256, kernel size=(3, 3), stride=(2, 2), padding=(1, 1),
output padding=(1, 1), bias=False)

(19)
InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=True,
track running stats=False)

(20) ReLU(inplace=True)

(21)
ConvTranspose2d(256, 128, kernel size=(3, 3), stride=(2, 2), padding=(1, 1),
output padding=(1, 1), bias=False)

(22)
InstanceNorm2d(128, eps=1e-05, momentum=0.1, affine=True,
track running stats=False)

(23) ReLU(inplace=True)

(24)
ConvTranspose2d(128, 64, kernel size=(3, 3), stride=(2, 2), padding=(1, 1),
output padding=(1, 1), bias=False)

(25)
InstanceNorm2d(64, eps=1e-05, momentum=0.1, affine=True,
track running stats=False)

(26) ReLU(inplace=True)

(27)
Conv2d(64, 3, kernel size=(7, 7), stride=(1, 1), padding=(3, 3),
bias=False)

(28) Tanh()

A.2. Loss functions 41

TABLE A.7: ResUNet architecture: encoders and decoders

Layer Encoders

(0)
Conv2d(6, 64, kernel size=(7, 7), stride=(1, 1), padding=(3, 3),
bias=False)

(1)
InstanceNorm2d(64, eps=1e-05, momentum=0.1, affine=True,
track running stats=False)

(2) ReLU(inplace=True)

(3)
Conv2d(64, 128, kernel size=(3, 3), stride=(2, 2), padding=(1, 1),
bias=False)

(4)
InstanceNorm2d(128, eps=1e-05, momentum=0.1, affine=True,
track running stats=False)

(5) ReLU(inplace=True)

(6)
Conv2d(256, 512, kernel size=(3, 3), stride=(2, 2), padding=(1, 1),
bias=False)

(7)
InstanceNorm2d(512, eps=1e-05, momentum=0.1, affine=True,
track running stats=False)

(8) ReLU(inplace=True)

(9)
Conv2d(256, 512, kernel size=(3, 3), stride=(2, 2), padding=(1, 1),
bias=False)

(10)
InstanceNorm2d(512, eps=1e-05, momentum=0.1, affine=True,
track running stats=False)

(11) ReLU(inplace=True)
Resnets

(0) ResidualBlock(512, kernel size =(3,3), stride=(1, 1), padding=(1, 1))
(1) ResidualBlock(512, kernel size =(3,3), stride=(1, 1), padding=(1, 1))
(2) ResidualBlock(512, kernel size =(3,3), stride=(1, 1), padding=(1, 1))
(3) ResidualBlock(512, kernel size =(3,3), stride=(1, 1), padding=(1, 1))
(4) ResidualBlock(512, kernel size =(3,3), stride=(1, 1), padding=(1, 1))
(5) ResidualBlock(512, kernel size =(3,3), stride=(1, 1), padding=(1, 1))

Decoders

(0)
ConvTranspose2d(512, 256, kernel size=(3, 3), stride=(2, 2), padding=(1, 1),
output padding=(1, 1), bias=False)

(1)
InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=True,
track running stats=False)

(2) ReLU(inplace=True)

(3)
ConvTranspose2d(256, 128, kernel size=(3, 3), stride=(2, 2), padding=(1, 1),
output padding=(1, 1), bias=False)

(4)
InstanceNorm2d(128, eps=1e-05, momentum=0.1, affine=True,
track running stats=False)

(5) ReLU(inplace=True)

(6)
ConvTranspose2d(128, 64, kernel size=(3, 3), stride=(2, 2), padding=(1, 1),
output padding=(1, 1), bias=False)

(7)
InstanceNorm2d(64, eps=1e-05, momentum=0.1, affine=True,
track running stats=False)

(8) ReLU(inplace=True)

42 Appendix A. Liquid Warping GAN architecture and loss functions

TABLE A.9: ResUNet architecture: skippers and regularizations

Layer Skippers

(0)
Conv2d(512, 256, kernel size=(3, 3), stride=(1, 1), padding=(1, 1),
bias=False)

(1)
InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=True,
track running stats=False)

(2) ReLU(inplace=True)

(3)
Conv2d(256, 128, kernel size=(3, 3), stride=(1, 1), padding=(1, 1),
bias=False)

(4)
InstanceNorm2d(128, eps=1e-05, momentum=0.1, affine=True,
track running stats=False)

(5) ReLU(inplace=True)

(6)
Conv2d(128, 64, kernel size=(3, 3), stride=(1, 1), padding=(1, 1),
bias=False)

(7)
InstanceNorm2d(64, eps=1e-05, momentum=0.1, affine=True,
track running stats=False)

(8) ReLU(inplace=True)
Img reg

(0)
Conv2d(64, 3, kernel size=(7, 7), stride=(1, 1), padding=(3, 3),
bias=False)

(1) Tanh()
Attention reg

(0)
Conv2d(64, 1, kernel size=(7, 7), stride=(1, 1), padding=(3, 3),
bias=False)

(1) Sigmoid()

(9)
Conv2d(256, 512, kernel size=(3, 3), stride=(2, 2), padding=(1, 1),
bias=False)

(10)
InstanceNorm2d(512, eps=1e-05, momentum=0.1, affine=True,
track running stats=False)

(11) ReLU(inplace=True)
(12) ResidualBlock(512, kernel size =(3,3), stride=(1, 1), padding=(1, 1))
(13) ResidualBlock(512, kernel size =(3,3), stride=(1, 1), padding=(1, 1))
(14) ResidualBlock(512, kernel size =(3,3), stride=(1, 1), padding=(1, 1))
(15) ResidualBlock(512, kernel size =(3,3), stride=(1, 1), padding=(1, 1))
(16) ResidualBlock(512, kernel size =(3,3), stride=(1, 1), padding=(1, 1))
(17) ResidualBlock(512, kernel size =(3,3), stride=(1, 1), padding=(1, 1))

(18)
ConvTranspose2d(512, 256, kernel size=(3, 3), stride=(2, 2), padding=(1, 1),
output padding=(1, 1), bias=False)

(19)
InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=True,
track running stats=False)

(20) ReLU(inplace=True)

(21)
ConvTranspose2d(256, 128, kernel size=(3, 3), stride=(2, 2), padding=(1, 1),
output padding=(1, 1), bias=False)

(22)
InstanceNorm2d(128, eps=1e-05, momentum=0.1, affine=True,
track running stats=False)

(23) ReLU(inplace=True)

(24)
ConvTranspose2d(128, 64, kernel size=(3, 3), stride=(2, 2), padding=(1, 1),
output padding=(1, 1), bias=False)

(25)
InstanceNorm2d(64, eps=1e-05, momentum=0.1, affine=True,
track running stats=False)

(26) ReLU(inplace=True)

(27)
Conv2d(64, 3, kernel size=(7, 7), stride=(1, 1), padding=(3, 3),
bias=False)

(28) Tanh()

43

Appendix B

Results

B.1 Virtual Try-on Network results

There are presented results from Fig. 5.1 and Fig. 5.2 in higher resolution. First
column corresponds to CP-VTON results, second - to VITON-GAN results.

B.2 Liquid Warping GAN results

There are presented results from Fig. ?? and Fig. ?? in higher resolution. First row
corresponds to the results of model trained on iPER dataset, second - on iPER+Place2
datasets, third - on iPER+Place2+DeepFashion datasets.

44 Appendix B. Results

B.2. Liquid Warping GAN results 45

46 Appendix B. Results

B.2. Liquid Warping GAN results 47

48 Appendix B. Results

B.2. Liquid Warping GAN results 49

50 Appendix B. Results

B.2. Liquid Warping GAN results 51

52

Bibliography

[1] Explained: A style-based generator architecture for gans - generating and tun-
ing realistic artificial faces. https://towardsdatascience.com/explained-a-
style-based-generator-architecture-for-gans-generating-and-tuning-
realistic-6cb2be0f431.

[2] How computer vision can change the automotive industry. https:
//medium.com/neuromation-blog/how-computer-vision-can-change-the-
automotive-industry-b8ba0f1c08d1. Accessed: 2018-08-08.

[3] How to evaluate generative adversarial networks. https://
machinelearningmastery.com/how-to-evaluate-generative-adversarial-
networks.

[4] Image-to-image translation. https://towardsdatascience.com/image-to-
image-translation-69c10c18f6ff.

[5] Impersonator dataset details. https://svip-lab.github.io/dataset/iPER_
dataset.html.

[6] Must-read papers about gans. https://towardsdatascience.com/must-read-
papers-on-gans-b665bbae3317.

[7] Place 365 dataset. http://places2.csail.mit.edu/download.html.

[8] Andrew Brock, Jeff Donahue, and Karen Simonyan. Large scale gan training
for high fidelity natural image synthesis. arXiv preprint arXiv:1809.11096, 2018.

[9] Zhe Cao, Gines Hidalgo, Tomas Simon, Shih-En Wei, and Yaser Sheikh. Open-
Pose: realtime multi-person 2D pose estimation using Part Affinity Fields. In
arXiv preprint arXiv:1812.08008, 2018.

[10] Zhe Cao, Tomas Simon, Shih-En Wei, and Yaser Sheikh. Realtime multi-person
2d pose estimation using part affinity fields. In CVPR, 2017.

[11] Yunjey Choi, Minje Choi, Munyoung Kim, Jung-Woo Ha, Sunghun Kim, and
Jaegul Choo. Stargan: Unified generative adversarial networks for multi-
domain image-to-image translation. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 8789–8797, 2018.

[12] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adver-
sarial nets. In Advances in neural information processing systems, pages 2672–2680,
2014.

[13] Xintong Han, Zuxuan Wu, Zhe Wu, Ruichi Yu, and Larry S Davis. Viton: An
image-based virtual try-on network. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 7543–7552, 2018.

https://towardsdatascience.com/explained-a-style-based-generator-architecture-for-gans-generating -and-tuning-realistic-6cb2be0f431
https://towardsdatascience.com/explained-a-style-based-generator-architecture-for-gans-generating -and-tuning-realistic-6cb2be0f431
https://towardsdatascience.com/explained-a-style-based-generator-architecture-for-gans-generating -and-tuning-realistic-6cb2be0f431
https://medium.com/neuromation-blog/how-computer-vision-can-change-the-automotive-industry-b8ba0f1c08d1
https://medium.com/neuromation-blog/how-computer-vision-can-change-the-automotive-industry-b8ba0f1c08d1
https://medium.com/neuromation-blog/how-computer-vision-can-change-the-automotive-industry-b8ba0f1c08d1
https://machinelearningmastery.com/how-to-evaluate-generative-adversarial-networks
https://machinelearningmastery.com/how-to-evaluate-generative-adversarial-networks
https://machinelearningmastery.com/how-to-evaluate-generative-adversarial-networks
https://towardsdatascience.com/image-to-image-translation-69c10c18f6ff
https://towardsdatascience.com/image-to-image-translation-69c10c18f6ff
https://svip-lab.github.io/dataset/iPER_dataset.html
https://svip-lab.github.io/dataset/iPER_dataset.html
https://towardsdatascience.com/must-read-papers-on-gans-b665bbae3317
https://towardsdatascience.com/must-read-papers-on-gans-b665bbae3317
http://places2.csail.mit.edu/download.html

BIBLIOGRAPHY 53

[14] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings
in deep residual networks. In European conference on computer vision, pages 630–
645. Springer, 2016.

[15] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and
Sepp Hochreiter. Gans trained by a two time-scale update rule converge to
a local nash equilibrium. In Advances in Neural Information Processing Systems,
pages 6626–6637, 2017.

[16] Shion Honda. Viton-gan: Virtual try-on image generator trained with adver-
sarial loss. arXiv preprint arXiv:1911.07926, 2019.

[17] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. Image-to-image
translation with conditional adversarial networks. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 1125–1134, 2017.

[18] Nikolay Jetchev and Urs Bergmann. The conditional analogy gan: Swapping
fashion articles on people images. In Proceedings of the IEEE International Con-
ference on Computer Vision, pages 2287–2292, 2017.

[19] Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual losses for real-time
style transfer and super-resolution. In European conference on computer vision,
pages 694–711. Springer, 2016.

[20] Angjoo Kanazawa, Michael J Black, David W Jacobs, and Jitendra Malik. End-
to-end recovery of human shape and pose. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 7122–7131, 2018.

[21] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive
growing of gans for improved quality, stability, and variation. arXiv preprint
arXiv:1710.10196, 2017.

[22] Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture
for generative adversarial networks. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 4401–4410, 2019.

[23] Hiroharu Kato, Yoshitaka Ushiku, and Tatsuya Harada. Neural 3d mesh ren-
derer. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-
nition, pages 3907–3916, 2018.

[24] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimiza-
tion. arXiv preprint arXiv:1412.6980, 2014.

[25] Shizuma Kubo, Yusuke Iwasawa, and Yutaka Matsuo. Generative adversarial
network-based virtual try-on with clothing region. 2018.

[26] Xiaodan Liang, Ke Gong, Xiaohui Shen, and Liang Lin. Look into person: Joint
body parsing & pose estimation network and a new benchmark. IEEE transac-
tions on pattern analysis and machine intelligence, 41(4):871–885, 2018.

[27] Weiyang Liu, Yandong Wen, Zhiding Yu, Ming Li, Bhiksha Raj, and Le Song.
Sphereface: Deep hypersphere embedding for face recognition. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pages 212–220,
2017.

54 BIBLIOGRAPHY

[28] Wen Liu, Zhixin Piao, Jie Min, Wenhan Luo, Lin Ma, and Shenghua Gao. Liq-
uid warping gan: A unified framework for human motion imitation, appear-
ance transfer and novel view synthesis. In Proceedings of the IEEE International
Conference on Computer Vision, pages 5904–5913, 2019.

[29] Wen Liu, Wenhan Luo Lin Ma Zhixin Piao, Min Jie, and Shenghua Gao. Liquid
warping gan: A unified framework for human motion imitation, appearance
transfer and novel view synthesis. In The IEEE International Conference on Com-
puter Vision (ICCV), 2019.

[30] Matthew Loper, Naureen Mahmood, Javier Romero, Gerard Pons-Moll, and
Michael J Black. Smpl: A skinned multi-person linear model. ACM transactions
on graphics (TOG), 34(6):248, 2015.

[31] Xudong Mao, Qing Li, Haoran Xie, Raymond Yiu Keung Lau, Zhen Wang, and
Stephen Paul Smolley. On the effectiveness of least squares generative adver-
sarial networks. IEEE transactions on pattern analysis and machine intelligence,
2018.

[32] Mehdi Mirza and Simon Osindero. Conditional generative adversarial nets.
arXiv preprint arXiv:1411.1784, 2014.

[33] Thu Nguyen-Phuoc, Chuan Li, Lucas Theis, Christian Richardt, and Yong-
Liang Yang. Hologan: Unsupervised learning of 3d representations from natu-
ral images. arXiv preprint arXiv:1904.01326, 2019.

[34] Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representa-
tion learning with deep convolutional generative adversarial networks. arXiv
preprint arXiv:1511.06434, 2015.

[35] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford,
and Xi Chen. Improved techniques for training gans. In Advances in neural
information processing systems, pages 2234–2242, 2016.

[36] Tomas Simon, Hanbyul Joo, Iain Matthews, and Yaser Sheikh. Hand keypoint
detection in single images using multiview bootstrapping. In CVPR, 2017.

[37] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks
for large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[38] Bochao Wang, Huabin Zheng, Xiaodan Liang, Yimin Chen, and Liang Lin. To-
ward characteristic-preserving image-based virtual try-on network. In Proceed-
ings of the European Conference on Computer Vision (ECCV), pages 589–604, 2018.

[39] Shih-En Wei, Varun Ramakrishna, Takeo Kanade, and Yaser Sheikh. Convolu-
tional pose machines. In CVPR, 2016.

[40] Donggeun Yoo, Namil Kim, Sunggyun Park, Anthony S Paek, and In So Kweon.
Pixel-level domain transfer. In European Conference on Computer Vision, pages
517–532. Springer, 2016.

[41] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Unpaired image-
to-image translation using cycle-consistent adversarial networks. In Proceedings
of the IEEE international conference on computer vision, pages 2223–2232, 2017.

	Declaration of Authorship
	Abstract
	Introduction
	Background
	Purpose
	Approach and Methodology
	Motivation
	Time plan

	Theory and related works
	Generative adversarial networks
	Conditional GANs and image-to-image translation
	GANs in fashion industry

	Method
	Changing clothing using Virtual Try-on Network
	CP-VTON model
	Geometric Matching Module
	Try-On Module

	VITON-GAN model

	Changing clothing using Liquid Warping GAN
	General description
	Body Mesh Recovery Module
	Flow Composition Module
	Liquid Warping GAN

	Loss function
	Perceptual Loss
	Face Identity Loss
	Adversarial Loss
	Attention Regularization Loss

	Model architecture

	Training process
	CP-VTON and VITON-GAN model training
	Dataset
	GMM module training
	TOM module training

	Liquid Warping GAN
	Dataset
	Training Liquid Warping GAN

	Results
	Virtual Try-on Network results
	Liquid Warping GAN results

	Conclusion
	What was done
	Implications
	Future work

	Liquid Warping GAN architecture and loss functions
	Architecture
	Loss functions

	Results
	Virtual Try-on Network results
	Liquid Warping GAN results

