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Chapter 1

Introduction

Image restoration is one of the key computer vision tasks that aims to transform
(or somehow manipulate) the corrupted image so it becomes as close to the original
target as possible with respect to the overall visual appearance, perceptual quality,
visual content, or resulting performance of any other algorithm that uses image data
as an input (say, object detection) and requires image restoration techniques as a pre-
processing step. It has a counterpart, image enhancement, the task that is focused on
transforming the ground truth image, so it becomes more pleasing to the eye or gets
better quality overall. One of the common problems for both tasks is the evaluation
of the performance, as the words “quality”, “pleasant”, “perception” have little to
do with measurability.

The topics related to as image restoration and image enhancement tasks are di-
verse, among which super-resolution, denoising, deblurring, dehazing, enlightening
(low-to-normal lighting enhancement), raindrop and rain strikes removal, snow re-
moval, and the list goes on. They are witnessing huge interest from the computer
vision communities, as the solutions to these problems are required as high-tech sys-
tems become more autonomous and sophisticated. For instance, video surveillance
and security systems have to deal with various environmental and weather condi-
tions and imperfections of camera lenses (raindrops on the lens, motion blur caused
be movements and drag, low resolution of camera sensors, graininess, focus prob-
lems, etc.) There are many other applications: autonomous driving, enhancement
of visual media content, biomedical processing; even Airbnb claims that hosts with
high-quality photos earn 40% more than other hosts in their area.

The state-of-the-art image restoration and enhancement approaches heavily rely
on deep learning models, as they are able to learn data representations directly from
data in a hierarchical layer-based structure. More precisely, CNNs serve as a basic
tool in computer vision models as they capture images’ spatial locality. Lately, huge
progress was achieved with applying GANs [Goodfellow et al., 2014] to these tasks
and treating them as image-to-image translation problems conditioning on the input
[Isola et al., 2016]. Even though cGANs and pix2pix [pix2pix] framework were de-
signed as a general-purpose solution, producing reasonable results on a wide variety
of image-to-image translation problems, the research papers are still mostly focused
on single-task solutions. As was already mentioned, the metrics are a tough issue
in this domain, and the approaches based on GANs often lag behind "numerically"
(SRGAN loses to SRResNet in PSNR and SSIM on traditional benchmarks [Ledig
et al., 2016], DeblurGAN loses to Nah, Kim, and Lee, 2016 in PSNR), as they try to
hallucinate realistic details and make their outputs indistinguishable from the im-
ages drawn from the real-data distributions, but the common-used metrics are still
MSE-based, favouring for rather blurry results obtained averaging all plausible out-
puts. Nevertheless, GAN-based models produce perceptually convincing results in
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super-resolution [Ledig et al., 2016; Wang et al., 2018; Bulat, Yang, and Tzimiropou-
los, 2018], deblurring [Kupyn et al., 2017; Madam Nimisha, Sunil, and Rajagopalan,
2018], dehazing [Li et al., 2018; Du and Li, 2018; Engin, Genç, and Ekenel, 2018; N.
and N, 2018], underwater image restoration [Yu, Qu, and Hong, 2019; Fabbri, Islam,
and Sattar, 2018], deraining [Zhang, Sindagi, and Patel, 2017], denoising [Chen et al.,
2018; Tripathi, Lipton, and Nguyen, 2018] and many others.

Traditionally, these tasks are treated separately, developing new architecture blocks
for each specific problem, introducing additional loss components, using some aux-
iliary constraints. Our contribution here is that we develop a pipeline that benefits
from tackling these problems altogether, as they all are low-level computer vision
tasks and they all aim to map tensors to tensors, no more no less. We present an
end-to-end learned method for several image restoration tasks and show results for
three specific ones: deblurring, dehazing, and raindrop removal. The setting has
a generic encoder and separate decoders so that the model both shares the low-
level feature representations between the tasks, and, afterwards, concentrates every
branch (decoder) on its specific problem, allowing to learn task-specific details. The
only thing that differs for those decoders is data that goes through, so to re-train the
model for a different subset of tasks one only has to provide corresponding (paired)
datasets. Each "branch" is considered to be a generator and has its own discrim-
inator, so the whole setting is trained in conditional GANs manner. Such setting
is flexible architecture-wise, so we try different generator architectures to compare
the performance of the models. We introduce new FPN-inspired [Lin et al., 2016]
generator architecture with InceptionResNetV2 backbone [Szegedy, Ioffe, and Van-
houcke, 2016] to deal with degradations at different scales. We use VGG-feature
based losses [Johnson, Alahi, and Li, 2016; Mechrez, Talmi, and Zelnik-Manor, 2018]
for perceptual quality assurance.

Our approach differs from the existing ones: it does not rely on the physical
models of the degradations [Pan et al., 2018], it does not restore the images with
specific multiple degradations [Dong et al., 2018; Zhang et al., 2018], it does not rely
on a specific image generator structure [Ulyanov, Vedaldi, and Lempitsky, 2017].
Our approach is not limited to specific tasks: it takes advantage of the common
features that image degradations share and leaves room for each of the tasks to learn
its specific restoration parameters.

The rest of the thesis is organized as follows. In Chapter 2 we describe re-
lated work on image restoration and multi-task learning in general and background
knowledge on neural networks and specific architectures. In Chapter 3 we go into
details regarding our proposed pipeline, network architectures, and objective func-
tions. In Chapter 4 we describe the datasets, discuss the choice of metrics, and de-
scribe technical details about the experiments, providing quantitative and qualita-
tive evaluation with examples of the networks’ outputs. In Chapter 5 we conclude
what was done and described in previous chapters.
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Chapter 2

Related work

2.1 Neural networks

An artificial neural network is a brain-inspired complex system which is designed
to replicate the way we, humans, learn. The neural network normally consists of
the input layer, a hidden layer, and the output layer; if it has multiple hidden layers,
it is sometimes called "deep neural network", though nowadays "deep" is usually
omitted as deep learning is at the peak of AI hype cycle. The simplest deep neural
network is multilayer perceptron, where all neurons of neighbouring layers are con-
nected between each other:

FIGURE 2.1: MLP architecture. [Image source]

The nodes of the neural network are extremely interconnected and have acti-
vation functions that provide non-linearities. The training of the neural network
consists of forward and backward passes. In the forward pass, we push the input
through the layers and calculate the error function. In the backward pass, we figure
out how each weight affects the total error computing the gradients via the chain
rule, and modify the network weights to decrease the error. In the perfect setting,
we continue training until the error function converges to zero.

Neural networks are perfect tools to investigate hidden patterns, especially in
high-dimensional spaces, and they can solve tremendously complex problems that
require more than hand-crafted features and heuristics.

2.1.1 CNNs

Convolutional neural networks [Lecun et al., 1998] are such neural networks that
have at least one layer with convolutional operations instead of standard matrix
multiplication. [Goodfellow, Bengio, and Courville, 2016]

CNNs are a subcategory of deep learning models that have proven very power-
ful in computer vision tasks. With local receptive fields, neurons can extract elemen-
tary visual features such as oriented edges, end-points, corners (or similar features
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in other signals such as speech spectrograms). These features are then combined by
the subsequent layers in order to detect higher-order features. [Lecun et al., 1998]

There were 4 main building blocks in the well-known LeNet-5, a classical CNN
architecture:

FIGURE 2.2: LeNet architecture. [Lecun et al., 1998]

• convolutional layer. Computes a dot product between the kernel weights and
a small patch of the input, has trainable parameters.

• subsampling layer. Performs downsampling along the spatial dimensions,
doesn’t have trainable parameters.

• non-linearity, or activation function. Applies non-linear activation function,
e.g. ReLU [Nair and Hinton, 2010], Leaky ReLU [Maas, 2013], tanh; doesn’t
have trainable parameters.

• fully-connected layer. Standard MLP-style layer, has trainable parameters.

There are few things that make CNNs so suitable for the computer vision tasks
(in comparison to multi-layer perceptron architecture): images as the inputs are very
large (thousands or millions of pixels), so feeding the image directly to the fully-
connected layer will lead to memory issues and lack of training data to catch up
with the number of trainable parameters of the network. Moreover, we would like
the network to be robust to the local distortions and translations of the input.

Fully-connected architectures ignore the topology of the input, while images
have strong 2D local structure. CNNs force the extraction of local features by re-
stricting the receptive fields of hidden units to be local.

Once a feature has been detected the relevance of its exact position goes down,
as now only its approximate location relative to other features matters.

Few specific architectures that need to be mentioned:

• AlexNet [Krizhevsky, Sutskever, and Hinton, 2012] became a breakthrough
in deep learning as Krizhevsky et al. presented a much deeper and wider
network that won ILSVRC [ILSVRC] by a large margin. All current widespread
applications of CNNs in computer vision owe AlexNet their success.

• VGGNet [Simonyan and Zisserman, 2014] has shown that the depth matters
and is still a critical component for performance. Its feature maps are used for
designing perceptual losses due to the depth and semantic richness.

• ResNet [He et al., 2015] has shown very powerful representational ability and
overcame the ’vanishing gradient’ problem by introducing a skip-connection
that acts as a shortcut for one or more layers.
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2.1.2 Deep Generative Models. GANs.

Deep generative models are neural networks that can learn and imitate the data dis-
tribution one feeds to them (basically, the distribution of the input data of any nature
the task is based on, from images to texts). When training a deep generative network
one tries to find parameters that make their model closest to real but unknown data
distribution. [Nalisnick et al., 2019]

There are two dominant and efficient types of generative models: VAE [Kingma
and Welling, 2013] (Variational Autoencoders), and GANs [Goodfellow et al., 2014]
(generative adversarial networks). The latter are of particular interest of ours.

In the generative model setup, we know that the samples come from different
distributions, but finding a two-sample test objective in high dimensions is hard.
The key idea behind GANs then is to learn a statistic that maximises a suitable notion
of distance between the two sets of the sample. [CS236]

The Goodfellow’s GANs framework [Goodfellow et al., 2014] consists of two
models: a discriminator D and a generator G, and a two-player minimax game is
played between them. The discriminator estimates how likely the given data comes
from the real dataset (D is also called ‘critic’ sometimes), and is optimised to dis-
tinguish fake samples from the real ones. The generator receives noise as the input
and outputs artificial samples; it is trained to ‘trick’ the discriminator capturing the
real data distribution and making those synthetic samples as difficult to tell from the
true ones as possible.

FIGURE 2.3: source: Quora

A generator is a directed, latent variable model with a deterministic mapping
between the input noise and the generated output. It minimises a two-sample test
objective. Unlike a variational autoencoder, there is no inference network which can
learn a variational posterior over latent variables. A discriminator is any function; in
particular, it may be a neural network, that maximises the two-sample test objective.

The minimax game with the value function V(D, G) then is nothing else but
[Goodfellow et al., 2014]:

min
G

max
D

V(D, G) = Ex∼pdata(x)
[

log D(x)
]
+ Ez∼pz(z)

[
log(1− D(G(z)))

]
At the early stages of training, when G is still too primitive to fool the dis-

criminator D, the confidence of D about rejecting the sample is very high, thus
D(G(z)) is nearly zero leading to the saturation of the second term log(1−D(G(z))).
As that is the only term dependent on G, one can change the task of minimising
log(1− D(G(z))) to maximising log(D(G(z))). The new objective then helps with
vanishing gradients on the early stages of the training process.

There are still many issues that stand on the way of near-to-perfect GAN training,
among which mode collapse, evaluation, an absence of stopping criteria in practice,
unstable optimization, etc.
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FIGURE 2.4: Simultaneous training of GANs. source: [CS236]

There is still room for creativity and improvement regarding the choice of the ob-
jective function. Lucic et al., 2017 conducted research on comparison and evaluation
of different GANs configurations, here are the most popular objectives (see Fig. 2.6):

FIGURE 2.5: Generator and discriminator loss functions. source: [Lu-
cic et al., 2017]

WGAN and WGAN-GP

If one follows the progress of the GANs, they might notice that the key things that
have influenced improvements in the results were not only the new architectures
but also the introduction of different loss functions.

The loss function that Goodfellow et al., 2014 use for training the discriminator
is known as the Kullback–Leibler divergence:

KL(Pr||Pθ) =
∫

log
(

Pr(x)
Pθ(x)

)
Pr(x)dµ

Here Pr, Pθ ∈ Prob(X) – two distributions, where Prob(X) denotes the space of
probability measures defined on a compact metric space X.

This loss function has several disadvantages that lead to the instability of the
GAN training, one of which is non-differentiability, and even discontinuity, for some
distributions with respect to the parameter θ – weights of the neural network G.

In [Arjovsky, Chintala, and Bottou, 2017] the authors suggest using different
function called the Earth-Mover (EM) distance or Wasserstein-1

W(Pr, Pθ) = inf
γ∈Π(Pr ,Pθ)

E(x,y)∼γ

[
||x− y||

]
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Here Π(Pr, Pθ) denotes the set of all joint distributions γ(x, y) whose marginals
are Pr and Pθ respectively. It is called the “earth-mover” because γ(x, y) indicates
how much “mass” must be transported from x to y to transform Pr into Pθ in the con-
tinuous probability space. The Wasserstein distance can provide a smooth measure
even for the cases when other metrics fail (for instance, when the two distributions
are located in lower dimensional manifolds without overlaps, which was illustrated
by the trivial example in the paper), so it helps to maintain a stable learning process
using gradient descents. One may use the Kantorovich-Rubinstein duality to rewrite
the formula so it becomes more approachable:

W(Pr, Pθ) = sup
|| f ||L≤1

Ex∼Pr [ f (x)]−Ex∼Pθ
[ f (x)]

Here the supremum is taken over 1-Lipschitz functions f : X → R. Even though
WGAN became a breakthrough, the suggested approach was still not stable enough,
and the reason for that was the weight clipping used to enforce a Lipschitz constraint
for the discriminator (the authors even encouraged further investigation as were
aware that the weight clipping was a “clearly terrible” approach). Weight clipping
is simply clamping the weights to a fixed interval after each gradient update so they
lie in a compact space, guaranteeing f to be 1-Lipschitz.

The authors of [Gulrajani et al., 2017] suggested to penalize the norm of gradient
of the discriminator with respect to its input to avoid undesired clipping. Their
objective function now consists of two parts: original discriminator loss and the
gradient penalty (as we need the function to be 1-Lipschitz):

L = −Ex∼Pr [D(x)] + Ex∼Pθ
[D(G(x))] + λEx̂∼Px̂

[(
||∇x̂D(x̂)||2 − 1

)2
]

Here Px̂ is defined implicitly – sampling uniformly along straight lines between
pairs of points sampled from the real data distribution Pr and the hallucinated data
distribution Pθ .

cGANs

Conditional GANs [Isola et al., 2016] are an extension of GANs for multimodal in-
puts. They add extra information to both generator and discriminator to train both
networks better. Unlike regular GANs when the generator deals with a random
noise vector, here it receives some constraint of any kind, in case of image-to-image
translation - an image.

2.1.3 FPN

Feature pyramids are a basic component in recognition systems for detecting ob-
jects at different scales. They were heavily used in the era of hand-engineered fea-
tures. The principle advantage of featurizing each level of an image pyramid is that
it produces a multi-scale feature representation in which all levels are semantically
strong, including the high-resolution levels. [Lin et al., 2016] FPN uses a top-down
architecture with lateral connections to build an in-network feature pyramid from a
single-scale input. The bottom-up pathway is the feedforward computation of the
backbone ConvNet, which computes a feature hierarchy consisting of feature maps
at several scales with a scaling step of 2. [Xu et al., 2018] The network stage de-
fines as the layers producing output maps of the same size. The output of the last
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layer of each stage is reference set of feature maps, which will enrich to create pyra-
mid, because the deepest layer of each stage should have the strongest features. The
top-down pathway hallucinates higher resolution features by upsampling spatially
coarser, but semantically stronger, feature maps from higher pyramid levels. These
features are then enhanced with features from the bottom-up pathway via lateral
connections. Each lateral connection merges feature maps of the same spatial size
from the bottom-up pathway and the top-down pathway. This process is indepen-
dent of the backbone convolutional architectures.
This method showed significant improvements over several strong baselines and
competition winners.

FIGURE 2.6: Feature pyramid network. source: [Lin et al., 2016]
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Chapter 3

Proposed approach

Our primary goal was to create an efficient pipeline for general image restoration:
given several images g̃1, ..., g̃m with m different types of degradations as an input,
with no prior knowledge or other constraints regarding the nature of degradation,
to provide the recovered images Di(E(g̃i)), i = 1...m as close as possible to the real-
data distributions pgi , where E is a generic encoder and Di are corresponding de-
coders. Also, during training, we introduced separate discriminator networks for
each encoder-decoder branch and trained the whole setting in an adversarial man-
ner.

3.1 Pipeline

Multi-task learning (MTL) is a paradigm for solving domain-related tasks via shared
representations. [Ruder, 2017] One can use what is learned for one problem to help
in solving others in parallel, utilising the extra information about the domain con-
tained in the training samples of the related tasks.

Such a technique allows embeddings developed in the hidden layers for one task
to be used by the rest of the tasks. It also allows features to appear in such a way
which was not possible in any single-task net, trained separately. Importantly, MTL-
backpropagation also allows some hidden units to become specialised for just one or
a few tasks; other tasks can ignore features they think of being redundant by keeping
the weights connected to them close to zero. [Caruana, 1997]

Our setting has an encoder-decoder-like architecture (see Fig. 3.1) with a generic
encoder (the part of the network where the weights are shared) and separate de-
coders for each image restoration task in the pipeline. The images are processed in
batches, and it is important that each forward-backward cycle ’sees’ images from
all the datasets; otherwise the network will substitute previously acquired knowl-
edge with the last-seen task information only, forgetting the rest of them. We make
forward passes for each task-specific batch separately one-by-one, accumulating the
generator loss, and only then backpropagate it, when all m batches have passed
through the network. The decoders share the same architecture, though learn differ-
ent parameters during the training. Every single image has its predefined decoder;
the gradient backpropagates through the corresponding connections of the network.
That is how we learn shared low-level features.

We also use separate discriminators with the same architectures for each branch
so that they are concentrated only on single real-data distribution.

Another advantage of this approach is that it is flexible to the choice of the gen-
erator architecture: one can use any reasonable architecture that works well on one
of the tasks and doesn’t have task-specific constraints, and split it into two parts,
imitating encoder and decoder.
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FIGURE 3.1: Generic encoder and separate decoders pipeline

It is important to emphasise that this approach is not only valuable in the context
of achieving better results for the tasks with massive rich datasets, but it also helps
a lot with the degradation tasks where it is challenging to collect many image pairs,
so the procedure can benefit from such an encoder trained on a diverse large-scale
dataset.

While the encoder helps to learn generic low-level features that show the com-
mon background for the tasks, the decoders, on the contrary, help to learn task-
specific features, as still, the types of degradation have lots of differences in visual
and perceptual representation.

3.2 Architecture

We use ResNet-like architecture used in [Kupyn et al., 2017] for the baseline experi-
ments.

FIGURE 3.2: DeblurGAN generator architecture [Kupyn et al., 2017]

We split it in two as follows: 7× 7 convolutional layer, 2 strided convolutions,
and 9 residual blocks [He et al., 2015] go to the encoder E, while the rest - 2 trans-
posed convolutional blocks and 7× 7 convolutional layer - go to the corresponding
decoders Di.

The ResNet-like architecture proposed in DeblurGAN still had lots of disadvan-
tages and room for improvement. First of all, it could be optimized a lot in depth.
Secondly, it worked poorly with blur at different scales. That is why we decided to
use the pyramid-like architecture as another option for this task and present in the
work results of both experimental settings.
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For the feature extraction part we use feature-pyramid network [Lin et al., 2016]
with InceptionResNetV2 backbone [Szegedy, Ioffe, and Vanhoucke, 2016], which
outputs multi-scale feature maps M0, ..., M4, that are further processed as is shown
in Fig. 3.3.

FIGURE 3.3: FPN Inception generator architecture

All the blocks prior to the "concatenation" block are treated as the encoder part
E, while the rest is treated as the decoder part Di. As one of the contributions of De-
blurGAN [Kupyn et al., 2017] was extra skip-connection that helped to achieve better
results, we do not give up on this improvement in the multi-task setting as well, as
skip connections were useful for MLT in recent work of Ruder et al., 2017. As you
may see in the Experiment section (here goes link to the figure), skip-connections
give a significant boost in PSNR.

We do not change the discriminator architecture used in [Kupyn et al., 2017]: it
is WGAN-GP discriminator identical to PatchGAN [Isola et al., 2016].

3.3 Loss functions

We will elaborate only on the generator loss here, as WGAN-GP discriminator loss
was already discussed in Chapter 2. In the basic setting, we set the gradient penalty
constant to be equal to 10.

In the problems where we deal with restoring the images, we need to find a
proper way to compare the images on the training stage – the reconstructed and the
original ones. One of the components for the loss function of the generator has to be
the so-called “content” loss LX. The simplest approach would be to use either L1 or
L2 distance as LX. Obviously, they lead to bad results as they take into account the
raw pixel data and inherently tend to push the network to generate blurry outputs
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(the blur accumulates). Using L2 (as well as L1) works really poorly with the multi-
modal distributions. [Mathieu, Couprie, and LeCun, 2015] If you have two equally
likely modes for output (the pixel intensity), the average value of those two gives
you an even smaller value of the L2 objective, thus forces the network to stick to that
unlikely though technically “better” option.

FIGURE 3.4: Illustration of patches from the real-data manifold (red)
and SR-patches with MSE (blue) and GAN (orange) objective. The
MSE-based solution appears overly smooth due to the pixel-wise av-
erage of possible solutions in the pixel space, while GAN pushes the
output towards the natural image manifold producing sharper and

more realistic solutions. [Ledig et al., 2016]

In [Kupyn et al., 2017] the perceptual loss [Johnson, Alahi, and Li, 2016] is used
instead. It is similar to the L2, but deals with the images’ VGG-19 [Simonyan and
Zisserman, 2014] feature representations, namely, conv3_3 feature maps. It is defined
as follows:

LX =
1

Wi,jHi,j

Wi,j

∑
x=1

Hi,j

∑
y=1

(
φi,j

(
g(x)

)
x,y
− φi,j

(
G(g̃(x))

)
x,y

)2

where φi,j denotes the feature map before the i-th maxpooling by the j-th convo-
lution within the VGG-19 network pretrained on ImageNet [Deng et al., 2009]. The
feature maps are usually taken after activation, though Wang et al., 2018 claim that
the feature maps before activation preserve more semantics, and this is a valid point
to build new experiments upon for further exploration.

So, the basic setting for the experiments had 3 loss components: the VGG-based
perceptual loss [Johnson, Alahi, and Li, 2016] for the general content, the L1 loss for
preserving colors, and the adversarial loss for the texture details.

LG = LX + 0.5 ∗ L1 + 0.01 ∗ Ladv

It is worth mentioning that the discriminator loss also was multiplied by 0.01 so
the updates would have been on the same scale.

The issue with the perceptual loss is that it doesn’t take into account the se-
mantics of the image. It is highly noticeable in the style transfer [Gatys, Ecker, and
Bethge, 2016] problems.
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For instance,

FIGURE 3.5

leads to

FIGURE 3.6

which is clearly "non-Van Gogh", as the yellow sun spots appear not only in the
sky, but also on the river bank, and some of the buildings are weirdly corrupted,
though on the original Van Gogh picture they seem to be perfectly OK.

[Mechrez et al., 2018] suggested loss function that cares about the image seman-
tics – Contextual loss:

LCX = − log
( 1

N ∑
j

max
j

Aij

)
Here Aij stands for the affinity between features xi and yj. Affinity is the function

that describes the importance of the geometry of the image for the feature distribu-
tion and has the following formula:

Aij =
exp
(

1− d̃ij
h

)
∑l exp

(
1− d̃il

h

)
Here h > 0 is a bandwidth parameter, and d̃ij is the normalized cosine distance

between xi and yj. The authors, though, use not the abundantly discussed above
Wasserstein-1 distance, but stick to more classic KL-Divergence. Hence, we came
into conclusion that the combination of the two previously introduced functions –
the Earth-Mover distance and the Contextual loss – might show even better results,
both dealing with the semantics and smoothness for stable learning. In Chapter
4 we show the results of the experiment with additional component 0.5LCX of the
generator loss.
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Chapter 4

Experiments

4.1 Datasets

4.1.1 GORPO Dataset

GOPRO Dataset [Nah, Kim, and Lee, 2016] consists of 3214 pairs of blurry and sharp
images, 2103 pairs in the training set and 1111 pair in the test set. It was generated
from the 240 FPS videos via GOPRO4 Hero Black camera, blurry images by averag-
ing different number (7-13) of the successive frames, so the strength of blur does not
follow the same pattern. In other words, that means that the sharp image is taken
at a shutter speed equal to 1/240, while the blurry one simulates the photo taken at
a shutter speed equal to n/240, where n is the number of successive latent frames
used. The pairs are aligned in such a manner that the sharp image is the mid-frame
among those used for creating the blurry one.

4.1.2 GOPRO 3840 FPS Dataset

GOPRO 3840 FPS Dataset was created based on the GOPRO Dataset via interpola-
tion method introduced in [Niklaus, Mai, and Liu, 2017b]. Given two frames, it uses
adaptive convolution [Niklaus, Mai, and Liu, 2017a] in a spatially-adaptive separa-
ble manner to interpolate the intermediate frame. It generates the output pixels for
frame synthesis approximating the 2D convolution kernels with a pair of 1D kernels,
horizontal and vertical. The method employs a fully convolutional neural network
[Long, Shelhamer, and Darrell, 2014] that produces the separable kernels for all out-
put pixels at once. The important thing here is that as the output is full-frame, one
can use perceptual loss functions [Johnson, Alahi, and Li, 2016] to improve the per-
ceptual quality of the results. The loss that was used for this method was based on
the relu4_4 layer of the VGG-19 network [Simonyan and Zisserman, 2014]. Besides
GOPRO 3840 FPS Dataset there were also generated two other datasets, namely 960
FPS and 1920 FPS, but we used the one with the highest FPS rate for our experi-
ments. The blurred images obtained via frame interpolation and averaging tend to
be smoother and possess fewer artifacts, making the input image more realistic.

4.1.3 D-HAZY Dataset

D-HAZY [Cosmin Ancuti, 2016] is a dataset of 1472 pairs of clear and hazy images
of real indoor scenes composed from the Middleburry [Scharstein et al., 2014] (23
pairs) and the NYU-Depth V2 [Nathan Silberman and Fergus, 2012] (1449 pairs)
datasets. The haze on the images is synthesized via the corresponding depth maps
using the physical model of a hazy medium. We use only the NYU-Depth V2 part
of the D-HAZY dataset, splitting it in 1000 training and 449 testing pairs randomly.
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4.1.4 Raindrop Dataset

Raindrop Dataset [Qian et al., 2017] consists of 1110 pairs of "rainy" and clear images
with various background scenes. Those were obtained using two different cameras,
namely Sony A6000 and Canon EOS 60, and two pieces of the same 3mm glass at-
tached to the camera lenses, sprayed with water and clean. The diversity in the
raindrops is achieved varying the distance from the lens to the glass from 2 to 5 cm.
The dataset was already divided into train (861 pairs), test_b (249 pairs), and test_a
(58 pairs, randomly selected subset of test_b) subsets; we used test_b subset as a test
set.

FIGURE 4.1: Example of a blurry-sharp pair of images
from GOPRO 3840 FPS Dataset test set

FIGURE 4.2: Example of a hazy-clear pair of images
from D-HAZY test set

FIGURE 4.3: Example of a rainy-clear pair of images
from Raindrop Dataset test set
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4.2 Metrics

Image restoration algorithms are typically evaluated by some distortion measures,
e.g. PSNR, SSIM, or by subjective evaluation of human observers that quantify per-
ceived perceptual quality [Blau and Michaeli, 2017].

Intuitively, distortion measure is a criterion that measures "quality" of image
restoration [Becker, 2000]. More formally, it is some real-valued nonnegative func-
tion of two arguments g and g̃ that represents the "accuracy from g to g̃".

The last decades witnessed tremendous progress in developing image restora-
tion algorithms of many kinds, both in visual (perceptual) quality and in common-
used distortion measures. As one of the main problems in this domain is ill-posedness
of the tasks, sometimes it is unclear what should the community consider to be the
best result or SOTA. Different challenges, such as NTIRE [NTIRE 2019] and PIRM
[PIRM 2018], have separate tracks for evaluation of the model performance, focused
either on perceptual quality or on the widely used distortion metrics. Indeed, lately,
the improvement in visual quality could not always catch up with improvement in
reconstruction accuracy, as was shown in [Ledig et al., 2016] where the authors con-
ducted extensive mean-opinion test to prove their point. One of the reasons for that
is that the approaches based on pixel-wise differences, such as PSNR, tend to output
over-smoothed textures without sufficient high-frequency content details, causing
fundamental disagreement with the human opinion scores. Even if one finds a ’per-
fect’ metric, there is no guarantee that we can directly optimize for it, because it also
should be differentiable.

The perceptually-oriented criteria are often no-reference, meaning that the qual-
ity of the output is measured without depending on the reference image, but based
on estimating deviations from natural image statistics. Among such are the Ma’s
score [Ma et al., 2016] and NIQE [Mittal, and Bovik, 2012], a linear combination of
which was used as a metric for PIRM 2018 challenge, as it has shown the highest
Spearman correlation coefficient (0.83) with the human-opinion scores, while the
SSIM and RMSE measures were anti-correlated [Blau et al., 2018, Fig. 9]. Even
more unusual one, the evaluation method used in [Kupyn et al., 2017] measured the
quality of deblurring algorithm based on results of object detection on a pretrained
YOLO [Redmon et al., 2015] network.

Finally, in [Blau and Michaeli, 2017] the authors claim that there is a certain trade-
off between perception and distortion, and it exists for all distortion measures (see
Fig. 4.4).

FIGURE 4.4: There exists a region in the perception-distortion plane
which cannot be attained, regardless of the algorithmic scheme.

([Blau and Michaeli, 2017])
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Even though the PSNR and SSIM are not perceptually best criteria, those are the
widely-used ones in the majority of image restoration tasks, and to compare our
method to the SOTA ones, we will use those two measures for evaluation along-
side with providing visual results. Moreover, these are appealing because they are
mathematically convenient in the context of optimization.

4.2.1 PSNR

The PSNR quantifies how faithful is the distorted image to the original one [Fardo
et al., 2016]. For grey-scale images,

PSNR = 20 log10
MAXg√

MSE

MSE =
1

mn

m−1

∑
i=0

n−1

∑
j=0

[g(i, j)− g̃(i, j)]2

where MAXg is the highest possible pixel value, g and g̃ are the two images.
PSNR is measured in decibels (dB). The higher PSNR - the better. If the pix-

els are encoded using 8 bits, MAXg = 255. For color images with three channels,
the formula for PSNR is the same except the sum is taken over all squared value
differences and is divided by an additional factor of three. For color images with
luminance component (such as YCbCr), only that component is used.

Unlike MSE, PSNR does not strongly depend on the image intensity scaling as
it scales the MSE according to the image range. PSNR is an adequate measure of
image restoration for the same image, but the comparison of PSNR between the
images makes no sense.

4.2.2 SSIM

SSIM index is based on the similarities of luminance, contrast and structure between
local patches x and y extracted from an original and a corrupted image:

l(x, y) =
2µxµy + C1

µ2
x + µ2

y + C1

c(x, y) =
2σxσy + C2

σ2
x + σ2

y + C2

s(x, y) =
σxy + C3

σxσy + C3

where µ, σ and σxy are the mean, standard deviation and covariance of the image
patches, respectively, and C1, C2, C3 > 0 are stability constants that prevent the
fraction from exploding when the denominator approaches zero [Wang et al., 2004].
The local SSIM index is then obtained as

SSIM(x, y) = [l(x, y)]α[c(x, y)]β[s(x, y)]γ

where α, β, γ > 0 stand for the relative importance for each of the three factors.
The last term here is responsible for the structural distortions and the first two terms
- for non-structural ones, so SSIM is capable of differentiating between them as the
components are relatively independent. This equation, though, does not take into
account the distance to the observer. Therefore, the SSIM index depends on the
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scale it is applied to. A multi-scale index derived from SSIM is called Multi-Scale
Structural Similarity, a.k.a. MS-SSIM.

The SSIM index is usually simplified by taking α = β = 1, and C3 = C2/2. The
above equation then reduces to

SSIM(x, y) =
(

2µxµy + C1

µ2
x + µ2

y + C1

)(
2σxy + C2

σ2
x + σ2

y + C2

)
The SSIM index of the image then is calculated by (weighted) averaging the SSIM

indices of image patches via the sliding window. The motivation behind that is that
the image statistical features are usually highly spatially non-stationary, and image
distortions may also be space-variant.

The last formula is usually applied only on the luminance component, though
it may also be applied to color or chromatic values. The range of SSIM function is
[−1; 1], the maximum value reachable only for two identical images. 0 stands for no
structural similarity.

Although not perfect as a perceptual image quality metric, it still outperforms
MSE and its derivatives [Rehman, 2013].

4.3 Training and evaluation details

We implemented all of our models using PyTorch [PyTorch]. The training was per-
formed on GeForce R© GTX 1080 GPU and NVIDIA Tesla P100 GPU. The models
were trained on random crops of size 256x256. As all the models are fully convolu-
tional and are trained on image patches, they can be applied to images of arbitrary
size. We use Adam optimizer [Kingma and Ba, 2014] and perform several exper-
iments varying the ratio of gradient descent steps for the discriminator and gen-
erator in Wasserstein-GAN fashion [Arjovsky, Chintala, and Bottou, 2017]. We also
vary the ratio between the learning rates for the generator and the discriminator. The
learning rate for the generator remains unchanged and is set to 0.0001. The learning
rate for discriminator is the same if not stated otherwise. After the first 40 epochs,
we linearly decay the learning rate to 1e− 7 over the next 40 epochs. We train the de-
blurring branch of the generator with the batch size 2 and other two branches with
the batch size 1.

The SSIM evaluation was performed with skimage [scikit-image] library, averag-
ing the value per each channel. The PSNR measure also treated the images as RGB
3-channel ones.

4.4 Results

Results on image deblurring via FPN Inception network are in Table 4.1. We perform
single-task training, deblurring+dehazing training, and 3-tasks-training.

TABLE 4.1: PSNR and SSIM, mean values over the GoPro test dataset
(deblurring task).

Nah, Kim, and Lee, 2016 Xu, Zheng, and Jia, 2013 Kupyn et al., 2017 Ours (FPN)

Metric 1 task 2 tasks 3 tasks

PSNR 28.3 25.1 27.2 28.277 27.3 27.38
SSIM 0.916 0.89 0.954 0.928 0.81 0.8
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Results of ResNet-like architecture training in different settings: with discrimi-
nator learning rate equal to 0.0002, with additional contextual loss component, and
with WGAN-like discriminator update ratio equal to 5.

TABLE 4.2: PSNR and SSIM, mean values over the corresponding
datasets.

Metric lrD = 2lrG +0.5cx lrD = lrG
Dupd = 5

deblur PSNR 27.13 26.56 26.85
SSIM 0.791 0.779 0.78

dehaze PSNR 16.92 16.92 16.6
SSIM 0.695 0.718 0.699

derain PSNR 23.98 23.96 23.97
SSIM 0.765 0.756 0.761

Here are some image results:

FIGURE 4.5: FPN Inception trained on 3 tasks deals with raindrops.
Left to right: input, output, ground truth.

FIGURE 4.6: FPN Inception trained on 3 tasks deals with haze. Left
to right: input, output, ground truth.
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FIGURE 4.7: FPN Inception trained on 3 tasks deals with blur. Left to
right: input, output, ground truth.

FIGURE 4.8: ResNet-like generator trained on 3 tasks with contextual
loss deals with raindrops. Left to right: input, output, ground truth.
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Chapter 5

Conclusion

We described an end-to-end multi-task learning pipeline for image restoration based
on GANs training. The approach is promising due to its flexibility and to the fact
that it contributes to the extremely fast-emerging field of deep learning - image-to-
image translation via GANs. The new FPN-inspired architecture shows results very
close to SOTA, though, there is still room for improvement and new experiments
regarding the training procedure, objective functions, and network architectures.

The code is available on github.
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