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Chapter 1

Introduction

1

Essentially, there are several kinds of models in machine learning — genera-
tive models and discriminative models. Suppose you have a supervised learn-
ing task, where xi are the given features of the data points, and yi are the cor-
responding labels. One way to predict y on future x is to learn a function f
from (xi, yi) that takes in x and outputs the most likely y. Such models fall into
the category of discriminative models since you are learning how to discrimi-
nate between x’s from different classes. Methods like SVMs, neural networks
fall into this category. Even if you’re able to classify the data very accurately,
you have no notion of how the data might have been generated. The second
approach is to model how the data might have been generated, and learn a
function f (x, y) that gives a score to the configuration determined by x and y
together. Then you can predict y for a new x by finding the y for which the score
f (x, y) is maximum. A canonical example of this is Gaussian mixture models.

In terms of probability, we can formulate that discriminative models try to
learn p(y|x) conditional probability, on the other hand, generative models try to
approximate p(x, y). If we learn joint distribution, we would be able to sample
from this distribution.

Generally, research community allocates this types of generative models:

• Gaussian mixture model (and other types of mixture model).

• Hidden Markov model.

• Probabilistic context-free grammar.
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• Naive Bayes.

• Latent Dirichlet allocation.

• Restricted Boltzmann machine.

• Generative adversarial networks.

• etc.

Figure 1.1 visualize family of generative models. In my work, I’ll review gener-
ative adversarial nets for the image-to-image translation task.

FIGURE 1.1: Family of generative models.

Neural networks have received a lot of attention in the past decade. Research
in this area is very active. In 2014, was published paper "Generative Adversarial
Nets"( Goodfellow et al., 2014). In this paper, authors proposed a new frame-
work for estimating generative models via an adversarial process. This work
gave impetus to the development of this approach. During the last 3 years,
community published different variations of GANs.

After paper about adversarial nets was published, we saw different applica-
tions of this technology. People started using it for:

• Super resolution task (Ledig et al., 2016).

• Image generation (Liu et al., 2017).
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• Style transfer (Zhu et al., 2017).

• Reinforcement learning (Ho and Ermon, 2016).

• Natural Language Processing (Rajeswar et al., 2017).

• Next frame generation for video (Ghosh et al., 2016).

• etc.

Although introduced in 2014 by Ian Goodfellow, it is in 2016 that GANs have
started to show their real potential. Improved techniques for helping training
and better architectures (Deep Convolutional GAN, Radford, Metz, and Chin-
tala, 2015) have fixed some of the previous limitations, and new applications
are revealing how powerful and flexible they can be.

In the proposed, by Goodfellow, adversarial nets framework, the generative
model is pitted against an adversary: a discriminative model that learns to de-
termine whether a sample is from the model distribution or the data distribu-
tion. The generative model can be thought of as analogous to a team of counter-
feiters, trying to produce fake currency and use it without detection, while the
discriminative model is analogous to the police, trying to detect the counterfeit
currency. Competition in this game drives both teams to improve their methods
until the counterfeits are indistinguishable from the genuine articles.

1.1 Goals

In this master’s thesis, we want to explore generative adversarial nets, show
it’s potential and application in the fashion industry. We’ll try out current state-
of-the-art models and show it’s results for the custom dataset. Also, we’ll bring
our conjectures, about how they can be improved. We will conduct experiments
based on my guesses. And present results. Hence, the main goal of this work
to study principles of generative adversarial networks, it’s advantages and dis-
advantages, highlight main method’s ill problems and propose a novel solution
that improves methods in terms of the fashion industry.
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FIGURE 1.2: Generated images using GAN model (dataset Cifar-
10)



Chapter 1. Introduction 5

In particular, we aim to solve the following problem:

Given input image of a person dressed in a t-shirt. We want to
extract mask of t-shirt from a person. After, our goal to generate a
new one and change person’s t-shirt. I should mention that there is
no such t-shirt in the world. It’s very important to generate t-shirt in
such way, that it looks like the real one on person. Also in case, we
have a big dataset of t-shirts, we can recommend real t-shirt, which is
similar to generated. We can change t-shirt to any other close. But in
our case, we’ll use just t-shirt. Try to make the generation of t-shirts
more creative.

We want to show, how to build such pipeline. We want to check if current
state-of-the-art models able to satisfy fashion industry. And create some useful
service for people. Current work can be used as an overview of generative
adversarial nets.

1.2 Research Questions and Limitations

In this section, we list down the main challenges, limitations and research
questions involved in finding the best approach for generating items inside
some figure.

• There is no open source dataset of t-shirts (at the time of writing this the-
sis). There are a lot of datasets online, such as Fashionist (Dong et al.,
2015). But it doesn’t have enough masks of t-shirts. So, for our research,
we need to create our own dataset. It’ll include just t-shirts, we need to
avoid images which have something else on it, accept t-shirt.

• It’s complicated to train adversarial networks, because, in reality, you train
two neural networks, with two different objective functions Salimans et
al., 2016.

• Very important to train model in such way, that it will be a good approxi-
mation of real data. Good edge detector will help us generate new t-shirt
with some special style.
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1.3 Deep learning

Deep learning is very popular nowadays, and strong research topic. The
most impressive thing, that supervised learning has demonstrated human per-
formance for some discriminative tasks (Simonyan and Zisserman, 2014).

These models were implemented using a huge amount of data, apply a series
of matrix multiplication and non-linear operations, that allow to draw decision
boundary in high-dimensional space and classify samples in 1000 classes (Rus-
sakovsky et al., 2014) or help to define if a person has a cancer.

FIGURE 1.3: Example of DL case study. Here we can see results of
training SegNet Badrinarayanan, Kendall, and Cipolla, 2017

But artificial intelligence NN have some cons, in order to achieve a state-of-
the-art result, a NN needs a huge amount of labeled data, in some cases, could
represent the laborious task. One of the way to overcome this problem - is to use
unsupervised approaches instead (Salimans et al., 2016, Perarnau et al., 2016).
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1.4 Generative models

An important subfield of unsupervised learning is generative modeling. It
allows us to approximate the unknown distribution from its joint distribution.
For example, it is possible to sample of high-dimensional image space, where
each sample represents a generated image, unlike discriminative models, where
the sampling is done over the distribution of class labels given an input image.
In other words, given enough data from some domain (e.g. clothes), we can
train a model which is able to generate more data from the given space. Prob-
abilistic generative models can be used for texture synthesis (Raad et al., 2017),
inpainting (Yeh et al., 2016), denoising (Divakar and Venkatesh Babu, 2017),
compression (Santurkar, Budden, and Shavit, 2017), semi-supervised learning,
unsupervised feature learning, etc. Given this wide list of application, gives us
high heterogeneity in the way these models are formulated, trained and evalu-
ated.

Many objective functions and training procedures have been proposed, for
optimizing generative models (Nowozin, Cseke, and Tomioka, 2016). The mo-
tivation for introducing new training methods is typically the wish to fit prob-
abilistic models with computationally intractable likelihoods, rendering direct
maximum likelihood learning impractical. Most of the available training proce-
dures are consistent in the sense that if the data is drawn from a model distribu-
tion, then this model distribution will be optimal under the training objective in
the limit of an infinite number of training examples. That is if the model is cor-
rect, and for extremely large amounts of data, all of these methods will produce
the same result. However, when there is a mismatch between the data distri-
bution and the model, different objective functions can lead to very different
results (Theis, van den Oord, and Bethge, 2015).

Generative models have many applications and can be evaluated in many
ways. For density estimation and related tasks, log-likelihood has been the de-
facto standard for training and evaluating generative models. In our work, we’ll
make an overview of different objective functions for generative models, and
their comparison.
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Being able to generate data is the key feature of unsupervised learning and
artificial intelligence in general. Generative models grants excellent position to
know every aspect of this data. However, learning, and understanding of true
distribution is challenging task. Also, the loss function is not clearly defined
for generative models, as for discriminative tasks, the important disadvantage
that there is no defined function for evaluation. For example, in case of image
restoration, there is no well-working no inference image quality loss. The reason
for that is that objective function and evaluation function depends on the many
factors, such as the target of application, the complexity of the data and the type
of generative model.

1.5 Image generation

As we mentioned in the introduction, in this thesis we cover a subset of gener-
ative modeling focused on image generation. Image generation has huge scope
of application. For instance, it can be applied for deblurring (Kupyn et al., 2017),
where a generator corrects image by adding more information on top of it. In
fact, any image could be generated, if it’s enough data to train properly gener-
ator. Another application could be to augment a dataset in order to use naive
classification algorithms for classification, instead of other computational ex-
pensive algorithms. Similarly, a NN used as a generative model can be used
to learn in an unsupervised manner the representations of the data and, later,
use the first layers of the NN as a feature extractor in a semi-supervised setting.
Then, this approach would not require to hand-label as much data as it would
for directly training a supervised model from scratch.

There are different approaches to image generation. The most popular ones
are:

• Probabilistic graphical models with latent variables, such as Restricted
Boltzmann Machines (Decelle, Fissore, and Furtlehner, 2017), Deep Belief
Networks (Turner et al., 2017) and Deep Boltzmann Machines (Srivastava,
Salakhutdinov, and Hinton, 2013). These models need to rely on Markov
chain Monte Carlo methods to avoid the cost of an expensive partition
function, which necessary for applying a global normalization.
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• Variational AutoEncoders (VAEs Kingma and Welling, 2013). They are
based on the probabilistic graphical model framework and trained with
gradient-based methods. Autoencoders are used to learn the represen-
tation of the data using a pixel-wise loss function (e.g. mean square er-
ror). On the other hand, variational methods are applied to sample from
a tractable distribution Q (e.g. normal distribution) instead of the feature
vector distribution P.

• Autoregressive models, for example, Pixel Recurrent Neural Networks
(van den Oord, Kalchbrenner, and Kavukcuoglu, 2016) and Conditional
PixelCNN (van den Oord et al., 2016). The idea is to model each pixel of
the image considering the previous pixels along two spatial dimensions.
Their training is very stable and generates plausible samples with a high
log-likelihood. However, the sampling process is applied on one pixel at
a time, which is quite inefficient.

• Generative Adversarial Networks. It is the approach that will be applied
in this thesis. This approach is using two NN (generator, discrimina-
tor), solving minimax problem. Adversarial nets have the advantages that
Markov chains are never needed, only backpropagation is used to obtain
gradients, no inference is required during learning, and a wide variety of
factors and interactions can easily be incorporated into the model. Also,
generative adversarial networks allow us to generate new images from
learned distribution in the one-shot, not like in Pixel Recurrent Neural
Networks (van den Oord, Kalchbrenner, and Kavukcuoglu, 2016), where
image generating pixel-by-pixel process. Also, unlike fully observed mod-
els, GANs do not allow to have access to the approximated final genera-
tive distribution, but to just sample from it, which makes the marginal
log-likelihood harder to obtain for evaluation purposes. In an uncondi-
tioned generative model, there is no control on modes of the data being
generated. However, by conditioning the model on additional informa-
tion it is possible to direct the data generation process. Such conditioning
could be based on class labels, on some part of data for inpainting like, or
even on data from different modality. We will use this approach in this
thesis.
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1.6 Thesis Structure

In section 2 we made the detailed overview of Generative adversarial networks.
We discuss problems of GANs, and ways of solving it. Also, we tried to describe
all GANs framework modification which led us to write this thesis. We pay
much attention to discuss problems from which GANs framework suffers. We
did it, because in chapter 3, we will describe our experiments, the problems we
faced. After, we introduce our novel idea how we see to solve this problem
and results. In the beginning of chapter 3 we give the detailed description of
datasets we created and used.
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Chapter 2

Overview of existing methods and
problem’s analysis

2

In this master thesis, we overview generative adversarial networks for image
generation. Generative models are very important for the generation of some
sample from some distribution. The main challenge for it, it generates realistic
examples, in such way that even person couldn’t recognize real this sample or
not. This can be useful for training models, reinforcement learning. It’ll be great
to generate realistic samples with some conditions. In this chapter 2 we present
the main idea of GAN framework, conditional GAN, Wasserstein GAN will be
presented in the form we used them for our experiments, analysis, problem
formulation.

2.1 Generative modeling

The most advanced results in generative modeling have been obtained using
the different type of artificial neural networks. The reason for that is work of
Krizhevsky, Sutskever, and Hinton, 2012. To this day, NNs have also achieved
state-of-the-art, and even human-competitive results, not only in pattern recog-
nition task. A significant contribution to NN is convolutional neural networks
(CNN), which are very popular in signal processing tasks. The main idea of
CNN’s is to reduce a total number of parameters needed to train a NN, due
to the fact that each point is not connected with every other point. With fewer
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(A) VAE

(B) GAN

FIGURE 2.1: Main idea of VAE (a) and GAN (b) generate data.

parameters, overfitting is easier to avoid and the model is easier to train. Gener-
ative Adversarial Networks are strongly based on CNNs, as we will see in this
section. I should notice that GANs can be formulated without using CNNs.

Natural image generation has been a strong research topic for many years, but
it gave promising results with a combination of Deep learning and generative
modeling (Goodfellow et al., 2014). Image generation models can be split into
two main types: nonparametric and parametric. The first one does not generate
an image from scratch, but often combine different patches between matched
images in as database, which can be used, for example, inpainting technique.
In this thesis, we are going to focus on the parametric model, which are able to
generate natural images once a model is learned.

In my opinion, there are two promising approaches in building parametric
models. First one is Variational Autoencoders (VAEs) (Kingma and Welling,
2013, Figure 2.1a). VAEs tries to make B image as similar as A with compressed
representation Z. However, VAEs main limitation is that they tend to have a
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low performance with datasets with high variation. In order to reduce the vari-
ance of the gradient estimations, secondary networks (Mnih and Gregor, 2014)
or conditional data (Kulkarni et al., 2015, Mansimov et al., 2015) are required.
Another problem is the pixel-wise reconstruction error (e.g. mean square er-
ror) used as a loss function, which makes the model non-translation invariant
and causes the output images to look blurry, as it generates the mean image of
the distribution. Finally, we introduce below the state-of-the-art of the second
approach of parametric models: Generative Adversarial Nets (GANs) (Figure
2.1b).

2.2 GAN framework

In this section, we review GAN framework in terms of distribution learning.
Also, we will view how images are modeled as probability distributions. From
a statistical point of view, generating images can be seen as sampling from a
probability density function (PDF, PX(x)). PDF defines the likelihood of a ran-
dom variable given a distribution. There are a lot of types of distributions, one
of the most popular is the normal distribution. The main goal of PDF to model
real-world data. However, the more complex the data, the more complex distri-
bution tends to be. That means that there rare cases where it is not possible to
formulate true distribution analytically. The only option you have it’s to sam-
ple from this distribution. Image distribution represented in high-dimensional
space, where each pixel gets its value according to this model. More concretely,
when we make the photo with a camera, we sample from this distribution:
PX(x1, x2, x3, ..., xN), where N = WxHx3 (W, H - width, and height of image
respectively), also we should add the spatial dependencies between pixels.

It’s obvious that it’s impossible to know the analytical true distribution of
images. As this is not a case, we can approximate it as accurately as possible, it’s
challenging task. As we mentioned in section 2.1, the only possible approach (if
we don’t have labeled data) is generative models. Generative Adversarial nets
where specifically designed to target this problem. in this following subsection,
we explain the ability of GANs to approximate an unknown distribution.
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TABLE 2.1: Notion overview of the GAN Framework

Samples Meaning Distribution Meaning

A Real data. pdata Real, complex distribution, A ∼ pdata.
B Fake data. pG Generator distribution, pG = GG , B ∼ pG.
z Random noize. pz Simple distribution (e.g. N (µ, σ2)), z ∼ pz.
y Label information. py Known label distribution, p ∼ py.

FIGURE 2.2: Pipeline for GAN training. Generator samples from
z to generate B. The discriminator DD trains with both fake B and

real A data. Ideally we would have pG = pdata.

2.2.1 Generative Adversarial Networks

This overview is based on paper the Goodfellow et al., 2014. A GAN is com-
posed of two neural networks, a generator and discriminator. Let us define
notations. Let’s define G - space of all generator networks, D - space of all dis-
criminators., GG - sample from space of all generators, DD. In order to train
both networks we need data A so we are able to generate fake data B from GG .
To be more precisely, A is sampled from pdata and B from the generator GG dis-
tribution pG. The main goal of GANs is to accurately approximate pG to pdata.
In case of vanilla GAN, there is a third known distribution z ∼ pz (e.g. a normal
distribution) which is used as input for the generator GG(z). Table 2.1 shows a
summary of notations.
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FIGURE 2.3: Example of generator GG .

The main idea of GAN is to iteratively train a discriminator DD and generator
GG , which are playing minimax game. The goal of GG to approximate pdata, in
such way, to fool DD, in the same time DD iteratively becomes, better and better
in distinguishing, where is generated sample and where is real. In other words,
we want GG to learn how to generate sampled from real data distribution pdata.
On convergence, we expect DD(A) = 0.5, DD(B) = 0.5, which means that
guesses of DD(A) = 0.5 absolutely random. All process and elements you can
see on Figure 2.2.

We should mention, that GG just tries to approximate pdata. The interesting
fact is that GG don’t use any real data A from pdata, everything it has feedback
from DD. Actually, this feedback is the gradients of a backpropagation step: GG
uses the gradients of the backpropagation error from DD to change GG parame-
ters and slightly approximate pG to pdata. Also, GANs have a dynamic function,
that means, that at some point GAN can stop to train, there are a lot of reasons
for that, for example, a weak DD, which output only 1. But that, allows us to
create realistic data, in our case images.

More formally, let’s introduce a function V(θG, θD), where G and D are the
parameters of the generator and discriminator respectively, GAN training was
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introduced as optimizing of:

min
G

max
D

V(θG, θD) (2.1)

where V is defined as,

V(θG, θD) = EA∼pdata [log DD(A)] + Ez∼pz [log (1−DD(GG(z)))] (2.2)

Goodfellow et al., 2014 showed very important fact in original GAN paper
if considering an optimal discriminator, the generator minimizes the Jensen-
Shannon divergence of an unknown distribution pdata and an approximate dis-
tribution pG. This fact allows to avoid sampling from the mean of the distri-
bution pG, and as we know it causes generation of blurry results, as it is a
common issue for generative models that minimizes the Kullback-Leibler di-
vergence (Kullback and Leibler, 1951).

As we mentioned before, the generator GG uses z ∼ pz as input and outputs
a generated image B ∼ pG. We can understand it as mapping between pz and
pG. We call it decoding process because it decodes a compressed latent repre-
sentation of vector z to a full image B. In the same time DD receives as inputs an
image A and as output return o ∈ [0, 1]. Then, o is compared to a binary binary
label in origin of an image: real (1), or generated (0). More formally we can say
that discriminator DD evaluates the conditional probability P(label|image) and
the generator GG evaluates P(B|z).

The architectures of GG and DD are opposed. On place of DD can be any
standard CNN for image classification (net with constitutional layers, activa-
tion functions, non-linearities). The most interesting is GG architecture, it takes
random noise vector z and convert it into an image B, we achieve it using trans-
pose convolution (Long, Shelhamer, and Darrell, 2014). It allows us to upsample
the input. In Figure 2.3 we can see an example of the architecture of a generator.

Let’s talk about disadvantages of "vanilla" GAN, we introduced recently. It
still remains unclear whether or not convergence in GANs is guaranteed, both
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theoretically and empirically. Future research is focusing on this direction. But
until, research of GANs have two direction: improve of GANs framework, for
better distribution approximation (Salimans et al., 2016, Arjovsky, Chintala, and
Bottou, 2017), loss functions (Nowozin, Cseke, and Tomioka, 2016, Arora and
Zhang, 2017), and more practical direction, GANs framework, modification for
application it in real life (Tolstikhin et al., 2017, Mirza and Osindero, 2014, Isola
et al., 2016). Recent applications of GANs have shown that they can produce
excellent samples. However, the main idea of optimization of GANs in finding
Nash equilibrium of a non-convex game with continuous, high dimensional
parameters. Typically GANs trained using gradient descent methods, that de-
signed to find a minimum of the loss function, rather than to find the Nash
equilibrium of a game. When used to seek for a Nash equilibrium, these al-
gorithms may fail to converge (Salimans et al., 2016). It still remains unclear
whether or not convergence in GANs is guaranteed, both theoretically and em-
pirically. Future research is focusing on this direction. But until, research of
GANs have two direction: improve of GANs framework, for better distribution
approximation (Salimans et al., 2016, Arjovsky, Chintala, and Bottou, 2017), loss
functions (Nowozin, Cseke, and Tomioka, 2016, Arora and Zhang, 2017), and
more practical direction, GANs framework, modification for application it in
real life (Tolstikhin et al., 2017, Mirza and Osindero, 2014, Isola et al., 2016).
Recent applications of GANs have shown that they can produce excellent sam-
ples. However, the main idea of optimization of GANs in finding Nash equi-
librium of a non-convex game with continuous, high dimensional parameters.
Typically GANs trained using gradient descent methods, that designed to find
a minimum of the loss function, rather than to find the Nash equilibrium of a
game. When used to seek for a Nash equilibrium, these algorithms may fail to
converge (Goodfellow, 2014).

2.2.2 Conditional GAN

Goodfellow et al., 2014, in his paper mentioned about extensions of GANs,
one of it, was Conditional generative adversarial networks and Mirza and Osin-
dero, 2014 introduced it in his work. Conditional GANs are very similar to
"vanilla" GANs, the only difference is that, in this case, we have extra informa-
tion y (e. g. class label). This label strictly depends from the sample A. In case
we can model a density model py in order to sample labels y for generated data
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FIGURE 2.4: Conditional GAN.

B. On Figure 2.4, you can see updated pipeline for conditional GAN extension,
as you can see generator GG and discriminator DD takes y. In the generator, y
fed in the first layer. In discriminator, y we can introduce it in any layer (Mirza
and Osindero, 2014). More formally, we can reformulate as:

V(θG, θD) = EA,y∼pdata [log DD(A, y)] + Ez∼pz,y∼py [log (1−DD(GG(z, y), y))]
(2.3)

Generally, we can say that conditional GAN can convergent more rapidly,
than "vanilla" GAN, because both generator GG and discriminator DD takes ad-
ditional information. For example, if you want to learn generator GG to gener-
ate samples from MNIST dataset (LeCun and Cortes, 2010), in the same time we
want control GG to generate digit we want. In this case we fed vector of length
10 to both, generator GG and discriminator DD. Discriminator DD will adapt
weights θD to understand meaning of vector y, and through backpropogation
update θG in such way that GG will learn how to interpret y. After publica-
tion of this paper (Mirza and Osindero, 2014), started another view for image
generation models, more detailed overview, I will present in Chapter 3.

We can see conditional GAN from probabilistic point of view. GG(z, y), as we
mentioned, modeling distribution pdata, given z, y, that is our data is generated
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with this scheme B ∼ GG(B|z, y). Likewise for the discriminator, now it tries to
find discriminating label for A and B, that are modeled with o ∼ DD(o|A, y).
Hence, we could see that both GG and GG is jointly conditioned to two variables
z or A and y.

2.3 WGAN

As we said in last section, there are two types of GAN researches, one that ap-
plies GAN in interesting problems and one that attempts to stabilize the train-
ing. Stabilizing GAN training is a very big deal in the field. The "vanilla" GAN
suffers from several difficulties.

Firstly, it’s mode collapse. It is usually referred to a problem when all the gen-
erator GG outputs are identical (all of them or most of the samples are equal).
In real world, distributions are complicated and multi modal. For example data
distribution with two "peaks", where different sub-groups of samples are con-
centrated. In such a case a generator GG can learn to yield images only from
one of the sub-groups, causing mode collapse. This problem was actively tried
to solve in Salimans et al., 2016, Tolstikhin et al., 2017, Arjovsky, Chintala, and
Bottou, 2017, Gulrajani et al., 2017. My work is based on solving this problem,
in the next chapter, I will overview this problem in more details.

Secondly, it’s metric in GAN training, that tells us about the convergence. The
generator GG and discriminator DD loss do not tell us anything about this. Of
course we could monitor the training progress by looking at the data generated
from generator every now and then. However, it is a strictly manual process. So,
it would be great to have an interpretable metric that tells us about the training
progress. That’s why I make overview of Wasserstein GAN (Arjovsky, Chintala,
and Bottou, 2017).

Classical approach for approximation of a probability distribution is to learn
a probability density. This is often done by defining a parametric family of
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densities (Pθ)θ∈Rd and finding the one, that maximized on our data:

max
θ∈Rd

1
m

m

∑
i=1

log Pθ(x(i)) (2.4)

If the real data distribution pdata admits a density and pθ is the distribution of
the parametrized density Pθ, then, asymptotically, this amounts to minimizing
the Kullback-Leibler divergence KL(pdata||pθ).

For this to make sense, we need the model density pθ to exist. This is not the
case in the rather common situation where we are dealing with distributions
supported by low dimensional manifolds. It is then unlikely that the model
manifold and the true distribution’s support have a non-negligible intersection,
and this means that the KL distance is not defined (or simply infinite). The
simple idea to solve this problem was proposed in Kaae Sønderby et al., 2016
work. They proposed to add a noise term to the model distribution. This is
why virtually all generative models described in the classical machine learning
literature include a noise component. But for image generation, this approach
degrades the quality of the samples and makes them blurry.

In Wasserstein GAN paper was proposed method to solve this optimization
problems. But for explanation, we need to introduce some notations and theo-
retical background. Let X be a compact metric set (such as the space of images
[0, 1]d) and let ∑ denote the set of all the Borel subsets of X . Let p(X ) denote
space of probability measures defined on X . We can now define elementary
distances and divergences between two distributions pdata, pG ∈ p(X ):

• The Total Variation distance:

δ(pdata, pG) = sup
A∈∑
|pdata − pG|. (2.5)

• The Kullback-Leibler (KL) divergence:

KL(pdata||pG) =
∫

log(
pdata(x)
pG(x)

)pdata(x)dµ(x). (2.6)
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• The e Jensen-Shannon (JS) divergence:

JS(pdata, pG) = KL(pdata||pm) + KL(pG||pm). (2.7)

where pm is the mixture pdata+pG
2 . Optimization of "vanilla" GAN is the

same as optimization of JS divergence, that have been shown in this work
Goodfellow et al., 2014.

• The Earth-Mover (EM) distance or Wasserstein-1:

W(pdata, pG) = inf
γ∈∏(pdata,pG)

E(x,y)∼γ[||x− y||]. (2.8)

where ∏(pdata, pG) denotes the set of all joint distributions γ(x, y) whose
marginals are respectively pdata and pG. Intuitively, γ(x, y) indicates how
much “mass” must be transported from x to y in order to transform the
distribution pG. The EM distance then is the “cost” of the optimal trans-
port plan.

In Wasserstein GAN paper authors proofed the fact that W(pdata, pG) have
nicer properties when optimized than JS(pdata, pG) (vanilla GAN loss optimiza-
tion). However, equation 2.8 can be reformulated in terms of Kantorovich-
Rubinstein duality (Villani, 2008):

W(pdata, pG) = sup
|| f ||L≤1

Ex∼pdata [ f (x)]−Ex∼pG [ f (x)] (2.9)

where the supremum is over all the 1-Lipschitz functions f : X→ R. Note that
if we replace || f ||L ≤ 1 for || f ||L ≤ K, then we end up with KW(pdata, pG). And
finally, we can formulate optimization function for Wasserstein GAN as:

min
G

max
D∈D

EB∼pdata [D(B)]−EA∼pG [D(A)] (2.10)

WhereD is the set of 1-Lipschitz functions.

The WGAN value function results in a critic function whose gradient with
respect to its input is better behaved than its GAN counterpart, making opti-
mization of the generator easier. Additionally, WGAN has the desirable prop-
erty that its value function correlates with sample quality, which is not the case
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for GANs.

In practice, authors of Wasserstein GAN proposed to optimize WGAN through
optimization of neural network with weights w in compact spaceW . Note that
the fact thatW is compact implies that all the functions fw will be K-Lipschitz
for some K that only depends on W and not the individual weights, therefore
approximating up to an irrelevant scaling factor and the capacity of the fw. In
order to have parameters w lie in a compact space, something simple we can do
is clamp the weights to a fixed box w = [−0.01, 0.01] after each gradient update.

Weight clipping is a clearly terrible way to enforce a Lipschitz constraint. If
the clipping parameter is large, then it can take a long time for any weights to
reach their limit, thereby making it harder to train the critic till optimality. If the
clipping is small, this can easily lead to vanishing gradients when the number
of layers is big, or batch normalization is not used.

Later, community proposed another way to enforce the Lipschitz constraint.
A differentiable function is 1-Lipschtiz if and only if it has gradients with norm
at most 1 everywhere, so they consider directly constraining the gradient norm
of the discriminator’s output with respect to its input. Formally we can present
it as:

min
G

max
D∈D

EB∼pdata [D(B)]−EA∼pG [D(A)] + λEx∼px [(||∇xD(x)||2 − 1)2] (2.11)

Where px sampling uniformly along straight lines between pairs of points sam-
pled from the data distribution pdata and the generator distribution pG. This is
motivated by the fact that the graph of the optimal critic consists of straight lines
connecting points from pdata and pG. Given that enforcing the unit gradient
norm constraint everywhere is intractable, enforcing it only along these straight
lines seems sufficient and experimentally results in good performance. This re-
searches partially solved problems of "vanilla" GANs. Theoretically, WGAN
improved stability and quality of GAN training. Also on practice, WGAN get
better results in terms of "mode collapse" problem.
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Chapter 3

Experiments

3

3.1 Datasets

We use two image datasets of different complexity and variation. For our
experiments we created two datasets. One we call Shapes dataset. It’s synthetic
dataset. Second one we call T-shirts dataset. It’s quite big dataset, parsed from
different Internet resources, where it’s allowed by the policy of resource.

3.1.1 Synthetic generated dataset

This dataset was synthetically generated. Shapes dataset consist of different
geometric shapes on white background, shapes have different colors, sizes and
randomly located on the canvas.

Generally speaking, we generated three similar dataset. The main difference
was proportion of color in dataset (50%/50%, 75/25, 25/75), for our purposes.
Shapes dataset consist of circles, squares, ellipses and rectangles. Number of
samples in train subset is 7K and 3K in test subset. Examples you can see on
Figure 3.1
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(I) Blue rectan-
gle. (II) Blue ellipse. (III) Blue square. (IV) Blue circle.

(V) Red rectan-
gle. (VI) Red ellipse. (VII) Red square. (VIII) Red circle.

FIGURE 3.1: Samples from Figures dataset.

FIGURE 3.2: Samples of edges from Figures dataset.

Also for full pipeline we generated edges for each sample of geometrical fig-
ure. Examples you can see on Figure 3.2
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3.1.2 T-shirts dataset

This dataset was parsed from Internet resources. I should mention, that dataset
was parsed from resources where the policy resource allows it. The idea to cre-
ate such dataset appeared after hackathon "Hackathon Expert Group" (Odessa,
summer 2017), where I with my team got the 1st palace. The idea was in the
extraction of cloth from a photo of a person. And change the color of this cloth
using HSV format’s channels. After this hackathon, I decided to build a pipeline
in such way that we can change cloth in another way. In this way, we decided
to build a pipeline, which would be proof of concept, that it is possible to build
an on-line fitting room.

FIGURE 3.3: Samples from T-shirts dataset.

As you can see in Figure 3.3, we have different t-shirts in our dataset. It was
important for us to have images with a complex structure on the t-shirt. Such
as striped t-shirt, and colorful images on a t-shirt. When we parsed this dataset,
we parsed not relevant images too. The main issues we had:

• Some images had several t-shirts on one image;

• Some t-shirts was folded;

• Some images was with as person on it;

• Some images were with watermarks;

• A lot of duplicates;
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We did data cleaning by hands. Because we didn’t find out any automatic
way. I should mention that, we did a lot of work, initially, we had 45K of im-
ages after parsing, after data cleaning and preparation we left 13K (without
duplicates, etc.). T-shirts dataset was split in train 12K and test 1K.

FIGURE 3.4: Samples from T-shirts dataset.

Also for full pipeline we generated edges for each sample of geometrical fig-
ure. Examples you can see on Figure 3.4. For generating edges for t-shirts, we
used Canny edge detector (Bassil, 2012). All images had different size, some of
them was 96x96x3, this scale is small for generating detailed edges. Empirically
we decided to run edge detector on original image and then upscale both im-
ages. For upscaling an downscaling we used Bicubic interpolation. It helps to
save details of edges. Also for us was important to save wrinkles on the t-shirt,
because the idea was to generate real t-shirt, which look like person wear it Fig-
ure 3.5. All dataset have 256x256x3 size. Generated edges have 256x256x3 size
too. Both datasets T-shirt and Synthetic have same size.

(I) (II) (III) (IV)

FIGURE 3.5: Wrinkles of t-shirt. It’s important to save them.
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3.2 Problem Statement

In this work, I highlight two problems of GAN training. But first of all, I want
to explain why do we use GAN for our task. A lot of algorithms for image to im-
age translation (e.g. Kingma and Welling, 2013) was developed using functions
from Lp space, mostly L2 norm, for algorithm optimization. Such optimization
gives blurry results, and I want to show why (I should mention, that next ar-
guments do not pretend to be strictly mathematical. The following arguments
have intuitive character).

It is common situation in vision, using generative modeling, optimizing of
L2 loss function yielding blurry images (Mathieu, Couprie, and LeCun, 2015,
Pathak et al., 2016). Let’s define L2 loss as:

L =
1

2M

M

∑
i

N

∑
j
(x
′
ij − xij)

2 =
M

∑
i
||x′ij − xij||22 (3.1)

where M is number of all samples, x
′

is output image and x is input image.

Let’s take look at Gaussian distribution. It’s defined as follows:

p(x|µ, σ2) =
1
Z

exp
||µ− x||22

2σ2 (3.2)

where µ is the mean, σ2 is the variance. Let’s set µ = x
′

and σ2 = 1 then:

p(x|x′) ∝ exp
1
2
||x′ − x||22 (3.3)

And apply log to both sides.

log p(x|x′) ∝
1
2
||x′ − x||22 (3.4)

so we can say that minimizing MSE is the same as maximizing the log-likelihood
of Gaussian, so from this prospective we assume that x is from Gaussian distri-
bution.
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As we know that Gaussian distribution is unimodal distribution, but images
in real world have a lot of "peaks" in their multi-dimensional distribution. For
example, if you want to train NN to generate t-shirts, but there a lot of ways
to generate t-shirt. So we can say that distribution of all t-shirt images is mul-
timodal. So here we can see a problem, if you try to train model which will
fit unimodal distribution to look alike multimodal you will got something like
this:

FIGURE 3.6: If we would have bimodal distribution, then optimiz-
ing of L2 loss will finish with green line distribution. Our model

will try satisfy both modes.

For this reason we use GAN framework based models for our task. The rea-
son for that Jensen-Shannon divergence 2.2 tries to optimize our network in
such way that pg ∼ pdata, in other words approximate an unknown distribu-
tion. In section 2.3 we started discussion of "mode collapse" problem let’s an-
alyze reason of it. To understand intuition behind "mode collapse" problem,
we’ll use KL divergence and reverse KL divergence.
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Let’s introduce KL divergence one more time:

KL(pdata(x)||pG(x)) = ∑
x∈X

pdata(x) log
pdata(x)
pG(x)

(3.5)

that is, for all random variable x ∈ X, KL Divergence calculates the weighted
average on the difference between those distributions at x. Just like any other
distance functions, we can use KL divergence as a loss function in an optimiza-
tion setting, especially in a probabilistic setting. However, we have to note
this important property about KL divergence: it is not symmetric. Formally,
KL(pdata(x)||pG(x)) 6= KL(pG(x)||pdata(x)). (pG(x)||pdata(x)) called reverse
divergence.

In forward KL, the difference between pdata(x) and pG(x) is weighted by
pdata(x). Now let’s ponder on that statement for a while. Consider pdata(x) = 0
for a particular x. As pdata(x) is the weight, then it doesn’t really matter what’s
the value of the other term. In other words, if pdata(x) = 0, there is no conse-
quence at all to have very big difference between pdata(x) and pG(x). In this
case, the total KL Divergence will not be affected when pdata(x) = 0, as the
minimum value for KL Divergence is 0. During the optimization process then,
whenever pdata(x) = 0, pG(x) would be ignored. Reversely, if pdata(x) > 0,
then the log pdata(x)

pG(x) term will contribute to the overall KL Divergence. This is
not good if our objective is to minimize KL Divergence. Hence, during the
optimization, the difference between pdata(x) and pG(x) will be minimized if
pdata(x) > 0. Let’s see some visual examples:
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In the example above, the right hand side mode is not covered by pG(x), but
it is obviously the case that pdata(x) > 0. The consequence for this scenario is
that the KL divergence would be big. The optimization algorithm then would
force pdata(x) to take different form: In the above example, pG(x) is now more

spread out, covering all pdata(x) > 0. Now, there is no pdata(x) > 0 that are not
covered by pG(x).Although there are still some area that are wrongly covered
by pG(x), this is the desired optimization result as in this form of pG(x), the
KL Divergence is low. Those are the reason why, Forward KL is known as zero
avoiding, as it is avoiding pG(x) = 0 whenever pdata(x) > 0. This thoughts
gives some intuition of "mode collapse" emergence.

3.3 Experiments

We investigated that conditional GAN is general purpose of image-to-image
translation. Based on paper Isola et al., 2016 we have seen that it’s works well
and can pretend for state-of-the-art approach. So for our task, this approach
was starting point. As I mentioned our main task to investigate "mode collapse"
problem and try to solve it in terms of fashion industry or understand how this
"mode collapse" problem can be controlled for improvement of our task.

3.3.1 Brief overview of pix2pix framework

This subsection is based on Isola et al., 2016 work. Here I will give quick
overview of idea their proposed. As we already said, that a naive approach



Chapter 3. Experiments 31

to ask the CNN to minimize Euclidean distance between predicted and ground
truth pixels, it will tend to produce blurry results. This is because Euclidean dis-
tance is minimized by averaging all plausible outputs, which causes blurring.
Coming up with loss functions that force the CNN to do what we really want
(e.g., output sharp, realistic images) is an open problem and generally requires
expert knowledge. It will be grate to have goal like "produce realistic images",
and that is what GAN framework is doing.

Conditional GANs instead learn a structured loss. Structured losses penalize
the joint configuration of the output. In our work we tried different combina-
tions of architecture of generator GG and discriminator DD. For generator we
tried architectures build with ResNet blocks (He et al., 2015) of size 6, 9, also
we tried to use U-net (Ronneberger, Fischer, and Brox, 2015) like architectures.
And for discriminator we used blocks of [ convolution, batch-normalization
(Ioffe and Szegedy, 2015), leaky relu (Xu et al., 2015) ]. In empirical way defined
best architecture for us. So let’s repeat conditional GAN objective function one
more time:

min
G

max
D

V(θG, θD) = EA,y∼pdata [log DD(A, y)]+Ez∼pz,y∼py [log (1−DD(GG(z, y), y))]

(3.6)
In case of image to image translation we can formulate in such image: In case

FIGURE 3.7: The main idea of pix2pix framework.

of image to image translation on place of Y can be any valid input, such as in
this works inpainting (Pathak et al., 2016), future state prediction (Zhou and
Berg, 2016), image manipulation guided by user constraints (Zhu et al., 2016),
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style transfer (Li and Wand, 2016), and superresolution (Ledig et al., 2016). All
this applications of conditional GAN was proposed before pix2pix framework
(Isola et al., 2016). But full full pipeline was proposed in this work.

Previous approaches have found it beneficial to mix the GAN objective with
a more traditional loss, such as L2 distance (Pathak et al., 2016). The discrimi-
nator’s job remains unchanged, but the generator is tasked to not only fool the
discriminator but also to be near the ground truth output in an L2 sense. We
also explore this option, using L1 distance rather than L2 as L1 encourages less
blurring.

L1 = EA,Y[||A−GG(Y)||1] (3.7)

So full loss will look like:

min
G

max
D

V(θG, θD) + λL1(G) (3.8)

FIGURE 3.8: Simplified encoder-decoder based, U-net architec-
tures.
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FIGURE 3.9: ResNet block.

For generator we had two pretenders. On Figure 3.8 we can see the simpli-
fied idea of encoder-decoder (Hinton and Salakhutdinov, 2006) and U-net (Ron-
neberger, Fischer, and Brox, 2015) networks. Many last approaches (Pathak et
al., 2016, Wang and Gupta, 2016, Zhou and Berg, 2016, Yoo et al., 2016) are based
on encoder-decoder architecture. Such architecture run image through bunch of
layers which decreasing it to some small latent representation and then network
do reverse process and recover information from latent space.

But Ronneberger, Fischer, and Brox, 2015 presented modification of encoder-
decoder architecture. This architecture is better for image-to-image translation,
because we can now transport some "low-level" information about image to
output layers of "high-level" representation. This approach was proposed in
Isola et al., 2016 paper. Analyzing this arguments we can propose another ar-
chitecture that using skip connection for transferring information (in parallel
with main network) and combine it. It’s nets with stacked ResNet blocks (He
et al., 2015). We tried both in our work, and describe full architecture where it’s
worked.

For discriminator DD we have used just several stacked blocks of [ convolution,
batch-normalization (Ioffe and Szegedy, 2015), leaky relu (Xu et al., 2015) ]

3.3.2 Results

In first experiment we have used synthetic dataset 3.1.1 to show "mode col-
lapse" from experiment prospective. As we said in 3.1.1 we generated dataset
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of geometric shapes of two colors (blue and red) on white background. Also we
generated corresponding edges of geometric shapes. Number of blue and red
shapes will be 50X50. So the full pipeline looked like this:

FIGURE 3.10: pix2pix training on Synthetic dataset 3.1.1.

In this experiment we saw "mode collapse" problem implicitly. If we initialize
both generator GG and discriminator DD several times and train networks, then
pix2pix model will learn only one "mode" of distribution of colors. Each time
model will learn how to generate inside edges some color, but each time it’ll
learn to generate only one color, blue or red, depends on random initialization
of networks.

On table 3.1 we can see results of one such training on test data. As we said, if
you run experiment one more time, you will got reverse situation, model will
generate only blue examples.

On table 3.2 we can see results of training same model but on synthetic dataset
3.1.1 but with proportion of blue/red color 75x25. As we can see model learned
to generate only blue shapes into edges. So model learned only one "mode" of
color distribution.

This behavior is not a surprise since we optimize 2.7 Jenson-Shannon diver-
gence. As we discussed in 3.2 JS divergence is "mode-seeking" if concentrated
distributions whose support may not overlap. So we can assume that in some
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Edges Generated Ground truth

TABLE 3.1: Example of results by the training pix2pix on synthetic
dataset. In this case network was initialized in such way, that it

learned to generate only red shapes into edges.

high dimensional space of blue/red shapes are not overlapping in condition of
color.

Edges Generated Ground truth

TABLE 3.2: Example of results by the training pix2pix on synthetic
dataset 75x50. In this case network was random initialized in such

way, that it learned to generate only blue shapes into edges.
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All models was trained using U-net 3.8 based for generator GG , and for dis-
criminator DD with three blocks stacked blocks of convolution, batch normal-
ization, and ReLu activation.

The next part of experiment was to apply pix2pix model for T-shirts dataset
3.1.2. As we said pix2pix model’s loss consist of two losses conditional GAN
loss and L1 loss. For generator GG we have used U-net 3.8 based networks of
different number of layers, stacked ResNet blocks 3.9 with 6 and 9 blocks. But
for our pix2pix model generator GG with ResNet blocks didn’t work well, so we
present result of U-net based model.

Edges Generated Ground truth

TABLE 3.3: Example of results by the training pix2pix on T-shirts
dataset. This is cases of good generated t-shirts. It’s defiantly look-

ing realistic.

On table 3.3 we can see goof results of pix2pix model for generating t-shirts
using edges as input. We can see that network generating t-shirt directly inside
edges, it can generate complex edges of text. Also model can generate wrinkles
on t-shirt, you can see it on Figure 3.11. So all our requirements are satisfied.
But in our experiments we did a lot of manual work, and checking. The reason
for that is no any metric which will say if generated images are looking realistic
or not. Such methods as SSIM (Wang et al., 2004) and PSNR (Hore and Ziou,
2010) don’t fit for such task, as they show improvements when we optimizing
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L2 loss. And we don’t want generated samples by generator GG look directly
like real one.

(I) (II) (III) (IV)

FIGURE 3.11: Wrinkles of t-shirt. It was important to save them.

It’s obvious that most t-shirts has some main color and small pattern on it.
Such manual approach helped us to see that our trained model learned how to
generate simple t-shirts with short color pallet. But in case of complicated t-shirt
with a lot of colors and figures on it, generator generates t-shirt with one color
pallet. Examples you can see on table 3.4 Actually, we don’t give any infor-

Edges Generated Ground truth

TABLE 3.4: Example of results by the training pix2pix on T-shirts
dataset. This is cases of bad generated t-shirts. This what we called
mode collapse, when generator learned to fool discriminator by

generating the same color pallet.

mation for generator about color. But current model have other disadvantages,
our T-shirts dataset 3.1.2 initially had different size parsed images. 5% of it had
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images of size 96x96x3, we had to upscale it to 256x256x3, we used bicubic in-
terpolation which produce blurry results. Also we had small amount of images
with striped pattern. And our model produce very bad output on this samples.
Examples you can see on table 3.5.

Edges Generated Ground truth

TABLE 3.5: Example of results by the training pix2pix on T-shirts
dataset. This is cases of bad generated t-shirts. This what we called
mode collapse, when generator didn’t learn to generate some sam-

ples which not similar to other.

So we can see that pix2pix model produce very good results, but "mode col-
lapse" exclude some corner cases, such as t-shirts with striped pattern. So in
next subsection, we propose our approach to learn several modes of t-shirt or
control generation from some point of view.
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3.3.3 The proposed boosting-like method

FIGURE 3.12: Our proposed pipeline for creating model which
will cover more modes.

In this subsection, we present our approach for training image-to-image trans-
lation for cases, when we have multi-modal distribution and we need to gener-
ate images with more diversity.We will use the same pix2pix architecture as in
previous subsection 3.3.2. In this case, we will manipulate with a dataset and
add some process we called evaluation. Scheme of such approach you can see
in Figure 3.12. We will explain our approach to an example of T-shirts dataset
3.1.2.

This algorithm is iterative, at first iteration we have the full dataset of T-shirts.
We train pix2pix model on this dataset and generating images on all training
data edges of t-shirts. Then we take ground truth t-shirt, generated and cal-
culating feature reconstruction loss (Johnson, Alahi, and Fei-Fei, 2016). Rather
than comparing the pixels of the output image B = G(y) to exactly match the
pixels of the target image A, we instead encourage them to have similar feature
representations as computed by the loss network φ. Let φj(x) be the activa-
tions of the jth layer of the network φ when processing the image x; if j is a
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convolutional layer then φj(x) will be a feature map of shape CjXHjXWj. The
feature reconstruction loss is the (squared, normalized) Euclidean distance be-
tween feature representations:

lφ,j
f eat(B, A) =

1
CjWjHj

Hj

∑
h=1

Wj

∑
w=1
||φ̂(G(y))− φ(A)||22 (3.9)

Where φ in our case is ResNet50, to calculate such loss we took outputs of sec-
ond ResNet block 3.9. After we calculate loss for all dataset, we splitting it
into two parts - samples which have an error less than median of losses on all
dataset, and more than median. You can see the process on the first iteration
when we took a dataset of T-shirts 3.1.2 and trained GAN as before and calcu-
lated feature reconstruction loss for the training set. And then split train dataset
into two parts - dataset1 and iteration one dataset. I should say that there are
not any strict mathematic reasons to do it in such way, but empirically it showed
interesting observations and resolved our problems we formulated in the begin-
ning. Partition operation splited T-shirts dataset 3.1.2 in proportion 3843/7545
dataset1 and iteration one dataset respectively.

FIGURE 3.13: First iteration of our algorithm. We calculated loss
on all dataset and split it on two parts using median.
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After the first iteration is done, we take iteration one dataset and repeat the
process. We train new pix2pix model on iteration one dataset, then we calcu-
late loss on all iteration one dataset with generated images with the new model.
And make partition by the median again. In our case it looks like Figure 3.14.
So now we will have two more datasets partitioned on iteration one dataset

FIGURE 3.14: Second iteration of our algorithm. We calculated
loss on all dataset and split it on two parts using median.

- dataset2 and iteration two datasets. But before next iteration let’s analyze
what we got through training two pix2pix models. So on table 3.6 we can see
that most of the samples, which we pick out from an evaluation of first pix2pix
model, got better results in terms of feature reconstruction loss. Partition oper-
ation split iteration one dataset in proportion 3772/3772 dataset2 and iteration
three dataset respectively.

TABLE 3.6: Iteration one dataset after training second pix2pix
model.

Iteration one dataset Error got better Error got worse
7545 5216 2329
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After iteration two is done, we can train new GAN on iteration two dataset.
And in our case, we call it final dataset3 and stop iteration process. Because in
our case such partition as we did make for us 3 datasets in proportion 3843/3772/3773,
dataset1, dataset2, dataset3 respectively and it’s the minimum amount of data
to train pix2pix model if we do not want change generator GG and discrimina-
tor DD architectures at the next step. The next step in our proposed method
3.12 is to take datasets produced at each step, in our case, it’s dataset1, dataset2,
dataset3 and train for each of them own pix2pix model. In such way, we believe
that at each iteration, according to our optimization function, will cover their
own mode of distribution. In such way, we will get 2 models, each of them are
covering their own mode from pdata.

So let’s call our new models as pix2pix1, pix2pix2, pix2pix3, for dataset1,
dataset2, dataset3 respectively. As we mentioned in previous subsection 3.5
our initial model trained on full T-shirts dataset (3.1.2) is suffering from mode
collapse in the way it’s didn’t learn some rare samples with similar patterns
such as striped pattern and bad quality images.

As we see in table 3.7, our method for bad cases of pix2pix model trained on
full T-shirts dataset, generates 3 different images by 3 different models. And
we can see that some models built using our approach generating better results.
That example proofs our assumption that in such way we can build the bunch
of models which will cover more modes of data distribution pdata. Of course,
we have examples of images that none of the models generate proper results,
but in such cases, as a striped pattern and upscaled images, our model is able
to solve. Manually we checked dataset1, dataset2, dataset3 and visually we can
see some dependents of partition.

According to our visual assessment in the first dataset, we got images from T-
shirt dataset 3.1.2 which have some main plane color and small figure on it. This
is expected, because dataset was parsed from real commercial web resources,
and it’s obvious that most close has limited color pallet. In dataset2 we got
t-shirts which have more colors, not standard colors (e.g. gray, white, black)
and complicated figures on it. The most interesting for us was dataset3 as far as
images from this dataset showed big error on both iterations. And we have seen
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Edges Original pix2pix pix2pix1 pix2pix2 pix2pix3
(proposed) (proposed) (proposed)

TABLE 3.7: Example of results of our approach in comparison with
initial pix2pix model and ground truth.

that in dataset3 we mostly have images of bad quality, which were upscaled
from 96X96X3 to 256X256X3, and images with a striped pattern on it. I don’t
know why but for networks, it was complicated such pattern. But as we see on
table 3.7 such images succeed with a pix2pix3 model. So we can say that using
our approach we can train such model which will succeed with such corner
cases, and I should mention that we don’t need any manual work for that.

The second task for us was to build such pipeline, that for one input we could
generate images with the different color pallet. Under different color pallet,
we mean that we pursued a goal to build a pipeline in a way that it outputs
realistic images for the same condition, but it’s not similar to each other, and to
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the ground truth. But, and in this requirement, we got some satisfying results.
And this is important for the main goal an application for the fashion industry.
In other words, we can say, that we increased the variety of image-to-image
translation task. Example you can see on table 3.8

Edges Original pix2pix pix2pix1 pix2pix2 pix2pix3
(proposed) (proposed) (proposed)

TABLE 3.8: Example of results of our approach in comparison with
initial pix2pix model and ground truth.

Let’s more formally defined our proposed algorithm:
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Algorithm 1 Our proposed algorithm to construct a “strong” set of K individual
GANs, trained sequentially.

Require: Dataset D = X1, X2, ... XN, Y = y1, y2, ... yN
DATA_PARTITIONS← [ ]
Dp ← D
while K 6= 0 do

GAN ← pix2pix.intialize()
GAN.train(Dp)
datasetk, Dp ← SPLIT[l f eat(GAN.predict(Dp), Yk), median(GAN.predict(Dp)]

DATA_PARTITIONS.append(datasetk)
end while
GANs← set()
for data in DATA_PARTITIONS do

GAN ← pix2pix.intialize()
GAN.train(datas)
GANs.append(GAN)

end for
return GANs
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Chapter 4

Conclusions

In this thesis, we made an overview of image-to-image translation problem
from the generative adversarial networks point of you. We did a detailed overview
of GAN framework introduced by Goodfellow et al., 2014, also in chapter 2
we made an overview of GAN based extensions. We discussed problems of
this methods and looked at different solutions developed at that time. We cov-
ered such extension of GAN as GAN framework, conditional GAN, Wasserstein
GAN, f-divergence GAN. Also, we gave some overview of generative modeling
generally from an image-to-image translation problem.

At chapter 3, we made detailed overview of current state-of-the-art solution
- pix2pix. For experiments with the current state-of-the-art model, we created
two datasets. One of them is synthetically generated it consist of different ge-
ometric shapes on white background, and the second one was parsed from In-
ternet resources, where it’s allowed, in Dataset section 3.1 we gave a detailed
overview of data cleaning, preprocessing. And explained why the creation of
dataset need a lot of manual work and why it should be clean. We should men-
tion that there is no such T-shirts dataset 3.1.2 presented yet, as we know, and
we give interesting tips and tricks for dataset creation for image-to-image trans-
lation task.

Using pix2pix (Isola et al., 2016) model with synthetic dataset 3.1.1 we dis-
covered that conditional GAN application for image-to-image translation suf-
fering from "mode collapse" too. Our synthetic dataset 3.1.1 showed on a more
low-level dataset and made this problem explicit. This fact pushed us on some
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idea, that resulted novel approach for image-to-image translation based on the
pix2pix model. It was very useful for variety problem-solving.

We developed a conditional GAN boosting-like algorithm, which solves in a
special way "mode collapse" problem. And allows us to generate for one in-
put several outputs with different "style". Also, we proposed our own solution
for "mode collapse" problem. Our algorithm outputs set of different GANs,
each of them covers different modes of distribution. For image-to-image trans-
lation where distribution is very high-dimensional and have a lot of "peaks",
this method solves a problem well, but if we talk in terms of fashion industry it
works very well. Now we can generate several images for one input, because
we learned several modes of dataset distribution, in other words, we solved the
problem of variety in some sense.

Despite this, there are a lot of research can be done in this area, not only for
image-to-image translation but in general in direction of complex distribution
approximation. Generally, We can make an important conclusion that it’s very
useful to start research from simple points, as we did with a synthetic dataset.
This experiment allowed us to see real problems of current approaches, and
develop our own approach.

I want to say thank you to my supervisor Artem Chernodub, who directed me
in my research and helped me to highlight important problems and the ways of
solving it.
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