
UKRAINIAN CATHOLIC UNIVERSITY

MASTER’S THESIS

Semi-supervised feature sharing for
efficient video segmentation

Author:
Anton PONOMARCHUK

Supervisor:
Andrey LUZAN

A thesis submitted in fulfillment of the requirements
for the degree of Master of Science

in the

Department of Computer Sciences
Faculty of Applied Sciences

Lviv 2019

http://www.ucu.edu.ua
http://www.johnsmith.com
http://www.jamessmith.com
http://researchgroup.university.com
http://department.university.com

i

UKRAINIAN CATHOLIC UNIVERSITY

Abstract
Faculty of Applied Sciences

Master of Science

Semi-supervised feature sharing for efficient video segmentation

by Anton PONOMARCHUK

In robot sensing and automotive driving domains, producing precise semantic seg-
mentation masks for images can help greatly with environment understanding and,
as a result, better interaction with it. These tasks usually need to be processed for
images with more the 2 object’s classes. Moreover, semantic segmentation should be
done for a short period. Almost all approaches that try to solve this task used heavy-
weight end-to-end deep neural network or external blocks like GRU [14], LSTM[25]
or optical flow [1]. In this work, we provide a deep neural network architecture for
learning to extract global high-level features and propagate them among the images
that describe the same video’s scene, for speeding up image processing. We provide
a propagation strategy without any external blocks. We also provide loss function
for training such network with the dataset, where the vast number of images don’t
have a segmentation mask.

HTTP://WWW.UCU.EDU.UA
http://department.university.com

ii

Acknowledgements
I would like to thank the supervisor Andrey Luzan for the excellent cooperation and
all of the opportunities I was given to conduct this research. Also, I would like to
thank Orest Kupyn for the coordination between the supervisor and me.

I would like to thank Oleksii Molchanovskyi and Rostyslav Hryniv for an oppor-
tunity to become a part of this master’s program and for their valuable guidance.

I would also like to thank Ciklum for providing the scholarship to graduate from
this master’s program and computational powers for experiments. In addition, I
would like to thank Igor Krashenyi for helping to use the Ciklum’s computational
powers properly.

iii

Contents

Abstract i

Acknowledgements ii

1 Introduction 1

2 Related work 4
2.1 Image semantic segmentation . 4
2.2 Video semantic segmentation . 6

2.2.1 Optical flow approaches . 6
2.2.2 RNN approaches . 7
2.2.3 Alternetive approaches . 9

2.3 Dataset . 11

3 Video segmentation approach 12
3.1 Model . 13
3.2 Feature propagation . 14

4 Loss function and accuracy 16

5 Experiments 20

6 Conclusions 26

Bibliography 27

1

Chapter 1

Introduction

Scene understanding by parsing via semantic segmentation is a fundamental topic in
computer vision. The main goal is to predict for each pixel in the image a category
from a predefined set of classes. Scene understanding predicts the label, location,
and shape of each element at the image. Figure 1.1 illustrates examples of input
and output images for this task. As input, we take a regular image and produce a
semantic mask for each object at the image.

FIGURE 1.1: An illustration of the scene semantic segmentation task.
In the input we take some scene (on the left), and produce the output
semantic segmentation mask for a scene (on the right). The images

are taken from Cityscapes [6] and ADE20K [30] datasets.

The potential applications of this topic are:

• medical image diagnosis - producing precise semantic segmentation masks for
lungs, brains, etc. can provide more precise details for doctors and save them
time;

• robot sensing - knowing object’s precise location and size will help robots to
better interact with an environment;

• automatic driving - seeing an object’s location size and shape will help cars
faster and better understand the environment and ,as a result, make an im-
proved decision.

Chapter 1. Introduction 2

For automotive driving and robot sensing the task is to provide the semantic
segmentation masks for images that have more than two classes. For instance, Figure
1.1 provides image from the street. As we can see, there at least six classes that need
to be predicted: nature (trees and grass), the sky, car, road, traffic signs and sidewalk.
Producing masks for big number of objects provide difficulties in processing such
images. The more classes that need to be processed in the image, the more difficult
to do so. Difficulties arise from the variety of classes and sizes of objects, and in
different images from the same dataset, objects can be different sizes, which means
that we need to enable our algorithm to predict differences in size.

State-of-the-art scene parsing approaches are mostly based on Fully convolu-
tional network (FCN) [20]. These deep convolutional neural networks(CNN) work as
trainable filters and can adapt to the images need to be processed. The highest result
is provided by the architecture DeepLabV3+ [18] with a mean intersection over union
(mIoU) score 82.1 %.

The main disadvantages of the DeepLabV3+ are the weight and image process-
ing. It has 43.48M [5] parameters that need to be computed during image processin,
which causes difficulties when processing a vast number of images during a short
period. For instance, during automatic driving, stream-like images need to be pro-
cessed in a short period. These images are dependent on time, so they have temporal
continuity property. As a result, the problem of producing segmentation masks for
images for automatic driving can be resolved by video semantic segmentation ap-
proaches.

The difference between image and video semantic segmentation is that the ap-
proaches for image semantic segmentation process image by image. These approaches
process images independently and in general don’t use any external information.
On the other hand, the approaches for video semantic segmentation try to exploit
temporal continuity - by using dependency between frames that describe the same
scene. Figure 1.2 illustrates frames that describe one scene. The images contain iden-
tical objects with distortion of size and position. The image processing can be speed
up and the accuracy can be increased by exploiting this video’s property.

FIGURE 1.2: An illustration of video frames that describe same scene.
The images are taken from extended Cityscapes dataset.

By using the temporal continuity property, the work [28] tries to build modules
for efficient propagation high-level features among high-correlated frames. For us-
ing temporal continuity, the video semantic segmentation approaches also use dif-
ferent external elements as a gated recurrent unit [14], long short term memory [25]
and optical flow [1]. These elements propagate and adapt the information (it can be
feature maps or semantic segmented masks) from processing previous images to the

Chapter 1. Introduction 3

current one. These elements provide additional time costs. So, the latency for the
processing one frame increased.

From [28] we noticed that propagating features from the previous frame to the
current one can be done without any external block. Moreover, they used a built-in
CNN to adapt feature maps extracted from the previous frame to the current one.
In this work, we tried to build such architecture for using extracted high-level fea-
tures maps from earlier frames to the current one without any implicit or explicit
networks or additional elements. To do so, we developed an approach for extract-
ing global high-level features, describing common information about a video scene
among high-correlated frames.

We rely on the property that frames describe one scene into a video - contain
same global information about the scene that can be propagated. To adapt CNN to
extract these features and spread it among frames without any external or internal
blocks CNN, is our goal in this paper.

During this work we discovered:

• high-level information among frames sharing strategy - skip propagation con-
nection Sprop;

• loss function for training network with Sprop connection and small number of
labeled training data in relation to the whole dataset;

• transformed FPN [19] version for semantic segmentation for using Sprop and
provide results of the benefits and drawbacks by using our approach.

4

Chapter 2

Related work

After introducing [17] as the state-of-the-art algorithm for image classification prob-
lem in 2012, deep learning methods have shown dominant results in various com-
puter vision tasks. For image recognition, classification, and segmentation, deep
learning architectures are the major field of research nowadays.

2.1 Image semantic segmentation

The goal for semantic segmentation is to predict per-pixel label in the input image.
Great results for this task were achieved by Fully Convolution Networks (FCN).
[20] build the end-to-end network that takes an arbitrary sized input image and
produce an output of the same size. It was a novel approach for per pixel image
segmentation task. The main idea was next: the authors took a convolutional neural
network for the image classification problem and the fully-connected layers replaced
by convolutional layers, making it possible to get as the output the segmented masks
of the input images.

In fact, due to the network structure, this was the first attempt to made a trainable
filter, that can be applied to any image size, and the result should be the proportion-
ally sized mask. The authors also developed the approach that achieves good accu-
racy in an end-to-end way without any additional post-processing like conditional
random fields. Moreover, this article has introduced the new direction for develop-
ing segmentation approaches. As a result, after that were developed the number of
architectures that based on the idea of FCN [20] achieved even better results: U-net
[24], Feature pyramid network (FPN) [19], Pyramid Scene Parsing (PSP) [29], [18],
see Figure 2.1(the image is taken from [28], with update of DeepLab accuracy from
[18]).

Quite often, scenes of the world include elements of the different sizes. These el-
ements contain features of different sizes, too. It is natural to try to develop a system
that can process an image at different scales. The image pyramid data structure [10]
was developed for efficient scaled image analysis. It consists of a sequence of copies
of an original image in which both of sample density and resolution are decreased
in regular steps [10].

The goal of [20] is to leverage naturally the pyramidal shape of a ConvNet’s
feature hierarchy while creating a feature pyramid that has strong semantics at all
scales [20]. In other words, [20] provides the neural network with feature pyramids
that can replace image pyramids without losing speed, memory capacity, represen-
tational power and produces the outputs in a pyramidal manner (the same output
but in different scales).

Chapter 2. Related work 5

FIGURE 2.1: Comparison of the latency and mIoU on Cityscapes [6]
dataset. The architectures are used: PSP [29], Clockwork [27], DFF

[31], DeepLabV3+ [18], Low-latency [28].

FPN [19] takes into the input a single-scale image of arbitrary size and produces a
proportionally sized feature maps at multiple levels. The network consists of the fol-
lowing elements: bottom-up pathway, top-down pathway, and lateral connections. Figure
2.2 (taken from [19]) provides the FPN architecture in detail.

Bottom-up pathway. The bottom-up pathway is a feed-forward computation of
the backbone convolutional network, which consists of stages. The stage is a data
structure that consists of the layers producing the same size feature maps. It means
that, in a stage, several layers can produce the output maps with the same size. One
stage corresponds to one level at the network pyramid structure. The outputs of
the last layer of each stage are used for creating a pyramid structure. The scaling
step between the pyramid’s level is two. For instance, in ResNet [13] the feature
activation outputs by each stage’s last residual block create the pyramid structure.
We will denote these outputs as C2, C3, C4, C5, that are conv2, conv3, conv4, conv5
ResNet [13].

Top-down pathway and lateral connections. The top-down pathway uses fea-
ture maps C2, C3, C4, C5 introduced in a pyramid during bottom-up pathway and cre-
ates the final set of feature maps P1, P2, P3, P4. Firstly, from the last pyramid level (C5)
come the coarser-resolution feature map. Then it is upsampled the spatial resolution
by factor 2. After that, the upsampled feature map is merged with the corresponding
bottom-up map by element-wise addition. Before the addition, the bottom-up map
is proceeded by 1× 1 convolution in lateral connection to make the same the num-
ber of filters with the top-down map. The processes of upsampling and element-
wise addition are iterated until the last (finest) resolution map is generated. To get
the predicted output pyramid’s feature maps, for each feature map of the top-down
pyramid is used 3 × 3 convolution without any non-linear function after it. As a
result, the final set of feature maps is denoted as P1, P2, P3, P4 which corresponds to
C2, C3, C4, C5.

The state of the art approach of image segmentation is FCN-like neural network
- DeepLabV3+ [18]. The accuracy of DeepLabV3+ is 82.1% on the Cityscapes dataset
[6].

Chapter 2. Related work 6

FIGURE 2.2: The architecture of FPN [19]. The bottom-up pathway
is the left part of the network. The top-down pathway is the right
part of the network. The information from bottom-up to top-down
is propagated by lateral connections - arrows that connect both net-
work’s parts. Lateral connection contains 1× 1 convolutions to make

equal the filters number at the feature maps from both parts.

2.2 Video semantic segmentation

Video segmentation is sufficient not only to produce masks with high accuracy, but
to do so fast and with as small a latency as possible. FCN-like networks also don’t
use video’s temporal continuity. Specific subsets of images share the same global
information, and this information can potentially be reused between frames for re-
ducing the numbers and computations cost. The approaches are separated into three
groups:

• using the temporal continuity for increasing masks accuracy;

• decreasing the latency for speeding up image processing;

• combining both of the properties mentioned above.

Architectures based on variations of recurrent neural networks (RNN), optical
flow [1], combining both of them, and alternative approaches, were developed to
use a video’s temporal continuity.

2.2.1 Optical flow approaches

One way to share global information among frames is to use optical flow. Optical
flow is a vector field representation of the apparent motion of each pixel between
two images. In the case of semantic segmentation, optical flow helps to adapt global
information taken from the previous frame for using it during current processing.
This means that we can precisely allocate and more efficiently use global information
extracted from the previous frame to current.

The optical flow is used at the [7], [31], [23], and [26].
[26] provided end-to-end trainable, highly modular architecture for video seg-

mentation. This system contains three parts that can be chosen and pre-trained in-
dependently and fine-tuned as an end-to-end network:

Chapter 2. Related work 7

• feature sub-network N f eat - takes as input RGB-like image Ii ∈ R1×3×h×w,
where h, w - image height and width respectively. As the result, the subnet-
work provides intermediate representation fi ∈ R1×2048× h

16×
w
16 ;

• task sub-network Ntask- takes as input the intermediate representation fi and
returns a semantic segmentation score map si ∈ R1×C×h×w, where C - is the
number of label classes;

• output block P - takes as input si and provides normalized probabilities pi ∈
[0, 1]1×C×h×w. As the result, from pi can be extracted the segmentation mask
Si ∈ R1×1×h×w.

Figure 2.3 (taken from [26]) provides the architecture of the [26] in detail. Ik is
the key frame. The prediction of the mask Sk for key frame is done through the
reference network: Sk = P(NR

task(NR
f eat(Ik))). For the key frame the computations

are done through NR
f eat and NR

task. The authors called NR
f eat as the reference feature

network. Usually NR
f eat is expensive to compute and deep. For instance, at the paper

[26] as it is used a variant of ResNet [13] architecture called Deformable ResNet-
101 [8]. This Accel’s part extracts intermediates features f c. Then, f c is passed to the
Ntask for getting segmentation score map sk. As the result, the score map sk is applied
the output block P for producing segmentation mask for key frame Sk: Sk = P(sk).
Finally, the output block P contains softmax function, followed by an argmax layer.

Also, the intermediate features f c extracted from the key frame are cached and
propagated through the next (current) frames. For the current frame, a segmentation
mask is computed by score maps sR

i and sU
i along reference and update branches

respectively.
Reference branch computes score map sR

i = Ntask(W(f c, O(Ii−1, Ii))), where Ntask
- the task network, and W - wrap the cached features f c by optical flow field O
between the current frame Ii and the previous Ii−1. Score map sU

i also computes by
update network NU : sU

i = NU(Ii) = Ntask(NU
f eat(Ii)), where NU

f eat - update feature
network. Usually it is used the network that is less deep and expensive then NR

f eat.
The authors from the article use Deformable ResNet-18, -34, -50. -101 (the bigger
the distance from key frame, the deeper and more expensive the network is used for
feature extracting from current frame Ii).

After computing score maps sR
i and sU

i for prediction segmentation mask Si they
merged by a 1× 1 convolution which is called score fusion (SF). The SF produces
score map si ∈ R1× C×h×w from stacked score maps [sR

i , sU
i] ∈ R1×2C×h×w. The seg-

mentation mask Si is computed: Si = P(SF([sR
i , sU

i])), where [sR
i , sU

i] - sR
i and sU

i are
stacked along the channel dimension.

Besides this, it is crucial to note that NU
f eat, NR

f eat, Ntask are a separated network
that don’t share any weights, which means that different deep network architectures
can be used, and pre-trained by the way the user needs. The property of modularity
gives an opportunity to use diverse deep network architectures, like ResNet modifi-
cations, Inception-like [4], DensNet-like [11].

The main disadvantage of the optical flow usage is that the computation costs
cannot be reduced due to adding per-frame feature computation.

2.2.2 RNN approaches

Another way to use temporal information for increasing semantic segmentation ac-
curacy is to use different RNN networks like long short term memory (LSTM) [25]
networks and gated recurrent neural networks (GRN) [14], as modules.

Chapter 2. Related work 8

FIGURE 2.3: Accel network [26] architecture. NR
f eat - reference feature

sub-network, can be different ResNet architecture depending on dis-
tance between key frame, and others; Ntask - task sub-network; O -
optical flow field; W - wrapper for features computed by optical flow

field O.

A recurrent neural network (RNN) is an extension of a conventional feedforward
neural network, which can handle a variable-length sequence input. [14] The RNN
handles the variable-length sequence by having a recurrent hidden state whose ac-
tivation at each time is dependent on that of the previous time. [14]

A long short term memory (LSTM) network is a type of recurrent neural network
that has been purposed in [25] for remembering information during long periods
and solving the vanishing gradient problem. LSTM can decide whether and how
long to keep necessary features from an input at the early stage.

A gated recurrent network (GRN)[15] is a type of recurrent neural network that
can adaptively capture dependencies of different time scales. It is similar to LSTM
by properties but has some differences in implementation of the gating units.

The LSTM and GRU units are used in [7], [21], and [2] remembering features from
previous frames and reusing them for producing semantic segmentation masks.

There also exists research that tries to combine RNN-like modules with optical
flow. In [7] the GRU units with the optical flow are used for better adaptation global
information and increasing output results. The optical flow is used for warping
the semantic segmentation estimates from previous frames. Moreover, GRU is used
for connecting the warped representation of the previous image segmentation mask
with the current probability candidate mask. More information about this approach
is described below.

In the article Semantic video segmentation by gated recurrent flow propagation [7] tries
to exploit the temporal continuity of the images at the video for increasing accuracy.
In this article, the authors presented the spatio-temporal transformer gated recurrent
unit (STGRU). This unit composes the information from the previous image mask
was warped by optical flow and current image segmentation mask was created by a
convolutional neural network. It consists of:

• optical flow function φ;

Chapter 2. Related work 9

FIGURE 2.4: Architecture for model with gated recurrent flow propa-
gation [7]. The semantic segmentation mask xt for image It computed
by convolutional network δ. It is used in GRU module θ with previ-
ous image segmentation mask ht−1 wrapped along optical flow φ for
predicting output semantic segmentation mask ht for image It. The

optical flow function φ and GRU module θ create STGRU module.

• gated recurrent unit (GRU) [14];

• CNN for image segmentation.

The main idea is the next. Look at Figure 2.4 (taken from [7]). The segmented
mask from previous image ht−1 is warped along the optical flow to align with the
segmentation mask in time t. This is done by computing wt = φt−t,t(ht − 1), φt−1,t
is the mapping along optical flow. The wt is a hidden state at the GRU, which get
current frame segmentation mask xt as the input. The xt is computed by convolu-
tional neural network over current frame It. After that, the GRU calculates the final
segmentation mask ht for frame t using information from xt and wt.

2.2.3 Alternetive approaches

Despite of the attempts to use temporal continuity for increasing image segmenta-
tion maps accuracy, there exist alternative approaches that focus on reducing the
computation cost: [28], [27], and [31].

Our work was inspired by "Low-latency for semantic segmentation" paper [28].
This paper introduced a video segmentation approach that has low latency (119 ms),
reuses features from the previous frames and produces the competitive accuracy
with state of the art approaches (nearly 76% mIOU).

The authors have proposed a framework for segmentation where the part of the
information from key-frames is propagated to the others by exploiting the high cor-
relation between adjacent frames. The key-frames are images that cannot be seg-
mented by using additional information from previous ones because dramatically
different from previous ones. These frames should be computed through the whole
pipeline, and the part of the features will be propagated to the next adjacent images.
On the other hand, the images that are highly correlated with key-frames can reuse

Chapter 2. Related work 10

FIGURE 2.5: Low-latency approach described in [28]. Sl - lower-part,
extracts low-level features from every frame; Sh - higher-part, ex-
tract high-level features from key-frames that used for propagation
through current frames; w - kernel weight predictor; 0, 1 - network

that decides if the current frame is to far from key-frame or not.

a part of features (information) from key-frames. These images are called current
frames.

The framework extracts two types of features from the image: low-level and
high-level. The low-level features are the information obtained from lower layers
of a CNN. They are cheap to compute but contain useful information for creating
segmentation masks. This type of feature is processed for all the frames. They are
also used for detecting whether the current frame is crucial. On the other hand,
high-level information is costly to compute. This information is processed only for
key-frames and reused by the next frames that describe the same scene, the "Low-
latency" approach covers solutions for two tasks: the key-frame selection and the
propagation of features across frames.

The network has two parts:

• lower-part Sl - from this part low-level features for each image are derived.
These features are used for selecting key-frames and controlling high-level fea-
tures propagation.

• higher-part Sh - from this part high-level features for key-frames are derived.
These features are propagated from key-frames to others, that are correlated
with key-frame.

Figure 2.5 (taken from [28]) represents the whole pipeline. Firstly, t − th frame
It the Sl part computes the low-level features Ft

l . After that, the additional small
convolutional neural network based on Ft

l decides whether frame It is key. If the
result is positive, then Ft

l feed to the high-part Sh and calculate high-level features
Ft

h. Otherwise, Ft
l is fused with key-frame low-level features Fk

l by a small network.
They called this network kernel weighted predictor, which takes as input both Fk

l and
Ft

l . It produces the kernels at the all spatial locations. The result from the kernel

Chapter 2. Related work 11

FIGURE 2.6: Examples of images and corresponding ground truth
mask from train set at the Cityscapes.

weighted predictor is used for propagating the high-level features from the previous
key-frame by spatially variant convolution.

For propagating global features, [28] uses spatially variant convolution. The trans-
formation global features from key frame Fh to current Ft:

Ft
h(l, i, j) =

∆

∑
u=−∆

∆

∑
v=−∆

Wk,t
ij (u, v)× Fk

h (l, i− u, j− v)

where ∆ = [HK
2], Ft

h(l, i, j) is the feature value at (i, j) of the l-th channel in Ft
h. Wk,t

ij if
the H × H kernel used for computing the feature at i, j position during propagation
from Fh

k to Fh
t . [28].

For predicting kernel Wk,t values, [28] uses a kernel weight predictor that is able to
predict the kernels for all location. It is a neural network that takes both low-level
features Fh

k and high Fh
t to produce the set of kernels.

2.3 Dataset

For the training baseline and our approach is used Cityscapes [6] dataset. Cityscapes
is a dataset for semantic understandings of urban street scenes [6]. The conventional
version consists of 5000 high quality (1024× 2048), finely annotated images from 50
cities during several seasons (spring, summer, and fall). Figure 2.6 illustrates exam-
ples of the images and correspondent segmentation masks. The images are divided
into train, validation, and test sets with 2975, 500, and 1525 images respectively. The
dataset defines 19 categories. The authors have divided each scene into 30 images
and segmented each 19-th frame out of 30. It means that each frame in this dataset
represents a unique scene in the video.

This information is not enough for training our approach because we need to ex-
tract the information from images that high-correlated with already segmented ones.
On the other words, for this purpose, we need more images from each scene, and
these images should be previously to the already annotated ones. For this purpose,
we requested an extended version of this dataset. By extended version means the
videos divided into 30 frames per scene. Each 19-th frame out of 30 has the ground
truth segmentation mask from the conventional dataset.

12

Chapter 3

Video segmentation approach

There exists a video I composed of the set of frames Iset: {I1, I2, ..., In}, where n ∈
[1, N], N is the total number of frames in the video I. The goal is for any frame
In ∈ Iset to compute the semantic segmentation mask Sn ∈ Sset. It means finding
such a mapping

P : Iset → Sset

As has already been mentioned in chapter 2.1, it can be done by deep neural net-
works for image semantic segmentation like PSP [29] or DeepLabV3+[18]. They are
accurate but slow, see Figure 2.1 (taken from [28] and [18]). Furthermore, the algo-
rithms don’t use the spatial continuity information because the networks compute
frames independently during forward pass.

Again from chapter 2.1, the video has a temporal continuity property. The ef-
ficient usage of this property can bring the advantage of creating high-quality se-
mantic segmentation mask and decreasing the total latency. Whereas the video has
temporal continuity property, it means that a sub-sequence of frames Iscene ⊂ Iset
contains the same high-level information Fhigh about the video scene.

This chapter describes the way to propagate high-level features Fhigh through
highly correlated frames in the video. It also explains the architecture of the deep
neural network used for efficient feature propagation and semantic video segmen-
tation.

Our approach is adopted from the paradigm of propagating high-level infor-
mation Fhigh from the key frame Ikey ∈ Iset to the highly correlated current frame
Icurrent ∈ Iset, by exploiting the high correlation between adjustment frames as de-
scribed in [27], [31], and [28].

The key-frame Ikey cannot be segmented by using high-level features Fhigh ex-
tracted from previous images at the video. These frames contain information about
a new scene at the video and low correlated with the last key-frame.

On the other hand, the current frame Icurrent is an image that can be segmented by
using extracted and cached information Fhigh from the key-frame Ikey. Often these
images describe the same scene as the key-frame Ikey, and as a result, are highly
correlated. The video semantic segmentation is done by frame. For In ∈ Iset, where
n ∈ [1, N], Sn = P(In), where Sn ∈ Sset.

The approach described below is general for the arbitrary image semantic seg-
mentation network. All the networks described above can be transformed by this ap-
proach, which can be used for: FCN [20], U-net [24], PSP [29], FPN [19], DeepLabV3+
[18] etc.

Chapter 3. Video segmentation approach 13

3.1 Model

We took FPN [19] with DenseNet121 [11] backbone as the base for our network and
adapted it according to our semantic segmentation approach. As described in 2.1
FPN consists of the four levels. Each level contains the dense block from DenseNet
121 [11]. The DenseNet naturally transforms to the FPN architecture because it has
four dense blocks, and as a result, these blocks become levels in our architecture.

The semantic segmentation network P consists of the four elements in Figure 3.1:

• low-level feature extractor Nl f e;

• high-level feature extractor Ng f e;

• decoder Nd;

• skip connection Sprop.

Firstly, each frames In ∈ Iset are propagated through low-level feature extractor
Nl f e. Nl f e is a network that generates the low-level features Flow

n :

Flow
n = Nl f e(In)

It consists of some amount FPN’s levels. The number of levels plow that are used
in Nl f e depends on the amount of cached information that should be propagated
among current frames Ic. This number changes: plow ∈ [1, 3].

After that, depending on whether In is a key-frame, the high-level features are
computed differently. For key-frame Ikey

n (the n-th frame in video I is a key), the
high-level features Fhigh is computed by using a high-level feature extractor Ng f e:

Fhigh
n = Ng f e(Flow

n)

Ng f e is a network that generates the high-level features maps. To decrease the la-
tency for producing segmentation masks, Ng f e is used only for key-frames Ik

n. More-
over, high-level features extracted from key frames Fhigh

n are cached and propagated
through high correlated current frames Ic

n. The propagation is done by skip connec-
tion Sprop. The detailed process of the feature propagation is described in 3.2. The
number of levels phigh in Ng f e depends on the levels number in Nl f e.

Finally, the high-level features Fhigh
n and low-level features Flow

n are passed to the
decoder Nd, which produces the semantic segmentation mask Sn for input frame In:

Sn = Nd(Fhigh
n , Flow

n)

The decoder Nd part is used for all frames because it combines high- and low-level
features for increasing the quality of the segmentation mask output. The same is
done in [20], [24], and [19]. In case of the FPN baseline, the decoder consists of three
convolutional layers, two upsample layers, two batch normalization layers and two
ReLU activation functions.

For key frame Ik the tensor Tk
f is computed:

Tk
f = Pk(Ik) = Nd(Ng f e(Nl f e(Ik)), Nl f e(Ik))

Also, for current frame Ic, the Tc
f is computed:

Tc
f = Pc(Ic) = Nd(Sprop(Ik), Nl f e(Ic)),

Chapter 3. Video segmentation approach 14

FIGURE 3.1: Semi-supervised approach for efficient video semantic
segmentation. It consists of two paths for key-frames (left pipeline)
and current-frames (right pipeline). For current-frames, the high fea-
tures maps are not computing. The are cached during key-frames

calculation and propagated by skip connection Sprop.

where Pc and Pk are network modes for computing segmentation masks for key and
current frames respectively.

The final layer of the network predicts m× n× k tensor Tf , where m× n - height×
width, and k ∈ K - the number of classes to predict. In other words, the approach
returns the tensors that consist of the feature maps for each class per pixel. After
that, to predict probabilities for each pixel we applied softmax function [12]:

so f tmax(z)k
ij =

exp(zk
ij)

∑l ∑p exp(zk
lp)

so f tmax(z)k
ij - "probabilities" to get class k at the position ij at the image, where i ∈

[1, n] and j ∈ [1, m].

Tprob
f = so f tmax(Tf)

To get a semantic segmentation mask Sl for frame l we apply max function along
all the classes:

Sij
l = maxk∈[1,K](T

prob
f)

ij
k

. For each pixel ij we get the most likely class long all classes. As the result Sl =

maxk∈[1,K](T
prob
f)k, Sl is the semantic segmentation mask for input frame Il .

3.2 Feature propagation

One of the neural network properties is the ability to learn the filters for process-
ing images. This property is an advantage over the hand-craft features because the
learning algorithm tries to find the optimal values to filters due to available dataset
and loss function.

Chapter 3. Video segmentation approach 15

FIGURE 3.2: Skip connection for high level features from key-frame
processing to current-frame.

The idea of feature propagation is the next: to adapt the neural network filters to
process the key-frames Ik by all them and current ones Ic only with a subset of them.
The reduction of the number the active filters causes the latency to decrease. At the
same time, to prevent decreasing quality, the information from blocked computa-
tions need to be compensated. Since the video has temporal continuity property,
missed information can be extracted from key-frames and propagated along cur-
rent ones. Approaches to propagating this information by using optical flow and
spatially variant convolution [28] are described in 2.1. The disadvantage of these
approaches is that they need to build on additional blocks for computations. These
blocks lead to increasing number of computations.

Our approach is an attempt to propagate information without any additional
building blocks for temporal continuity computing. In other words, we tried to teach
the neural network to find and use the context that doesn’t change through frames
and propagate it across highly correlated images. To do so, we freeze a subset of
the high-level features Fhigh extracted during key-frame processing Ik and cached.
Then, this information is used directly without any adaptive blocks at the processing
pipeline for the current image Ic. It was done in a semi-supervised manner because
we didn’t control the way what network propagate features from key to the current
frame.

Moreover, because of the limitations described in chapter 4, we have extracted
high-level features for propagating from images without semantic segmentation masks.
It caused to forgetting how to extract high-level features for predicting semantic seg-
mentation mask for key-frames. As a result the network start to predict worse, be-
cause when our network forget how to extract features correctly from key-frames,
then we propagated the wrong features among current frames. The ability of the
extracting correct features is critical for our approach.

Figure 3.2 shows the propagation method. Two out four levels are cached and
are not computed during current frames processing.

We tried to cache a different number of the FPN’s levels, but the more levels we
cached, the lower result we got. On the other hand, even for caching half of the
levels (two out of four), the accuracy was almost the same with the baselines, see
Figure 5.2.

16

Chapter 4

Loss function and accuracy

For training such a network we need to solve two problems: which loss function to
use and how to measure the accuracy of the predicted segmentation mask by our
algorithm. For measuring the accuracy we decided to use the standard approach -
mean intersection over union (mIoU) or Jaccard index[20]:

mIoU =
1

nclasses
∑

i

nii

ti + ∑j nji − nii

where
nclasses - total number classes to predict

nij - total number of pixels of class i predicted to belong to class j
ti = ∑j nij - the total number of pixels of class i. mIoU ∈ [0, 1].
Our architecture should create semantic segmentation masks for the current frames

by using high-level features Fhigh
key extracted from key-frames. Our network should

be able to extract high-level features from the images that are invariant for frames
from the same video scene. As a result, the loss function should take into account
errors between high-level features from key Fhigh

key and current Fhigh
current frames.

Due to the nature of the data, the vast part of the frames in the extended Cityscapes
dataset are without true segmentation masks because the cost for creating multiclass
semantic segmentation mask for each frame into a video is too expensive. To deal
with this issue, as the current frames, we took the images with true semantic seg-
mentation masks. They are from train and val parts at the conventional Cityscapes
dataset [6]. As the key-frames Ikey, we took images from the extended dataset. On
the other hand, as current frame Icurrent we took an image with semantic segmenta-
tion mask from the same scene.

We built the samples for training our architecture in a way of triplets: mask for
current image Strue

current, Icurrent, Ikey. For Ikey we took one out 15 preceding frames
from the same scene as the Icurrent randomly as shown in Figure 4.1. This process
allowed us to extract high-level features Fhigh from images at the different distances
(It−15...It−1) from image with semantic segmentation mask It.

The loss function Ltotal :

Ltotal = ∑N
i=1 αi

dst[Lnll(y
pred
current, ytrue

current)
i]+∑N

j=1(1− α
j
dst)[Lnll(y

pred
key1

, ytrue
key1

)j + Lnll(y
pred
key2

, ytrue
key2

)j]+

+λ ∑K
k=1 ‖wk

current − wk
key‖

Chapter 4. Loss function and accuracy 17

FIGURE 4.1: The approach to choose key and current frames. Each
scene consists of an image with segmented mask t and images with-
out segmented masks t − 1...t − 15. The frame with segmentation
mask is treated as Icurrent and one out 15 images without segmen-
tation mask as Ikey. The images are taken from the extended version

of the Cityscapes dataset.

The Lnll is the negative log likelihood loss:

Lnll = −log(
c

∑
k=1

h

∑
i=1

w

∑
j=1

(ypred · ytrue)c
ij),

where ypred ∈ Rh×w×c and ytrue ∈ {0, 1}h×w×c.
The αdst is a weight that regulates importance for the correct prediction in loss

function due to the distance between key and current frames:

αdst =
1

d + 1
,

where d ∈ [2, 15]. The further a key frame is from current one, the less important
features can be extracted from it.

As already mentioned, not all frames from the extended dataset have semantic
segmentation masks. Only every 19-th frame has been segmented by hands. The
goal of our network is not only to be able to extract features from key-frames and
use them in creating the mask for current frames but also to be able to create the mask
for key-frames. To deal with these tasks, we trained our model in a semi-supervised
manner (all key frames during the training process are without true segmentation
masks).

To count errors during predicting masks for the key frames, the loss function
Ltotal contains:

N

∑
j=1

(1− α
j
dst)[Lnll(y

pred
key1

, ytrue
key1

)j + Lnll(y
pred
key2

, ytrue
key2

)j],

where N ∈ R - the total number of samples for training.
We combined two approaches: 1) to augment the quantity of the semantic seg-

mentation masks by other semantic segmentation neural network; 2) to use the cur-
rent images as the key ones to count losses during key-frames segmentation process.

Increasing the number of masks for frames can be done by the side neural net-
works. In our training process, the true artificial output key mask ytrue

key1
for key-frame

Chapter 4. Loss function and accuracy 18

FIGURE 4.2: The difference between training network with and with-
out artificial masks for key frames generated by semantic segmenta-
tion network. The image at the left side is more accurate then the

right one.

Ikey is predicted by FPN (under FPN we means adapted to semantic segmentation
masks prediction task FPN like network-based by DenseNet-121):

ytrue
key1

= PFPN(Ikey).

Moreover, as already mentioned there exists another way to teach the network
to segment key-frames. We can treat the current frame as the key, and generate
the masks for the current frame by key and current network modes. We computed
segmentation mask ypred

key2
:

ypred
key2

= Pk(Icurrent).

To count errors during predicting masks for current frames, the loss function also
contains:

N

∑
i=1

αi
dst[Lnll(y

pred
current, ytrue

current)
i],

where:
ypred

current = Pc(Icurrent).

To count the loss for the current frame we applied key frame without segmentation
mask to extract high-level features and predict segmentation mask for current frame.

Both of these algorithms are done without our direct impact on the learning pro-
cess of the prediction segmentation masks for the key -frames. In the case with an
outside neural network, we couldn’t get a true mask for key-frames that exceeds
82% mIoU (DeepLabV3+ has accuracy nearly 82 % mIoU).

Moreover, during training, we figured out that teaching to predict segmentation
masks for key-frames even with artificial masks brings benefits to see Figure 4.2. As
a result, the predicted mask from our approach (the left one in Figure 4.2) using arti-
ficial true masks ytrue

key1
during training process provide more accurate and boundary

precise output masks for objects, unlike to the trained network by without artificial
masks (right segmentation mask in the Figure 4.2). The usage of the artificial mask
means adding Lnll(y

pred
key1

, ytrue
key1

) to the loss function.
We have used both approaches to count loss for key frames. The artificial masks

are used for teaching how to predict semantic masks for real key-frames. On the

Chapter 4. Loss function and accuracy 19

FIGURE 4.3: The loss started grow up after freezing high-feature
maps for current images.

other hand, to compensate for the noisy artificial semantic masks (because the accu-
racy for FPN don’t exceed 66.3 % see Table 5.2), we used the second approach with
replacing key-frames by current and compute the loss as for key ones.

While training our approach, we noticed that freezing the computation of the
high-level feature maps for current frames is not enough to teach recognition of the
constant global context that is not changing across the frames from the same scene.
As a result, the loss started to grow as in Figure 4.3. The loss started to grow because
the network didn’t count the difference between high-level features in the current
and key-frames. So, the neural network adapted high-level features extraction by
key-frames.

To force the algorithm to teach to extract constant high-level information and to
prevent the loss growing as in Figure 4.3, we applied Lasso (L1) regularization [3]
between high-level feature maps Fhigh

current and Fhigh
key from key and current frames:

λ
K

∑
k=1
‖wk

current − wk
key‖,

where λ ∈ R is a hyperparameter and can be fine-tuned.
We penalized the network when the extracted global context of the key-frame

significantly diverged from the current frame. As already mentioned, during the
training session we computed a high-level feature maps for current frames Fhigh

current,
but during the validation and evaluation they are not predicted for current frames
and propagated from corresponding key-frames.

20

Chapter 5

Experiments

To demonstrate the advantages of our network, we first trained the baseline. Then
we showed that the baseline adaptation up to our algorithm brings benefits by using
a video’s temporal continuity property. Lastly, we explained that our algorithm also
brings benefits under truncated FPN model.

We trained the baseline, our algorithm and truncated model into conventional
and extended Cityscapes versions. The conventional one consists of 5000 images:
2975 trains set, 500 validation set and 1525 test set. The extended one also consists
of full videos split by frames. The networks were trained by using PyTorch [22]
framework.

Baseline. As the baseline we took FPN [19] with pre-trained DenseNet-121[11]
as backbone by ImageNet [9] dataset. There can be used other neural networks as
backbones; for instance ResNet [13] is used in [19], that describes FPN architecture.
Besides, FPN architecture can be used for different purposes: semantic segmenta-
tion, object detection, etc. [19]. We used FPN adapted by semantic segmentation
problem.

We trained it by conventional Cityscapes dataset. As augmentations, we used
random rotate to 10 degree and random horizontal flip. We also re-sized images from
1024× 2048 to 512× 512. For optimization we used Adam optimizer [16] with the
initial learning rate (lr) = 10−4 and weight decay = 5× 10−4, where weight decay is a
hyperparamter for L2 (Ridge) penalty [3] at the optimization process. We addition-
ally applied exponential learning rate policy:

lr = lrprev ∗ e−k∗iteration, (5.1)

where lrprev ∈ R - current learning rate, k ∈ R - hyperparametr, k = 0.1, iteration ∈

Average latency (ms)
Distance 1 layer 2 layers
truncated 6.8 6.8
baseline 14.6 14.6
2 frames 12.6 9.38
5 frames 11.6 7
10 frames 11.5 6.93
15 frames 11.4 6.91

TABLE 5.1: Average latency for predicting semantic segmentation
masks for different distances between key and current frames and
the number of propagating high-feature maps on the extended

Cityscapes dataset.

Chapter 5. Experiments 21

Accuracy (mIoU%)
Current mIoU Key mIoU Cached levels Reg αdst lr
58.5 58.5 truncated (-2) - - expon
66.3 66.3 baseline - - expon
58 60.2 1 L2 0.3 const
65.25 65.7 1 L1 float expon
55 60 2 L2 0.3 const
56 63 2 L1 0.3 const
58.6 65 2 L1 float expon

TABLE 5.2: The accuracy of the key and current frames by different
setups at the val set on the extended Cityscapes dataset. float αdst
means the distance depending αdst. expon for lr means exponential
learn policy. -2 cached levels - truncated model, 2 levels were re-
moved. All experiments is done with random training distance be-

tween key-current frames.

R - iteration number. The updated learning step = 30 epochs. It means that we ap-
plied 5.1 to update lr every 30 epochs, and we used the negative log likelihood loss
function As a result, the mIoU for baseline network - FPN at the validation set is
66.72%. It was training for 100 epochs. The average latency is 14.6 ms on the ex-
tended Cityscapes dataset.

Truncated model. As the truncated model we took the FPN from the baseline
but removed the last two levels from the pyramid structure. It sped up our models
but decreased the accuracy of predicting semantic segmentation masks. We have
trained it the same as the baseline with the identical setups.

Our approach. We adapted the baseline FPN to our architecture. We tried to
propagate different numbers of levels at the FPN as described in chapter 3.2. We
propagated features from one and two levels. While training our model, we used a
loss function described in chapter 4. In the loss function, the hyperparameter λ =
0.01 with different norms - L1 and L2. We used Adam optimizer with initial lr = 10−4

and weight decay. We tried with and without exponential learning rate policy 5.1
with k = 0.1 and update learning rate = 30. Moreover, we tried different weighting
approaches for regulating the importance of the correct prediction in loss function
due to the distance between frames: constant weighting αdst = 0.3; depending on the
distance between frame as described in 4. We have trained all our approaches across
75 epochs. We also used baseline as the pre-trained model during training. Besides
this, we used random and constant distances for choosing key-current frame pairs.
By random distance, we mean that for each pair key-current frames the distance in
all samples in training and validation sets are chosen at random. On the other hand,
by constant distance, we mean that the distance between key and current frame for
all samples are constant. It can be 2, 5 or 10 frames. For simplifying illustrated
accuracy-latency dependency, we merged accuracy for key and current frame by
weighting sum:

meanaccuray =
1

dist
∗mIoUkey +

dist− 1
dist

∗mIoUcurrent

where mIoUkey and mIoUcurrent ∈ [0, 100] - mean intersection over union for key and
current frames; dist ∈ {2, 5, 10} - distance that was used during validation evaluat-
ing.

The accuracy for all models was evaluated by the validation sets from regular

Chapter 5. Experiments 22

FIGURE 5.1: The comparison of the accuracy and speed between trun-
cated model, baseline and our architectures for constant distances for
2, 5, 10 frames. For our implementations we propagated feature maps
from 1 FPN’s level. For each distance was trained individual model

with corresponding constant distance during training process.

(truncated FPN, baseline) and extended (all our approaches) Cityscape versions. Ta-
ble 5.2 presented accuracy for truncated FPN, baseline, modification of our algo-
rithm with random training distance. Our implementations slightly worse for then
the baseline, especially, with 1 cached level 65.7 % against 67 %. Moreover, the mIoU
for current frame was slightly worse for the key-frame during caching one FPN’s
level. For caching two levels, the accuracy for current and key-frames is slightly dif-
ferent. The more features we need to propagate, the more lower-level features we
need to spread. So, the less accurate segmentation mask we would get. As a result,
for caching two levels implementation the accuracy for current frames is lower than
for key-frame (58.6 % against 65%) and one level implementation (58.6 % against
65.25%).

As already mentioned in chapter 1, we didn’t use any algorithm for determining
the key and current frames. As a result, we tried for different constant distances be-
tween key-frame and current frames: 2 images, 5 images, 10 images, and 15 images
(the process of the generating key and current frames pairs is described in chapter
4). We took 500 sequential images from the extended version of the Cityscapes and
measured the time for predicting semantic segmentation masks by our approach
during different distances between key-frame and last current key. We have mea-
sured time for predicting two cases: high-level information propagated through one
FPN’s level and two FPN’s levels.

FIGURE 5.2: The comparison of the accuracy and speed between trun-
cated model, baseline and our architectures for constant distances for
2, 5, 10 frames. For our implementations we propagated feature maps
from 2 FPN’s levels. For each distance was trained individual model

with corresponding constant distance during training process.

The results of the latency are shown in Table 5.1. The more levels we have cached,

Chapter 5. Experiments 23

the faster segmentation mask we would get. Furthermore, the bigger distance be-
tween key-frame and last current frame, the faster the network we achieved. For dis-
tance two (every second frame is key) we got an average 14 % for one cached level
and up to 36 % for two cached levels of the speeding up. There exists a trade-off
between accuracy and latency. The more accurate the architecture, the less speeding
up would be gained and vice versa. But even for caching one of FPN’s level, the
speeding up is nearly 14 %, and the accuracy is lower less than 2%.

FIGURE 5.3: Examples of images and corresponding predicted se-
mantic segmentation masks by: baseline (FPN); our approach with 2
propagation levels with constant distances 2 and 5 between key and
last current frames; truncated 2 levels FPN. The input images are from

test part of the extended Cityscapes dataset.

Figures 5.1 and 5.2 show the accuracy-latency dependency for propagation levels
one and two. The models trained by our algorithms were trained as declare above
but with a difference. For each distance, we trained an individual model with a cor-
responding constant distance between key and current frames during the training
process. Figure 5.1 shows the dependency of level one propagation. As we can see,
for all distances our algorithms outperform the truncated version for current and
key-frames. Our algorithms are also faster than the baseline.

Chapter 5. Experiments 24

Figure 5.2 shows the accuracy-latency dependency for two levels of propaga-
tion. For current frame masks prediction, not all distances have shown competitive
results. Our approach with distance 10 between the key and last current frame has
low accuracy rather than the truncated model. The latency at least the same as the
truncated has. The latency for distances five and 10 was nearly the same as for trun-
cated one. Moreover, none of the experiments with the intervals could not beat the
baseline by the accuracy, but were outperformed by latency.

FIGURE 5.4: The comparison of the accuracy and latency between
truncated, baseline models and our implementations for constant dis-
tances for 2, 5, and 10 frames. The number of propagated levels -
1. The random distance between key and current frame during train

process.

Figure 5.3 pictures examples of the predicted semantic segmentation masks for
input images by baseline FPN, truncated FPN without two levels and our approach
with constant distances two and five. As we can see, those masks predicted by our
method with interval two and five generally as well as the baseline except in pre-
dicting tiny objects like traffic lights or road signs.

On the other hand, the truncated model had some problems with predicting even
bigger objects. It failed to predict a man on a bike (the third row, last image) and the
man in the second row has less precise boundaries. It was caused by removing two
FPN’s levels from the network. Moreover, our models predicted even better than
baseline in some cases. For instance, in the first row our model separated a car and
bus more precisely, than the baseline did.

FIGURE 5.5: The comparison of the accuracy and latency between
the truncated, baseline models and our implementations for constant
distances for 2, 5, and 10 frames. The number of propagated levels -
2. The random distance between key and current frame during train

process.

Figure 5.4 and Figure 5.5 illustrate accuracy-latency dependency for one and two
levels propagation. The training process for our models was as declared above.

Chapter 5. Experiments 25

For evaluating accuracy for all three distances, we have trained one model with
random distances between key and current frames during the training process. As
a result, for tow levels of propagation model the accuracy for current frames under-
perform the truncated model (see Figure 5.5). For one level propagation model with
random distance training, the accuracy for segmenting current frames is lower than
models with corresponding propagation level but with constant training distances.
Probably it can be caused to the fact that model, with random distance during train-
ing, can perform better during flexible key-frame selection. Moreover, such a model
can perform worse with constant key-frame distance due to the incorrect frame indi-
cation as a key one. It can be checked by applying the efficient methods for selecting
key-frames, which is outside the scope of this paper.

According to the results described above, our algorithms have been adapted
for the propagating high-level features from key-frames to current. As a result, an
FPN transformed by our algorithm with constant training distance has shown com-
petitive results against baseline FPN by accuracy and latency. The low results for
predicting masks for current frames for two levels propagation can be caused by
caching too many features for propagating (one FPN’s level consists of the several
convolution maps). Moreover, the models with random training distance have pro-
duced accuracy lower then truncated model. The efficient key-frame selector can be
used to improve the precision of our architectures with random training distance.

26

Chapter 6

Conclusions

In this paper, we provided an approach for propagating high-level features from
key-frames to currents. We developed the propagation module Sprop for sharing
high-level features from key-frames to processing current frames. We also devel-
oped the loss function Ltotal that helps to teach our architecture network to extract
general among frames form one high-level scene features from key-frames and prop-
agate them to current ones. Moreover, Ltotal adapted to count losses for predict-
ing images in a semi-supervised way. We did so, because the extended Cityscapes
dataset has the vast number of images without semantic segmentation masks. It has
sped up the adapted FPN networks and shown comparable to baseline results.

Due to the results described in chapter 5, the FPN adapted by our approaches
have shown competitive results up to baseline FPN. The highest competitive results
with respect to a constant distance between key and current frames have shown
model training with constant intervals: 2, 5 and 10 images for all propagation levels.
They have provided accuracy higher then truncated FPN (more the 58.8% mIoU),
even for predicting semantic segmentation mask for current images. The only net-
work with training constant distance 10 has shown lower mIoU then truncated model
for two levels of propagation. Our algorithm has also provided the latency decreas-
ing for both methods of choosing the distance between key-current frames and prop-
agation levels. For one propagation level, the latency has reduced at least in 14 %
(for our approach with constant distance two between a key and current frames) up
to the baseline. On the other hand, for propagation two levels, the latency for our
approach has decreased at least for 35 % up to baseline.

The low result was achieved by models trained with random training distance.
For all constant distances at the validation set for our architectures with two prop-
agation levels trained with random intervals, the accuracy became lower than the
truncated model.

This paper has not discovered the way of the key-frame efficient choosing, effi-
cient process of choosing the number of propagation level, and the direct impact
of more complex deep neural networks for the semantic segmentation accuracy.
There exist several paths to research for improving the efficiency and latency for
our propagating approach. Firstly, there can be developed an efficient method for
choosing key-frame independently of the distance between frames. Secondly, PSP-
net or DeeplabV3+ or another CNN for semantic segmentation mask prediction with
higher mIoU than FPN, for producing artificial semantic segmentation maps for key
images during the training process can be used. Thirdly, to develop an approach for
finding an optimal number of the cached high-level feature maps.

27

Bibliography

[1] B. Rhunck B. Horn. “Determining optical flow”. In: Artificial intelligence 17.1-3
(1981), pp. 185–203.

[2] A. Fern B. Mahasseni S. Todorovic. “Budget-aware deep semantic video seg-
mentation”. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. 2017, pp. 1029–1038.

[3] Christopher M. Bishop. Pattern Recognition and Machine Learning (Information
Science and Statistics). Springer-Verlag, 2006.

[4] S. Ioffe J. Shlens C. Szegedy V. Vanhoucke. “Rethinking the inception archi-
tecture for computer vision”. In: Proceedings of the IEEE conference on computer
vision and pattern recognition. 2016, pp. 2818–2826.

[5] Florian Schroff Hartwig Adam Wei Hua Alan Yuille Li Fei-Fei Chenxi Liu
Liang-Chieh Chen. “Auto-DeepLab:Hierarchical Neural Architecture Search
for Semantic Image Segmentation”. In: (2019).

[6] Marius Cordts et al. “The cityscapes dataset for semantic urban scene under-
standing”. In: Proceedings of the IEEE conference on computer vision and pattern
recognition. 2016, pp. 3213–3223.

[7] C. Sminchisescu D. Nilsson. “Semantic Video Segmentation by Gated Recur-
rent Flow Propagation”. In: (2017). URL: https://arxiv.org/pdf/1612.
08871.pdf.

[8] Jifeng Dai et al. “Deformable Convolutional Networks”. In: The IEEE Interna-
tional Conference on Computer Vision (ICCV). 2017.

[9] J. Deng et al. “ImageNet: A Large-Scale Hierarchical Image Database”. In:
CVPR09. 2009.

[10] J. R. Bergen P. J. Burt J. M. Ogden E. H. Adelson C. H. Anderson. “Pyramid
methods in image processing”. In: RCA engineer 29.6 (1984), pp. 33–41.

[11] Z. Liu. L. Maaten G. Huang. “Densely connected convolutional networks.” In:
CVPR. Vol. 1. 2. 2017, p. 3.

[12] Ian Goodfellow et al. Deep learning. Vol. 1. MIT press Cambridge, 2016.

[13] Kaiming He et al. “Deep residual learning for image recognition”. In: Pro-
ceedings of the IEEE conference on computer vision and pattern recognition. 2016,
pp. 770–778.

[14] K. Cho Y. Bengio J. Chung C. Gulcehre. “Empirical Evaluation of Gated Re-
current Neural Networks on Sequence Modeling”. In: (2014). URL: https://
arxiv.org/pdf/1412.3555.pdf.

[15] D.Bahdanau Y. Bengio K. ECho B. “On the properties of neural machine trans-
lation: Encoder-decoder approaches”. In: (2014).

[16] Diederik P Kingma and Jimmy Ba. “Adam: A method for stochastic optimiza-
tion”. In: International Conference on Learning Representations (2015).

https://arxiv.org/pdf/1612.08871.pdf
https://arxiv.org/pdf/1612.08871.pdf
https://arxiv.org/pdf/1412.3555.pdf
https://arxiv.org/pdf/1412.3555.pdf

BIBLIOGRAPHY 28

[17] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “Imagenet classifica-
tion with deep convolutional neural networks”. In: Advances in neural informa-
tion processing systems. 2012, pp. 1097–1105.

[18] G. Papandreou F. Schroff H. Adam L. Chen Y. Zhu. “Encoder-Decoder with
Atrous Separable Convolution for Semantic Image Segmentation”. In: (2018).
URL: https://arxiv.org/pdf/1802.02611.pdf.

[19] Tsung-Yi Lin et al. “Feature Pyramid Networks for Object Detection.” In: CVPR.
2017.

[20] Jonathan Long, Evan Shelhamer, and Trevor Darrell. “Fully convolutional net-
works for semantic segmentation”. In: Proceedings of the IEEE conference on com-
puter vision and pattern recognition. 2015, pp. 3431–3440.

[21] M. Sabokrou M. Fathy R. Klette F. Huang M. Fayyaz M. Saffar. “STFCN: spatio-
temporal FCN for semantic video segmentation”. In: (2016).

[22] Adam Paszke et al. “Automatic differentiation in pytorch”. In: (2017).

[23] P. Gehler R. Gadde V. Jampani. “Semantic Video CNNs through Representa-
tion Warping”. In: (2017). URL: https://arxiv.org/pdf/1708.03088.pdf.

[24] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. “U-net: Convolutional
networks for biomedical image segmentation”. In: International Conference on
Medical image computing and computer-assisted intervention. Springer. 2015, pp. 234–
241.

[25] J. Schmidhuber S. Hochreiter. “Long short-term memory”. In: Neural computa-
tion 9.8 (1997), pp. 1735–1780.

[26] J. Gonzalez S. Jain X. Wang. “Accel: A Corrective Fusion Network for Efficient
Semantic Segmentation on Video”. In: (2018). URL: https://arxiv.org/pdf/
1807.06667.pdf.

[27] Evan Shelhamer et al. “Clockwork convnets for video semantic segmenta-
tion”. In: European Conference on Computer Vision. Springer. 2016, pp. 852–868.

[28] D. Lin Y. Li J. Shi. “Low-Latency Video Semantic Segmentation”. In: The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). 2018.

[29] Hengshuang Zhao et al. “Pyramid scene parsing network”. In: IEEE Conf. on
Computer Vision and Pattern Recognition (CVPR). 2017, pp. 2881–2890.

[30] Bolei Zhou et al. “Scene Parsing through ADE20K Dataset”. In: Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition. 2017.

[31] Xizhou Zhu et al. “Deep feature flow for video recognition”. In: CVPR. 2017.

https://arxiv.org/pdf/1802.02611.pdf
https://arxiv.org/pdf/1708.03088.pdf
https://arxiv.org/pdf/1807.06667.pdf
https://arxiv.org/pdf/1807.06667.pdf

	Abstract
	Acknowledgements
	Introduction
	Related work
	Image semantic segmentation
	Video semantic segmentation
	Optical flow approaches
	RNN approaches
	Alternetive approaches

	Dataset

	Video segmentation approach
	Model
	Feature propagation

	Loss function and accuracy
	Experiments
	Conclusions
	Bibliography

