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Abstract
Orest KUPYN

Conditional Adversarial Networks for Blind
Image Deblurring

We present an end-to-end learning approach for motion deblurring,
which is based on conditional GAN and content loss – DeblurGAN.
DeblurGAN achieves state-of-the art in structural similarity measure
and by visual appearance. The quality of the deblurring model is also
evaluated in a novel way on a real-world problem – object detection
on (de-)blurred images. The method is 5 times faster than the closest
competitor.

Second, we present a novel method of generating synthetic mo-
tion blurred images from the sharp ones, which allows realistic dataset
augmentation.
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Chapter 1

Introduction
Motion blur is one of the biggest and most unpleasant problems of pho-
tographers. The photographs can be degraded by blur both because of
the shake of the camera and object movement. Moreover, the varia-
tion of a depth, blur radius, shape and other artifacts present on blurred
photos make this problem even more complicated. This work is fo-
cused on removing motion blur from a single photograph, which is a
specific case of an image-to-image translation. This highly challeng-
ing problem receives a lot of attention because of its importance for the
the photographers and also because of a wide variety of applications,
as deblurring an image allows to recover otherwise lost information.
Thus, there is a wide variety of approaches to deblurring problem each
of which has its own pros and cons. In general, the blur model is
formulated as following: The common formulation of blur model is
following:

IB = K ∗ IS + N (1.1)

, where IB is a blurred image, K is a blur kernel, IS is a sharp latent im-
age, ∗ denotes the convolution operation and N is an additive noise. et
al.
The whole family of deblurring methods is divided into two types:
blind and non-blind deblurring. Early works [34] mostly focuses on
non-blind deblurring, making an assumption that the blur function K
is known. Most of them rely on the classical Lucy-Richardson algo-
rithm, Wiener or Tikhonov filter to perform the deconvolution opera-
tion and obtain IS estimate. In practice the blur function is unknown,
so the blind deblurring algorithms estimate both latent sharp image IS
and blur kernel K. Finding a blur function for each pixel is an ill-posed
problem, so most of the existing algorithms rely on image heuristics
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and assumptions on the sources of the blur. Those family of meth-
ods addresses the blur caused by camera shake by considering blur to
be uniform across the image. Firstly, the camera motion is estimated
in terms of the induced blur kernel, and then the effect is reversed by
performing a deconvolution operation. Starting with the success of
Fergus et al.[7], a lot derivative methods [39][38][26][2] has been de-
veloped over the last ten years. Some of the methods are based on
an iterative approach [7] [39], which improve the estimate of the mo-
tion kernel and sharp image on each iteration by using parametric prior
models. However, the running time, as well as the stopping criterion,
is a significant problem for those kinds of algorithms. Others use as-
sumptions of a local linearity of a blur function and simple heuristics
to quickly estimate the unknown kernel. These methods are fast but
work well on a small subset of images. With the success of deep learn-
ing, over the last few years, there appeared some approaches based
on convolutional neural networks (CNNs). Sun et al. [33] use CNN
to estimate blur kernel, Chakrabarti [5] predicts complex Fourier co-
efficients of motion kernel to perform non-blind deblurring in Fourier
space whereas Gong [8] use fully convolutional network to move for
motion flow estimation. All of these approaches use CNN to esti-
mate the unknown blur function. Recently, a kernel-free end-to-end
approaches by Noorozi [25] and Nah [23] that uses multi-scale CNN to
directly deblur the image. Such methods are able to deal with different
sources of the blur. The drawback is that the number of parameters in
Multi-scale architectures raises problems with the inference time and
a dataset for training, as very Deep Convolutional Neural Networks
need thousands and millions of examples to be able to generalize well.
Inspired by recent works on image super-resolution [18] and image-
to-image translation by generative adversarial networks [13], we treat
deblurring as a special case of such image-to-image translation. We
present DeblurGAN – an approach based on Conditional Generative
Adversarial Networks [22] and a multi-component loss function. Dif-
ferent from previous works we use Wasserstein GAN [1] with Gradient
Penalty [10] and perceptual loss [14]. This encourages solutions which
are perceptually hard to distinguish from real sharp images and allows
to restore finer texture details in contrast to using traditional MSE or
MAE as an optimization target.
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FIGURE 1.1: DeblurGAN helps object detection. From top to
bottom: YOLO [28] detections results on a blurred image, re-

stored by DeblurGAN, ground truth sharp image.
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1.1 Contribution
In general, GAN are known for an ability to preserve high texture de-
tails in images and create solutions that are close to real image mani-
fold and looks perceptually more convincing.
In our work we use ResNet with a global skip connection architec-
ture and conditional GANs to form a perceptual loss function for non-
uniform motion deblurring. Our main contributions are:

• We propose DeblurGAN, which is a cGAN-based network. In
contrast to pure MSE-based solutions, all of the parts of our net-
works works towards creating sharp generated images with clear
details. We use a combination of Wasserstein GAN [1] to move
generated images towards sharp images manifold, VGG percep-
tual loss [14] to obtain "visually pleasing results", PatchGAN [4] [13]
to approximate texture loss, Instance Normalization [35] which
also imrpoves visual results and global residual connections which
empirically shows huge boost in networks performance. All to-
gether, this architecture allows to set a new state of the art in blind
motion deblurring.

• We propose a new way to generate synthetic realistic blurred im-
ages, based on random trajectories which helps to overcome the
problem of training data limitation. We also construct new dataset
which combines image pairs taken by high frame-rate camera in
the wild and synthetically generated images and show training re-
sults of models trained on different combinations. We show that
this combination allows to deal with blur caused both by camera
shake and object movement.

• We confirm on different benchmarks that DeblurGAN is the new
state of the art by measuring PSNR and SSIM metrics. Moreover,
as PSNR metric captures presence of high texture details very
poorly, we propose a new way to measure the quality of deblurring
model based on results of object detection model (YOLO [28]).
We refer to the new dataset and benchmark as DeblurTest.
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FIGURE 1.2: Images processed by DeblurGAN. From left to
right: blurred photo, result of DeblurGAN, ground truth sharp

image.
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Chapter 2

Related work

2.1 Artificial Neural Networks
Neural network is a system of hardware and/or software created to
mimic the work of neurons in the human brain. Neural networks, also
called artificial neural networks, are a variety of machine learning tech-
nologies. The commercial application of these technologies mainly
focuses on solving complex signal processing or pattern recognition
problems. Examples of the commercial applications include handwrit-
ing recognition for check processing, speech to text, weather forecast-
ing, and face recognition.
Neural networks typically include a large number of processors that
run in parallel and arranged in layers. The first level receives initial
information (input) - an analogue of optical nerves in the human visual
processing. Each successive level receives an output from the previous
level, and not from the input - in the same way, the neurons that are
located far from the optic nerve receive signals from the closest one.
The last layer produces system output.
Each processing node has its own small area of "expertise", including
what it saw, and any rules that it originally programmed or developed
for itself. The levels are highly interconnected, which means that each
node of level n will be connected to many nodes of the level n− 1 - its
inputs - and the level n + 1, which provides input for these nodes. The
output layer may have one or more nodes, from which the answer that
it creates can be read.
Neural networks are known for being adaptive, which means they mod-
ify themselves as they learn during the training, and the subsequent
runs provide more information about the world. The simplest training
model focuses on weighing input streams, so each node puts the impor-
tance of input from each of its predecessors. Inputs that that contribute
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to getting the correct answers are weighted higher.
Typically, a neural network is initially trained on the large volumes of
data. The data usually consists on pairs of input and ground truth out-
put. For example, to build a network to identify actors, the dataset may
include a series of photographs of actors, non-actors, masks, figures,
animals, etc. Each entry is accompanied by an appropriate label, such
as the names of actors, "not actor" or "non-human" information. Pro-
viding answers allows the model to adjust its internal weights to learn
how to do its job better.

2.2 Convolutional Neural Networks
Convolutional neural networks [17] are a biologically inspired class
of deep learning models that replace all the stages with one neural net-
work, which studies in end-to-end manner, from row pixels to classifier
outputs. Spatial structure of the images is explicitly used for regular-
ization due to a limited connection between the layers (local filters),
the sharing of parameters (convolutions) and special local invariance-
building neurons (pooling layers). So, these architectures effectively
shifted the necessary engineering from design of handcrafted image
features to the network connection structure and hyperparameter tun-
ing. Because of the computing limitations, until recently, CNN have
been applied to a relatively small scale of the image problems, but im-
provements on hardware GPUs allowed CNNs to scale up to the mil-
lions of parameters, which in turn led to significant improvement of the
classification of images, detection of objects [11] and others. In addi-
tion, features acquired by deep networks trained on ImageNet [6], have
been shown to yield state-of-the-art performance across many standard
image recognition datasets when classified with an SVM, even with no
fine-tuning.
The main difference from the ordinary neural networks (multilayer per-
ceptron) is that CNN architectures make an assumption that the inout
is an image which allows us to encode certain properties into the ar-
chitecture. These then make the forward function more efficient to im-
plement and vastly reduce the amount of parameters in the network.
The main three types of layers to build Convolutional Neural Net-
work architectures [17][11] are Convolutional Layer, Pooling Layer,
and Fully-Connected Layer. The layers are stacked together with a
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different possible choices of the non-linearity to form a full architec-
ture.

2.3 Generative adversarial networks
The idea of generative adversarial networks, introduced by Goodfel-
low et al.[9], is to define a game between two competing networks:
discriminator and generator. The generator receives noise as an input
and generates a sample. A discriminator receives a real and gener-
ated sample and is trying to distinguish between them. The goal of
the generator is to fool the discriminator by generating perceptually
convincing samples that can not be distinguished from the real one.
From the theoretical perspective, the game between the generator G
and discriminator D is the minimax objective:

min
G

max
D

E
xvPr

[log(D(x))]− E
x̃vPg

[log(1− D(x̃))]

where Pr is the data distribution and Pg is the model distribution, de-
fined by x̃ = G(z), z v P(z), the input z is a sample from a simple
noise distribution. GANs are known for its ability to generate sam-
ples of good perceptual quality, however, training of vanilla version
suffer from many problems such as mode collapse, vanishing gradi-
ents etc, as described in [30]. Minimizing the value function in GAN
is equal to minimizing the Jensen-Shannon divergence between the
data and model distributions on x. Arjovsky et al. [1] discuss the
difficulties in GAN training caused by JS divergence approximation
and propose to use the Earth-Mover (also called Wasserstein-1) dis-
tance W(q, p). The value function for WGAN is constructed using
Kantorovich-Rubinstein duality [36]:

min
G

max
D∈D

E
xvPr

[D(x)]− E
x̃vPg

[D(x̃)] (2.1)

where D is the set of 1−Lipschitz functions and Pg is once again
the model distribution The idea here is that critic value approximates
K ·W(Pr, Pθ), where K is a Lipschitz constant and W(Pr, Pθ) is a
Wasserstein distance. In this setting, a discriminator network is called
critic and it approximates the distance between the samples. To enforce
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Lipschitz constraint in WGAN Arjovsky et al.add weight clipping to
[−c, c]. This technique, however, may lead to optimization difficulties
such as capacity under-use or exploding/vanishing gradients. Gulra-
jani et al. [10] propose to add a gradient penalty term:

λ E
x̃vPx̃

[(‖∇x̃D(x̃)‖2− 1)2]

to the value function as an alternative way to enforce the Lipschitz
constraint. This enables stable training of a wide variety of GAN ar-
chitectures with almost no hyperparameter tuning.

2.4 Conditional adversarial networks
Generative Adversarial Networks have been applied to different image-
to-image translation problems, such as super resolution [18], style trans-
fer [20], product photo generation [4] and others. Isola et al. [13] pro-
vides a detailed overview of those approaches and present conditional
GAN architecture also known as pix2pix. Unlike vanilla GAN, cGAN
learns a mapping from observed image x and random noise vector z, to
y : G : x, z → y. Isola et al.also put a condition on the discriminator
and use U-net architecture [29] for generator and Markovian discrim-
inator which allows achieving perceptually superior results on many
tasks, including synthesizing photos from label maps, reconstructing
objects from edge maps, and colorizing images.
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Chapter 3

Proposed Method
The goal is to recover sharp image IS given only a blurred image IB as
an input, so no information about the blur kernel is provided. To do
that we train a CNN GθG , to which we refer as the Generator. For each
IB it estimates corresponding IS image. In addition, during the training
phase, we introduce critic function DθD and train both networks in an
adversarial manner.

3.1 Loss function
Designing appropriate loss function is crucial for training deep neu-
ral network, especially in image-to-image translation. Existing end to
end learning approaches in blind motion deblurring are mostly using
solely MSE as an optimization target [25]. The negative side of this
choice is that MSE-based solution appears overly smooth due to the
pixel-wise average of possible solutions in the pixel space, as shown
in [18]. This results in often blurry recovered images without high
texture details which is very important to avoid in image deblurring.
We formulate the loss function as a combination of content and adver-
sarial loss:

L = LGAN︸ ︷︷ ︸
adv loss

+ λ · LX︸ ︷︷ ︸
content loss︸ ︷︷ ︸

total loss

where the λ equals to 100 in all experiments. Unlike Isola et al.[13]
we do not condition the discriminator as we do not need to penalize
mismatch between the input and output. In our settings both of the
loss components are needed to create perceptually convincing results,
as generator goal is not only to create indistinguishable from natural
sharp image manifold for critic but also to make sure that samples lie
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close in L1, L2 or feature space. Below we would compare different
possible choices for both adversarial and content loss.
Adversarial loss Most of the papers related to conditional GANs, use
vanilla GAN objective as a loss [18][23]. More recently [41] provides
an alternative way of using Least Square GAN [21] which is more
stable and generates higher quality results. We use WGAN-GP [10]
as the critic function. The critic does not output a probability that the
reconstructed image is sharp and the loss is calculated as the following:

LGAN =
N

∑
n=1
−DθD(GθG(IB)) (3.1)

Content loss Two classical choices for "content" loss function are L1
or MAE loss, L2 or MSE loss on raw pixels. Isola et al. [13] show
in their work that L1 loss usually results in higher quality results with
less blurring effect. Ledig et al. [18]and achieve state of the art in
Super Resolution and Style Transfer using perceptual loss, which cor-
responds to visual similarity and helps to preserve high texture details.
We build on top of their ideas and see a significant improvement in
model results using the perceptual loss as the content loss part. Thus
we define the content loss function as the following:

LX = 1
Wi,jHi,j

Wi,j

∑
x=1

Hi,j

∑
y=1

(φi,j(IS)x,y − φi,j(GθG(IB))x,y)
2

where φi,j is the feature map obtained by the j-th convolution (after ac-
tivation) before the i-th maxpooling layer within the VGG19 network,
pretrained on ImageNet [6], Wi,j and Hi,j are the dimensions of the
feature maps.

3.2 Network architecture
Generator CNN architecture is shown in Figure 3.1. It is similar to
one proposed by Johnson et al.[14] for style transfer task. It contains
two strided convolution blocks with stride 1

2 , nine residual blocks [11]
(ResBlocks) and two transposed convolution blocks. Each ResBlock
consists of a convolution layer, instance normalization layer [35], and
ReLU [24] activation. Dropout [32] regularization with a probability
of 0.5 is added after the first convolution layer in each ResBlock.
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FIGURE 3.1: Architecture of the DeblurGAN generator net-
work. DeblurGAN contains two strided convolution blocks with
stride 1

2 , nine residual blocks [11] and two transposed convo-
lution blocks. Each ResBlock consists of a convolution layer,

instance normalization layer, and ReLU activation.

In addition, we introduce the global skip connection which we refer
to as ResOut. CNN learns a residual correction IR to the blurred image
IB, so IS = IB + IR. We find that such formulation makes training
faster and resulting model generalizes better.

During the training phase, we define a critic network DθD , which
is Wasserstein GAN [1] with Gradient Penalty [10], to which we refer
as WGAN-GP. The architecture of critic network is identical to Patch-
GAN [13, 20] that penalizes structures at the scale of patches and can
be interpreted as Texture/Style loss approximation. All the convolu-
tional layers except the last are followed by InstanceNorm layer and
LeakyReLU [37] with α = 0.2.
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FIGURE 3.2: Conditional GAN for motion deblurring. Gener-
ator network takes the blurred image as an input and produces
the estimate of the sharp image. During the training time, the
critic network takes restored and sharp image as an input and es-
timates a distance between them. Total loss consists of WGAN
loss from critic and perceptual loss [14] based on the differ-
ence in activations of VGG-19 [31] between the feature maps
of sharp and restored images. At test time only the generator is

kept
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3.3 Motion blur generation

FIGURE 3.3: Top row: Blur kernels from real-world images
estimated by Fergus et al.[7]. Bottom row: Synthetically gener-
ated kernels by our method. Our randomized method can simu-
late wide variety of realistic blur kernels with different level of

non-linearity.

There is no easy method to obtain image pairs of corresponding
sharp and blurred images for training, in contrast to other popular
image-to-image translation problems, such as super-resolution or col-
orization. A typical approach to obtain image pairs for training is to
use a high frame-rate camera to simulate blur using average of sharp
frames from video [25, 23]. It allows to create realistic blurred images
but limits the image space only to scenes present in taken videos and
makes it complicated to scale the dataset. Sun et al.[33] creates syn-
thetically blurred images by convolving clean natural images with one
out of 73 possible linear motion kernels, Xu et al.[40] also use linear
motion kernels to create synthetically blurred images. Chakrabarti [5]
creates blur kernel by sampling 6 random points and fitting a spline to
them.

We take a step further and propose a method, which simulates more
realistic and complex blur kernels. We follow the idea described by
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Boracchi and Foi [3] of random trajectories generation. Then the ker-
nels are generated by applying sub-pixel interpolation to the trajectory
vector. Each trajectory vector is a complex valued vector, which corre-
sponds to the discrete positions of an object following 2D random mo-
tion in a continuous domain. Trajectory generation is done by Markov
process, summarized in Algorithm 1. Position of the next point of the
trajectory is randomly generated based on the previous point velocity
and position, gaussian perturbation, impulse perturbation and deter-
ministic inertial component

Algorithm 1 Motion blur kernel generation. Initial parameters:
M = 2000 – number of iterations, Lmax = 60 – max length of the move-
ment,
ps = 0.001 – probability of impulsive shake.
I = inertia term, uniform from (0,0.7)
pb – probability of big shake, uniform from (0,0.2)
pg – probability of gaussian shake, uniform from (0,0.7)
φ – initial angle, uniform from (0,2π)
x – trajectory vector

1: procedure BLUR(Img, M, Lmax, ps)
2: v0 ← cos(φ) + sin(φ) ∗ i
3: v← vo ∗ Lmax/(M− 1)
4: x = zeros(M, 1)
5: for t = 1 to M− 1 do
6: if randn < pb ∗ ps then
7: nextDir← 2 · v · ei∗(π+(randn−0.5)))
8: else:
9: nextDir← 0

10: dv← nextDir+ ps ∗ (pg ∗ (randn+ i ∗ randn) ∗ I ∗ x[t] ∗
(Lmax/(M− 1))

11: v← v + dv
12: v← (v/abs(v)) ∗ Lmax/(M− 1)
13: x[t + 1]← x[t] + v
14: Kernel← sub pixel interpolation(x)
15: Blurred image← conv(Kernel, Img)
16: return Blurred image
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FIGURE 3.4: Examples of generated camera motion trajectory
and the blur kernel and the corresponding blurred images.

3.4 Training Details
We implemented all of our models using PyTorch[27] deep learning
framework. The training was performed on a single Titan-X GPU
using three different datasets. The first model to which we refer as
DeblurGANWILD was trained on a random crops of size 256x256 from
GoPro dataset [23]. The second one DeblurGANSynth was trained on
256x256 patches from MS COCO dataset blurred by method, pre-
sented in previous Section. We also trained DeblurGANComb on a com-
bination of synthetically blurred images and images taken in the wild,
where the ratio of synthetically generated images to the images taken
by a high frame-rate camera is 2:1. As the models are fully convolu-
tional and are trained on image patches they can be applied to images
of arbitrary size. For optimization we follow the approach of [1] and



18 Chapter 3. Proposed Method

perform 5 gradient descent steps on DθD , then one step on GθG , using
Adam [15] as a solver. The learning rate is set initially to 10−4 for
both generator and critic. After the first 150 epochs we linearly decay
the rate to zero over the next 150 epochs. At inference time we follow
the idea of [13] and apply both dropout and instance normalization.
All the models were trained with a batch size = 1, which showed em-
pirically better results on validation. The training phase took 6 days
for training one DeblurGAN network. We see that DeblurGAN trained
only on synthetic data still has poorer generalization than other mod-
els and is not able to restore images with highly non-uniform blur and
blur caused by object movement. However, a combination of syntheti-
cally generated images with images taken by a high-frame rate camera
increase network generalization abilities. Still, the DeblurGANWILD
produces the smoothest results as synthetic blurred images have differ-
ent blur radius, so some results of DeblurGANComb has visible ring-
ing artifacts. The performance of all of our models are presented in the
next chapter.
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Chapter 4

Experimental evaluation
The evaluation of image-to-image translation tasks is a difficult prob-
lem [13] [30]. As already mentioned, often perceptually more con-
vincing generated images have lower score on classical metrics such
as PSNR. In our work, we propose a new way to evaluate the quality
of deblurring model on a real-world problem and show the results of
our models on the new benchmark as well as on two different widely-
used benchmarks. We show on those benchmarks thatDeblurGANWILD
is a new state of the art for blind motion deblurring.

4.1 GoPro Dataset

TABLE 4.1: Mean peak signal-to-noise ratio and structural sim-
ilarity measure on GoPro test dataset of 1111 images. We took
linear image subset for testing all models. State-of-art results

(∗) by Nah et al. [23] obtained with gamma subset.

Method Sun et al. Nah et al. DeblurGAN

Metric [33] [23] WILD Synth Comb

PSNR 24.64 28.34/29.1* 27.21 23.69 28.72
SSIM 0.842 0.916 0.954 0.884 0.958
Time 20 min 4.33 s 0.85 s

GoPro dataset[23] consists of 2103 pairs of blurred and sharp im-
ages in 720p quality, taken from various scenes. We compare the re-
sults of our models with state of the art models [33], [23] on standard
metrics and also show the running time of each algorithm on a single
GPU. Results are in Table4.1. DeblurGAN shows superior results in
terms of structured self-similarity, is close to state-of-the-art in peak
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signal-to-noise-ratio and provides better looking results by visual in-
spection. It can handle blur caused by camera shake and object move-
ment, does not suffer from usual artifacts in kernel estimation methods
and at the same time has more than 6x fewer parameters comparing to
Multi-scale CNN , which heavily speeds up the inference. Deblured
images from test on GoPro dataset are shown in Figure 4.1.

4.2 Kohler dataset
Kohler dataset [16] consists of 4 images blurred with 12 different ker-
nels for each of them. This is a standard benchmark dataset for evalua-
tion of blind deblurring algorithms. The dataset is generated by record-
ing and analyzing real camera motion, which is played back on a robot
platform such that a sequence of sharp images is recorded sampling
the 6D camera motion trajectory. Results are in Table 4.2

TABLE 4.2: Mean peak signal-to-noise ratio and structural sim-
ilarity measure on Kohler benchmark dataset.

Method Sun et al. Nah et al. DeblurGAN

Metric [33] [23] WILD Synth Comb

PSNR 25.22 26.02 26.10 25.67 25.86
MSSIM 0.773 0.811 0.816 0.792 0.802
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FIGURE 4.1: Results of evaluation on GoPro test dataset. From
left to right: blurred photo, result of Nah et al. [23], result of

our algorithm.
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FIGURE 4.2: Evaluation on Kohler dataset. From left to right:
blurred photo, Nah et al.[23], DeblurGAN
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4.3 Object Detection benchmark on YOLO

(A) Blurred photo (B) Nah et al. [23] (C) DeblurGAN (D) Sharp photo

FIGURE 4.3: YOLO object detection before and after deblur-
ring

Object Detection is one of the most well-studied problems in com-
puter vision with applications in different domains from autonomous
driving to security. During the last few years approaches based on
Deep Convolutional Neural Networks showed state of the art perfor-
mance comparing to traditional methods. However, those networks are
trained on limited datasets and in real-world settings images are often
degraded by different artifacts, including motion blur, Similar to [19]
we studied the influence of motion blur on object detection and pro-
pose a new way to evaluate the quality of deblurring algorithm based
on results of object detection on a pretrained YOLO [28] network.

For this, we constructed a dataset of sharp and blurred street views
by simulating camera shake using a high frame-rate video camera. Fol-
lowing [12][23][25] we take a random between 5 and 25 frames taken
by 240fps camera and compute the blurred version of a middle frame
as an average of those frames. All the frames are gamma-corrected
with γ = 2.2 and then the inverse function is taken to obtain the final
blurred frame. Overall, the dataset consists of 410 pairs of blurred and
sharp images, taken from the streets and parking places with different
number and types of cars.

Blur source includes both camera shake and blur caused by car
movement. The dataset and supplementary code are available online.
Then sharp images are feed into the YOLO network and the result after
visual verification is assigned as ground truth. Then YOLO is run on
blurred and recovered versions of images and average recall and pre-
cision between obtained results and ground truth are calculated. This
approach corresponds to the quality of deblurring models on real-life
problems and correlates with the visual quality and sharpness of the
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generated images, in contrast to standard PSNR metric. The preci-
sion, in general, is higher on blurry images as there are no sharp ob-
ject boundaries and smaller object are not detected as it shown in Fig-
ure 4.3.

Results are shown in Table 4.3. DeblurGAN significantly outper-
forms competitors in terms of recall and F1 score.

TABLE 4.3: Results of object detection on YOLO [28] on
blurred and restored photos using our and Nah et al. [23] al-
gorithms. We take the results on corresponding sharp images
as the ground truth. DeblurGAN has higher recall and F1 score

than its competitors.

Method prec. recall F1 score

no deblur 0.821 0.437 0.570
Nah et al. [23] 0.834 0.552 0.665

DeblurGAN WILD 0.764 0.631 0.691
DeblurGAN synth 0.801 0.517 0.628
DeblurGAN comb 0.671 0.742 0.704
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Chapter 5

Conclusion
We described a kernel-free blind motion deblurring learning approach
and introduced DeblurGAN which is a Conditional Adversarial Net-
work that is optimized using a multi-component loss function. In addi-
tion to this, we implemented a new method for creating a realistic syn-
thetic motion blur able to model different blur sources. We introduce
a new benchmark and evaluation protocol based on results of object
detection.
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