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Chapter 1

Introduction

1.1 Motivation

Studies in the field of multi-person tracking could bring up new areas of optimiza-
tion in architecture, public security, retail marketing. The creation of movement
maps could show the bottlenecks of public space design.

In recent years different tools emerged and approaches for multi-person tracking
that could be used to identify the number of persons on image and track them on the
video stream. With the rise of deep learning (AlexNet won on ImageNat competition
in 2012), the wave of CNN development brought lots of new ideas. Nowadays, the
state of the art approaches introduce deep learning techniques to solve this kind of
task.

The last decade was also the rise of "Big data" and cloud computing, which are
the fields dealing with the massive amount of data computations and remote execu-
tions. These approaches gave rise to many tools dealing with streaming data from
different devices. Some of those tools could be used for the task.

1.2 Main definitions

Multi-person tracking is the process of detection of the moving object (person)
and tracking it throughout the frame sequence.

Multi-camera multi-person tracking is a process of tracking moving objects from
several data sources.

Identification is a process of assigning an identifier to the detected person on a
frame.

Re-identification is a process of recognizing an individual on different frames.
Cloud computing is a practice of using a remote service to perform computa-

tional operations.
Edge computing is a practice of performing computational operations on-premises

(taking the raw data from smart things and send to cloud-only computed data)1.
Detection is a bounding box selected by the object detection model.
Track is an entity representing the moving object throughout the images se-

quence.

1.3 Edge computing

The reasons why to use edge computing[3] rather than performing all operations in
the cloud are described below:

1https://hivecell.io/blogs/news/six-reasons-for-edge-computing

https://hivecell.io/blogs/news/six-reasons-for-edge-computing
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• Latency reduction - the maximum speed data can move through the wires is
186,000 miles per second. Any routing point data also decrease this speed go
through. These factors could create undesirable latency.

• Bandwidth - Sometimes, increasing the number of instances is not an option to
deal with increasing load. The amount of data could be so massive, or the files
could be so large that sending them using the internet could be very painful.

• Reliability - losing of data is unavoidable. There could factors on which hu-
manity has no power, such as tsunami or storms. Cables and wires could be
torn apart, and even massive data centers have outages where machines fail.

• Compliance - there are many regulations on where and how data could be
stored in the cloud. The laws vary across the globe, creating additional con-
straints for the companies.

• Security - some data is considered too sensitive to move across the internet,
even if encrypted and in a virtual private cloud (VPC). Mapping it to other
form or converting on edge could help to solve the problem.

• Cost reduction - paying for transferring and storing raw data that do not gen-
erate business value is useless. The extraction of business value from the data
could be done on edge, thus reducing the cost.

1.4 Challenges and limitations

• Identity switches - changes of object identifier throughout video stream in a
predefined time duration2.

• Fragmentation issue - fragmentation occurs when some detections are missed,
but identity switches did not happen. This leads to tracking fragmentation.

• Stream synchronization - delivering messages with delay or in broken order
could have a substantial negative impact on the tracking system in a multi-
camera environment.

1.5 The proposed method overview

In this thesis author proposes the following approach:

• Split the tracking task into two major parts: edge and cloud. The edge part
contains the operations executed on-premises (object detection, feature extrac-
tion), while the cloud part encompasses multi-camera tracking techniques.

• Apply deep learning techniques for object detection and feature extraction.

• Use Kafka to transfer metadata from on-premises devices to the cloud part.

• Apply modified DeepSort framework for object tracking.

• Use re-identification technique to find the same people on overlapping cam-
eras.

• Put tracking results into Kafka topic.

2https://www.intechopen.com/online-first/multi-person-tracking-based-on-faster-r-
cnn-and-deep-appearance-features

https://www.intechopen.com/online-first/multi-person-tracking-based-on-faster-r-cnn-and-deep-appearance-features
https://www.intechopen.com/online-first/multi-person-tracking-based-on-faster-r-cnn-and-deep-appearance-features
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Chapter 2

Background / State-of-the-art

A multi-camera Re-ID task with tracking is a complex solution. It consists of 4 major
parts described below.

2.1 Object detection

Object detection is a process of finding the instances of objects of a specific class in
the image. Nowadays, state of the art approaches are based on deep learning.

2.1.1 R-CNN

R-CNN uses selective search to generate 2000 region proposals.

1. Generate initial candidates region.

2. Use a greedy algorithm to merge similar regions to larger once recursively.

3. Use formed regions to produce feature vectors.

4. Then, the feature vectors are classified using SVM.

The disadvantages with R-CNN are the time performance of the model and the huge
neural network that requires lots of time to train.

2.1.2 YOLOv3

YOLO model is another neural network-based model that works way more different
than R-CNN. YOLO splits the image into N×N grid and creates M bounding boxes
in each cell. Then for each bounding box, the network evaluates the class proba-
bility, and if it is higher than the threshold, the model uses it to locate the object.
YOLO model is exceptionally fast, which makes it acceptable for real-time object
detection[5].

2.2 Object re-identification

The essence of Re-ID is to compare the similarity or distance between the features
extracted from two images [15].
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2.2.1 Feature extraction

The first step of Re-ID is feature extraction, which is vital for good performance.
Traditional methods of feature extraction include Scale-Invariant Feature Transform
(SIFT), Speeded Up Robust Features (SURF), and others. Still, nowadays state of the
art approaches for Re-ID are based on deep learning (CNN, RNN)1.

2.2.2 Distance / Similarity measurement

To compare the difference between two feature vectors could be used similarity or
distance metrics.

Euclidean distance

The Euclidean distance between points p and q is the length of the line segment
connecting them.

d(p, q) =

√
n

∑
i=1

(qi − pi)2 (2.1)

Cosine similarity

Cosine similarity is a measure of similarity between two non-zero vectors of an inner
product space that measures the cosine of the angle between them. The cosine of 0◦

is 1, and cosine of 90◦ is 0.

cos(t, e) =
te

‖t‖‖e‖ =
∑n

i=1 tiei√
∑n

i=1 (ti)2
√

∑n
i=1 (ei)2

(2.2)

Triplet loss

In the calculation of the triple loss, the feed data includes an anchor, a positive sam-
ple, and a negative sample, and the sample similarity calculation is realized by opti-
mizing the distance between the anchor and the positive sample being smaller than
the distance between the anchor and the negative sample [15]. After training, it
could be used to compare feature vectors as related to the same class or to different.

2.3 Object tracking

Object tracking is a process of tracking moving objects on the video stream. This task
is tightly connected with the Re-ID process. If the number of objects assigned with
ids with the help of object tracking, these ids should persist throughout the stream.

2.3.1 Mean shift

The mean shift is one of the simplest approaches to object tracking. It uses color
distribution to track objects. The algorithm consists of 4 steps:

1. Select a search window size and the initial position of the search window.

2. Estimate the mean position in the search window.

1https://github.com/NEU-Gou/awesome-reid-dataset

https://github.com/NEU-Gou/awesome-reid-dataset
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3. Center the search window at the mean position estimated in Step 2.

4. Repeat Steps 2 and 3 until the mean position moves less than a preset thresh-
old. Until convergence achieved.

2.3.2 Kalman filter

Kalman filter is used for object tracking when the initial position of the object is
known. The algorithm tries to predict the next position knowing the previous one
and takes into account the change that position has some error while being esti-
mated. Velocity is also required for predicting the next position2.

Consider the coordinates of the moving car.
xk - real value to be measured.
vk - velocity on the current step.
Theoretical measurements of the next step:

xk+1 = xk + vkdt (2.3)

Real measurements of the next step:

xk+1 = xk + vkdt + ξk (2.4)

where: ξk - error of outside world.
Real measurements of the GPS sensor:

zk = xk + ηk (2.5)

where: ηk - error of GPS sensor.
From two equations above we could find the optimal solution for predicting the

next step coordinates of moving car by using the weighted sum of two measure-
ments

xopt
k+1 = Kk+1zk+1 + (1− Kk+1)(xopt

k + uk) (2.6)

where: K - Kalman coefficient, uk = vkdt - controlling member.
The error of a system:

ek+1 = xk+1 − xopt
k+1 (2.7)

ek+1 = Kk+1ηk+1 + (1− Kk+1)(ek + ξk) (2.8)

In order to find the right value of Kalman coefficient, we need to minimize the
mean of squared error:

E(e2
k+1)→ min (2.9)

Base of iteration:

E(e2
k+1) = (1− Kk+1)

2(E2
k + σ2

ξ ) + K2
k+1σ2

η (2.10)

where: σ2
η = Eη2

Kk+1 =
Ee2

k + σ2
ξ

Ee2
k + σ2

ξ + σ2
η

(2.11)

Thus, on each iteration, we are looking for an optimal Kalman coefficient.

2https://david.wf/kalmanfilter/

https://david.wf/kalmanfilter/
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2.4 Stream processing

Stream processing is an approach to data processing, treating it as a stream of events.
Typical stream processing application consists of the number of producers sending
events and the number of consumer processing them. The stream processing plat-
form has to be reliable, scalable, and resilient to changes in load. One platform that
meets all these requirements is Apache Kafka.

2.4.1 Kafka

Apache Kafka is an append-only log with a configurable retention period. Kafka is
very flexible and could be tuned to process hundreds of terabytes of data.3

Data are stored in topics that represent the streams of events. Topics are split into
a number of partitions (the more, the larger the amount of data could be stored).

Producers push messages into the topic while consumers are reading from them.

FIGURE 2.1: Kafka application overview (off. docs)

At a high-level Kafka gives the following guarantees 4:

• Messages sent by a producer to a particular topic partition will be appended
in the order they are sent. That is, if the same producer sends a record M1 as a
record M2, and M1 is sent first, then M1 will have a lower offset than M2 and
appear earlier in the log.

• A consumer instance sees records in the order they are stored in the log.

• For a topic with replication factor N, we will tolerate up to N-1 server failures
without losing any records committed to the log.

3https://kafka.apache.org/documentation/
4https://kafka.apache.org/intro#intro_guarantees

https://kafka.apache.org/documentation/
https://kafka.apache.org/intro#intro_guarantees
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Chapter 3

Existing methods overview

3.1 Multi-camera Streaming Tracker using Deep Stream SDK

NVIDIA’s DeepStream SDK delivers a complete streaming analytics toolkit for AI-
based video and image understanding, as well as multi-sensor processing1.

Solutions with Deep Stream SDK encompass two parts approach2. Object detec-
tion and object tracking are performed on-premises, while cloud component consists
of multi-camera tracker and data analytics tools.

FIGURE 3.1: Architecture of multi-camera solution using DeepStream
SDK

3.1.1 Multi-camera tracker overview

The most exciting part of the project is multi-camera tracker. This component of
the system responds to the question of how to match two single-camera tracks and
create a road map of the object moving through all cameras?

The pipeline of multi-camera tracker is described below 3:

1. Poller - a step that polls Kafka to get new tracks. The polling interval is equal
to the detection interval. If detection happens on 4 fps, than polling interval
should be equal to 0.25 seconds.

2. Filters - step that remove tracks from ignored regions. Fisheye cameras which
are used in solution record the 360◦view. Some of the regions on these views
could be ignored as noisy or unnecessary.

3. Clustering - a step that performs clustering of the tracks with respect to several
rules:

1https://developer.nvidia.com/deepstream-sdk
2https://devblogs.nvidia.com/multi-camera-large-scale-iva-deepstream-sdk/
3https://github.com/NVIDIA-AI-IOT/deepstream_360_d_smart_parking_application/tree/

master/tracker

https://developer.nvidia.com/deepstream-sdk
https://devblogs.nvidia.com/multi-camera-large-scale-iva-deepstream-sdk/
https://github.com/NVIDIA-AI-IOT/deepstream_360_d_smart_parking_application/tree/master/tracker
https://github.com/NVIDIA-AI-IOT/deepstream_360_d_smart_parking_application/tree/master/tracker
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• If two detections from different cameras are close to each other, they may
belong to the same object4.

• If the same camera assigned different ids to two detections than they are
indeed different.

• detection with a single-camera track id belongs to only one multi-camera
track id and does not change over the time.

4. Matching - final step matching newly arrived detections with old ones using
Hungarian algorithm.

Then, results send to the resultant Kafka topic, out of which the data is retrieved
by analytics tools and displayed in UI.

3.1.2 Camera calibration technique

The approach used in Deep Stream SDK only suitable for camera systems where
cameras are observing a fixed FoV, meaning the camera always watching the same
geo-region. Also, there must be a global map to transform a relative in-camera posi-
tion to global coordinates.

To properly configure FoV with mapping to global coordinates5 there are several
steps described bellow:

1. Use an image annotation tool (authors of Deep Stream SDK suggest to use
Ratsnake) to draw a polygon on one of cameras’ images.

2. Use GIS tool to draw global polygon on the global map.

3. Create a mapping file containing (Idcam, Acam, Bcam, Ccam, Dcam, Aglob, Bglob, Cglob, Dglob)
for each camera.

4. SDK will compute a transformation matrix.

3.2 Multi-Person Tracking Based on Faster R-CNN and Deep
Appearance Features

The methodology proposed in this system are divided in several subtasks6:

1. Faster R-CNN for human detection.

2. CNN for appearance features extraction.

3. Kalman filter for human tracking.

4. Hungarian algorithm for tracking nearby rectangles.

5. Additional features like area, color, nearest color, and HSV.

6. Usage of face recognition when possible.

4https://github.com/NVIDIA-AI-IOT/deepstream_360_d_smart_parking_application/tree/
master/tracker

5https://devblogs.nvidia.com/calibration-translate-video-data/
6https://www.intechopen.com/online-first/multi-person-tracking-based-on-faster-r-

cnn-and-deep-appearance-features

https://github.com/NVIDIA-AI-IOT/deepstream_360_d_smart_parking_application/tree/master/tracker
https://github.com/NVIDIA-AI-IOT/deepstream_360_d_smart_parking_application/tree/master/tracker
https://devblogs.nvidia.com/calibration-translate-video-data/
https://www.intechopen.com/online-first/multi-person-tracking-based-on-faster-r-cnn-and-deep-appearance-features
https://www.intechopen.com/online-first/multi-person-tracking-based-on-faster-r-cnn-and-deep-appearance-features


3.3. Deep person Re-ID 9

The most interesting are the two last steps of the approach using additional fea-
tures for improving the accuracy of detection.

Area of human - if one person is tall and the other is short, this will not change
during the session so that this info could be used as a feature.

Color and nearest color - people do not usually change clothes while being in
public places; thus, the color of clothes could be used as a feature.

Color histograms could be used as features and improve the performance of
the system using cumulative brightness transfer function (CBTF) as a comparison
function.

Face recognition - when person is closed enough (15-20 feet) the face recognition
system [9] creates a feature map for the face. Then during the next matching phase,
the feature map is used to improve detection accuracy.

Unfortunately, in the top-view tracking system, face-recognition can’t be used.

3.3 Deep person Re-ID

Deep person Re-ID is a framework for person re-identification using omni-scale fea-
ture learning as a core. The framework supports multi-camera re-identification out
of the box and has many datasets wrappers7 for fast integration with them.

The key feature of the framework is its modularity, which makes it easy to ex-
tend, support, and change.

The core idea of omni-scale feature learning is to have additional attention to
small features as well as the overall appearance. To match people and distinguish
them from impostors, features corresponding to small local regions (e.g., shoes,
glasses) and global whole-body regions are equally important[18].

7https://github.com/KaiyangZhou/deep-person-reid#image-reid-datasets

https://github.com/KaiyangZhou/deep-person-reid#image-reid-datasets
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Chapter 4

Datasets description

Name Extension Task Items Memory

Dataset_1 mp4 - 5 videos 13.7 gb
Dataset_2 jpg + txt object detection 3769 images 1.3 gb

TABLE 4.1: Brief datasets info

4.1 Dataset_1 / Video

The primary dataset consists of 5 hours of video from 5 cameras (1 hour per camera)
with frequency 24 frames/second and size 1280 × 960. Videos were recorded in
UCU dining room by Ricker Lyman Robotic.

FIGURE 4.1: Merged frames from 5 cameras
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4.2 Dataset_2 / Object detection

Dataset contains 4000 labeled images from 5 cameras in YOLO format from the pri-
mary dataset. For every labeled frame exists .txt file containing detection class (for
particular case it is always person) and relative position of bounding box on frame.

FIGURE 4.2: Labeling process in YOLO_mark GUI tool

1 0 0.324609 0.140972 0.130469 0.126389
2 0 0.344922 0.491667 0.085156 0.122222
3 0 0.375781 0.628472 0.096875 0.137500
4 0 0.200391 0.436806 0.158594 0.123611
5 0 0.067969 0.545833 0.135937 0.116667
6 0 0.522266 0.518750 0.060156 0.112500
7 0 0.565625 0.645833 0.090625 0.127778
8 0 0.674609 0.388194 0.122656 0.093056
9 0 0.807813 0.500694 0.050000 0.151389

10 0 0.726953 0.504167 0.097656 0.141667

CODE SAMPLE 4.1: .txt file for labeled image
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Chapter 5

Solution

The proposed method is a complex solution based on several existing technologies
and custom implementation of the technique for overlapping multi-camera Re-ID.
Method is divided into two major parts: edge and cloud.

Edge part contains all operations that could be done on-premises, operations
that do not require synchronization, and could be done with the video stream of one
camera - object detection and feature extraction.

Cloud part consists of all operations that require synchronization and data from
several cameras - object re-identification, object tracking, tracking results streaming,
analytics.

FIGURE 5.1: Architecture of proposed solution

5.1 Edge

Object detection and feature extraction happen on each camera separately and do
not require synchronization. Because of this fact, the tasks in this section could be
done on the premises. All GPU intensive operations concentrated here, so the hard-
ware must have GPU support.

Technologies below are selected with performance in mind. Some of them may
not be the most accurate, but outstanding performance pays off.

5.1.1 Object detection (YOLOv3)

The first step in the pipeline is object detection implemented using YOLOv3 model.
YOLOv3 could deal with the image of any size1. The input of the network is the

image, and the output is a list of bounding boxes along with the recognized classes.
Each bounding box is represented by 6 numbers (class index, top left x, top left y,

1https://www.cyberailab.com/home/a-closer-look-at-yolov3

https://www.cyberailab.com/home/a-closer-look-at-yolov3
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bounding box height, bounding box width, confidence). As a loss function, IoU is
used. This method improves predictions by making specialized bounding boxes for
some aspect ratios and sizes 2.

YOLOv3 has three scales for detecting objects of different sizes. Having the
strides of the network equals to 32, 16, and 8, the input image of (1280, 960) will
be divided into the grid with scales (40, 30), (80, 60) and (160, 120) respectively. For
each grid cell, 3 bounding boxes used. The total number of anchors is 9. After it,
every bounding box gets the score. All scores below some threshold (usually 0.5) are
ignored. The next step is non-maximum suppression performed over the bounding
boxes overlapping each other. All bounding boxes left to form the output of the
model.

Rep Name Filters Patch Size/Stride Output size

Conv 32 3×3 256×256
Conv 64 3×3/2 128×128
Conv 32 1×1

1 Conv 32 3×3
Residual 128×128

Conv 128 3×3/2 64×64
Conv 64 1×1

2 Conv 128 3×3
Residual 64×64

Conv 256 3×3/2 32×32
Conv 128 1×1

8 Conv 256 3×3
Residual 32×32

Conv 512 3×3/2 16×16
Conv 256 1×1

8 Conv 512 3×3
Residual 16×16

Conv 1024 3×3/2 8×8
Conv 512 1×1

4 Conv 1024 3×3
Residual 8×8
Avgpool Global

Connected 1000
Softmax

TABLE 5.1: Darknet53 model architecture

5.1.2 Feature extraction

The core part of any Re-ID system is extracting a feature vector from detection. The
mainstream approach for feature extraction is deep learning. The author decided to
use DeepSort framework for tracking. The framework split into two parts to satisfy
the needs of the multi-camera system with edge computing.

2https://missinglink.ai/guides/computer-vision/yolo-deep-learning-dont-think-
twice/

https://missinglink.ai/guides/computer-vision/yolo-deep-learning-dont-think-twice/
https://missinglink.ai/guides/computer-vision/yolo-deep-learning-dont-think-twice/
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"Deep" part of DeepSort framework

The deep part of the framework is a CNN that takes the number of detected by
YOLOv3 images as an input and outputs 128 entries long feature vector. Authors
of the framework claim that "one forward pass of 32 bounding boxes takes approxi-
mately 30 ms on an Nvidia GeForce GTX 1050 mobile GPU" making this NN suitable
for real-time processing. [11]

Name Patch Size/Stride Output size

Conv 1 3×3/1 32×128×64
Conv 2 3×3/1 32×128×64

Max Pool 3 3×3/2 32×64×32
Residual 4 3×3/1 32×64×32
Residual 5 3×3/1 32×64×32
Residual 6 3×3/2 64×32×16
Residual 7 3×3/1 64×32×16
Residual 8 3×3/2 128×16×8
Residual 9 3×3/1 128×16×8
Dense 10 128

Batch and l2 normalization 128

TABLE 5.2: Architecture of deep appearance descriptor

5.2 Cloud

The "cloud" part manages the state of the application and synchronizing the events
from different cameras. Between edge and cloud computational units located stream-
ing platform responsible for streaming, replication, and temporarily storing the data.

5.2.1 Stream processing

After performing object detection and feature extraction on one camera, the data
from edge computational units transferred to Kafka topic with the help of Kafka client.
Each message represents one frame of the video stream. Depending on needs, some
frames could be skipped to reduce the load on the system.

To transfer data and keep it consistent Avro data serialization system 3 is used.
Replication of data has to be set up manually, depending on needs. In order to ensure
safety when transferring data via a public network, SSL encryption must be used.

There are two possible strategies of the topic set up:

1. All cameras - one partition. The benefits of this approach simplicity and flexi-
bility. If the new camera is added to the system, nothing has to be changed in
configuration. The drawbacks are: reliability of the system is insufficient for
long term use4 and the ordering of messages are random in terms of cam_id,
so forming a batch of messages that equals to the number of cameras is not an
approach.

3http://avro.apache.org/docs/current/
4https://jack-vanlightly.com/blog/2018/9/14/how-to-lose-messages-on-a-kafka-

cluster-part1

http://avro.apache.org/docs/current/
https://jack-vanlightly.com/blog/2018/9/14/how-to-lose-messages-on-a-kafka-cluster-part1
https://jack-vanlightly.com/blog/2018/9/14/how-to-lose-messages-on-a-kafka-cluster-part1
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2. One camera - one partition. The benefits of this approach are scalability and
reliability. Messages are partitioned by cam_id are stored in order where one
partition storing the data from one camera. If one partition failed, it doesn’t
mean that the system failed. Additionally, the data from each camera could be
processed separately. The drawback is configurability. If a new camera added,
all of the data has to be re-partitioned, and the ordering will be lost.

Consumer polls topic for new messages and puts the data into the object tracking
algorithm, which contains the state of the application.

5.2.2 Object tracking

The author used DeepSort framework for this part because of its simplicity and out-
standing performance. As far as the "Deep" part of the framework was moved to the
edge here author describes the "Sort" part only.

"Sort" part of DeepSort framework

The tracking system is implemented by using Kalman filtering and frame-by-frame
data association using the Hungarian method.

Track Handling and State Estimation
Input consists of (u, v, y, h), corresponding to bounding box center position (u,v),

aspect ratio y, height h. Kalman filtering has configurable constant velocity motion.
Each track could be in one of three states:

• Tentative - new tracks that have not been confirmed. To transfer to confirmed
state track has to appear N times in a row. If the track is not associated N times,
it is transferred to the Deleted state. N is configurable.

• Confirmed - the track that has been validated as confirmed. It is the main state.
If detection for the track is missed for M number of frames than it is marked as
Deleted. M is configurable.

• Deleted - tracks that will be removed from the state at the end of the iteration.

If input detection can not be associated with any of the existing detection, a new
track is created.
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Assignment Problem
To associate existing tracks with newly provided detection Hungarian algorithm

is used. Association is done using the weighted sum of two features (squared Maha-
lanobis distance and cosine similarity) between predicted Kalman states and newly
arrived measurements.

ci,j = λd1
i,j + (1− λ)d2

i,j (5.1)

where:
λ - hyperparameter regulating the influence of each of feature.
In combination, both metrics complement each other by serving different aspects

of the assignment problem.

One person on several cameras case

In the dataset provided by Ricker-Lyman Robotics, each camera located in overlaps
neighboring cameras, so the situation when the same person is detected on several
cameras simultaneously could emerge. To deal with this kind of task author of this
thesis proposes the add-on to DeepSort framework.

FIGURE 5.2: Top view overlapping cameras

When tracking people, DeepSort incrementally assigns ids to newly created tracks
(detection that has not been associated with existing tracks). It does not have any
mechanism to find tracks that could relate to the same person on by several cam-
eras. With the proposed add-on author tries to solve this problem.

Idea explanation
If one person appears on several cameras simultaneously, the related tracks should

have similar feature vectors, and these tracks have to be close to each other in abso-
lute position. Additionally, there could not be two tracks related to the person in one
camera view, so any tracks with the same cam_id could be ignored in comparison.

Implementation
First of all, DeepSort input has to be enriched with cam_id parameter that de-

scribes the relation of the track to a particular camera.
In order to implement multi-camera association, there are three hyperparameters

to be added to DeepSort:

• Multi-camera association coefficient - coefficient that regulates the influence
of the feature vector and the absolute position on the final decision.
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• Multi-camera association threshold - a threshold that justifies that two tracks
relate the same person.

• Multi-camera distance threshold - the max euclidean distance between two
tracks that could be small enough to consider the tracks related to the same
person.

Let us define the camera relation matrix. If two tracks are from the same camera,
than the entry is 0 and 1 otherwise.

A =

t1 t2 . . . tn


0 1

... 1 t1

1 0
... 1 t2

1 0
. . . 1

...

1 1
... 0 tn

(5.2)

After that, calculate the cosine similarity correlation matrix between tracks fea-
ture vectors.

Bi,j = cos(θ) =
FiFj

‖Fi‖
∥∥Fj
∥∥ (5.3)

Then define the distances matrix. Firstly one needs to map relative in-camera po-
sition to absolute coordinates (each camera has offset from zero coordinate defined
in configuration), then calculate euclidean distance between each track, set to 0 those
distances that are greater than multi-camera distance threshold, normalize the matrix
with min-max normalization to convert entries of the matrix to 0 to 1 range.

z =
x−min(x)

max(x)−min(x)
(5.4)

C =

t1 t2 . . . tn


0 0.8

... 0 t1

0.6 0
... 0.73 t2

0.3 0.37
. . . 0.95

...

0 0.87
... 0 tn

(5.5)

The author used weighted some of to combine distance and appearance mea-
surements. If the result exceeds some predefined threshold, than one person could
appear on two tracks:

Ri,j =

{
x, if x > v, where x = Ai,j(λBi,j + (1− λ)Ci,j)

0, otherwise
(5.6)

where:
λ - multi-camera association coefficient 0 ≤ λ ≤ 1, v - multi-camera association

threshold 0 ≤ v ≤ 1, A - camera relation coefficient. Entry is 0 if two tracks are
from the same camera and 1 otherwise, B - cosine similarity, C - absolute distance
coefficient.
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Chapter 6

Experiments

Since there is a custom dataset provided by Ricker Lyman Robotic and labeled man-
ually by the author of the paper, all tests will be performed using it as a data source.

6.1 Multi-camera DeepSort

DeepSort framework was designed to work with one camera only and expects the
input directly from the object detection model. The author has rewritten the input
of Sort part to consume the merged messages from all cameras.

The track entity was enriched by cam_id parameter, which is used to distinguish
the message by the camera.

FIGURE 6.1: Result of multi-camera tracking

As a result, one could see that Sort component is agnostic to the number of cam-
eras. It respects the detections from separate cameras and handles them separately.

6.2 Multi-camera id assignment

Sort algorithm finishes its work after performing the tracking phase. But since the
author of this thesis added one more step of person re-identification in overlapping
cameras, let us consider several cases to see how significant is an impect of multi-
camera association coefficient for re-identification.
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6.2.1 Test 1

Setup: (multi-camera association coefficient=0.3, multi-camera association thresh-
old=0.6, multi-camera distance threshold=100)

Appearance impact: 30% Position impact: 70%

FIGURE 6.2: Test 1. Image 1

FIGURE 6.3: Test 1. Image 2
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6.2.2 Test 2

Setup: (multi-camera association coefficient=0.5, multi-camera association thresh-
old=0.6, multi-camera distance threshold=100)

Appearance impact: 50% Position impact: 50%

FIGURE 6.4: Test 2. Image 1

FIGURE 6.5: Test 2. Image 2
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6.2.3 Test 3

Setup: (multi-camera association coefficient=0.8, multi-camera association thresh-
old=0.6, multi-camera distance threshold=100)

Appearance impact: 80% Position impact: 20%

FIGURE 6.6: Test 3. Image 1

FIGURE 6.7: Test 3. Image 2

As one could see for a specific dataset absolute position of a person is much more
important than her appearance. If the dataset consisted of images containing more
appearance info, such as the side-view dataset, the impact appearance could have
drastically increased.
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Chapter 7

Discussion

7.1 Future work

7.1.1 Proposed method improvement

The proposed method of finding the same person on several cameras could be im-
proved by:

• Changing camera relation coefficient to a transition matrix, where every row will
have non-zero entries for neighboring cameras, thus not compering the tracks
that are located on distant cameras.

• Add the statistical model to find the best weights of features using λ multi-
camera association coefficient.

7.1.2 Framework for multi-camera person re-identification

During the research, the author has noticed that there is no modular open-source
framework for multi-camera object tracking. Despite the existence of many tools
solving one or several sub-tasks, no tools generalizing the approach exist. Creating
one will significantly reduce efforts of the system setup and maintenance.

7.1.3 Adding data visualization tools

One thing existing solution lacking is integration with visualization tools such as
Grafana or Kibana displaying the system health and real-time analytics. This would
help in diagnostics and finding useful insights, which in turn generates the business
value of the solution.
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Chapter 8

Conclusions

The author presented a design of the solution for a top-view tracking system. Be-
sides that, the author proposed an approach to find associate several tracks with the
same person.

The system described above is modular, so any part of it could be easily replaced
with any of the existing analogs depending on the needs.

Additionally, the author has created a dataset for person detection containing
almost 4000 labeled images.
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Appendix A

Code

A.1 Pseudocode

1 import numpy as np
2 from typing import List
3

4

5 camera_offset_from_zero_coordinate = {
6 cam_id_1: (x, y),
7 cam_id_2: (x, y),
8 ...
9 cam_id_n: (x, y)

10 }
11

12

13 def find_possibilities_of_same_ids(features: np.ndarray ,
14 confirmed_tracks_indexes: List ,
15 cam_ids: List
16 ):
17 """
18 Defines a cost matrix and checks
19 if there are some ids to associate them
20 """
21 # find cosine similarity
22 cs_cost_matrix = calculate_cosine_similarity(features , features)
23

24 # calculate the central point of each track
25 central_points = [
26 get_track(i).get_central_point () for i in

confirmed_tracks_indexes
27 ]
28

29 # convert camera relative positions to absolute positions
30 for i, track_index in enumerate(confirmed_tracks_indexes):
31 cam_id = cam_ids[i]
32 x, y = central_points[i]
33 # find the offset of each camera by cam_id
34 offset_x , offset_y = camera_offset_from_zero_coordinate[cam_id]
35 central_points[i] = np.array([ offset_x + x, offset_y + y])
36

37 # calculate euclidean distance between absolute positioned points
38 distances = np.zeros(cs_cost_matrix.shape)
39 for i, p1 in enumerate(central_points):
40 for j, p2 in enumerate(central_points):
41 distances[i, j] = np.linalg.norm(p1 - p2)
42

43 # set those entries that are higher than threshold to 0
44 distances[distances > multi_camera_maximum_distance] = 0
45
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46 # apply min -max normalization to convert distances to (0 to 1)
scale

47 distances =
48 ( distances - distances.min() ) /
49 ( distances.min() + distances.max() ),
50

51 # after normalization distances that are close to each other
52 # are close to 0, while those that are relatively distant are close

to 1
53 # change this it vice -versa
54 distances = np.where(distances == 0, 0, 1 - distances)
55

56 # calculate relation to the same camera
57 cam_coefficients = np.ones(cs_cost_matrix.shape)
58 for i in cam_ids:
59 for j in cam_ids:
60 # if tracks have same_cam ids they are definitely different
61 # set cam coefficient to zero
62 if i == j:
63 cam_coefficients[i, j] = 0
64

65

66 # compute the probability of setting same ids
67 result = cam_coefficients * \
68 np.add(
69 multi_camera_association_coefficient * cs_cost_matrix ,
70 (1 - multi_camera_association_coefficient) * distances ,
71 )
72 return result
73

74

75 def replace_ids(probs: np.ndarray):
76 # all values that are less than threshold set to 0
77 probs[probs < multi_camera_association_threshold] = 0
78 max_val_indexes = np.argmax(probs , axis =0)
79 replace_ids_of_tracks_that_left(max_val_indexes)
80

81

82

83 # start reading here!
84 def update_framework_step(self ,
85 features: np.ndarray ,
86 confirmed_tracks_indexes: List[int],
87 cam_ids: List[int]):
88 """
89 :param self: Tracker
90 :param features: feature vectors of currently existing tracks
91 :param confirmed_tracks_indexes: indexes of confirmed tracks only
92 :param cam_ids: cam_ids of tracks
93 :return:
94 """
95

96 # do usual Sort update
97

98 # try to find similar tracks and assign same ids to them
99 if self.frame_index > self.n_init and len(features) > 0:

100 # method below returns probability matrix
101 # of two tracks tracking the same person
102 probabilities = find_probs_of_same_ids(
103 features ,
104 targets ,
105 confirmed_tracks_indexes ,
106 cam_ids
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107 )
108 # replace ids of the
109 replace_ids(probabilities)

CODE SAMPLE A.1: Pseudo code of re-identification in overlapping
multi-camera system

A.2 Message schemas

1 @namespace ("ucu.master.diploma.motility ")
2 protocol Motility {
3

4 record Detection {
5 float confidence;
6 array <float > feature = [];
7 array <float > tlwh = [];
8 }
9

10 record Msg {
11 int cam_id;
12 timestamp_ms event_time;
13 array <Detection > detections = [];
14 }
15

16 }

CODE SAMPLE A.2: Message (avro)schema
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